2020年广东省佛山市高三第二次模拟考试理科数学试题-含答案
2020年广东省广州、深圳市学调联盟高三第二次调研考试理科数学试卷及答案解析

7.已知函数 f(x+2)(x∈R)为奇函数,且函数 y=f(x)的图象关于直线 x=1 对称,当 x∈[0,1]
时, f (x) x , 则 f( 2020)=( ) 2020
A.2020
B. 1
C. 1
D.0
2020
1010
8.在棱长为 1 的正方体 ABCD A ' B 'C ' D ' 中,已知点 P 是正方形 AA' D ' D 内部(不含边界)的一 个动点,若直线 AP 与平面 AA' B ' B 所成角的正弦值和异面直线 AP 与 DC ' 所成角的余弦值相 等,则线段 DP 长度的最小值是( )
1.已知集合 A x x2 4, B x x 2 x ,则 A B ( )
A.x 2 x 2 B.x x 2
C.x x 1
D.x x 2
2.设复数 z 的共轭复数是 z ,且 z 1,又复数 z 对应的点为 Z , A(1, 0) 与 B(0,1) 为
定点,则函数 f (z) (z 1)(z i) 取最大值时在复平面上以 Z , A , B 三点为顶点的图形
10.如图,斜△ABC 满足tan A tan B 4 2 3 , AB 1 , AB max BC , AC ,
其 中 maxa,b表示a ,b 中较大的数(a b 时定义maxa, b a b ). 线段 AC 的
中垂线上有一点 D ,过点 D 作 DE BC 于点E ,满足 AB BE CE ,则点 D 到 △ABC 外接圆上一点的距离最大值为
是( )
A.等边三角形 B.等腰直角三角形
C.直角三角形 D.等腰三角形
3.已知函数 f x sin x 0, 0 的图像过两点
2020届高三第二次模拟考试数学(理科)试题 Word版含解析

2020年高考数学二模试卷(理科)一、选择题(共12小题).1.设351i z i i=++,则z =( )A. 2B.12C.22D.102【★答案★】C 【解析】 【分析】根据复数运算法则求得1122z i =-+,根据模长的定义求得结果. 【详解】()351111222i i i z i i i i --=+=+=-++ 112442z ∴=+= 本题正确选项:C【点睛】本题考查复数模长的求解问题,关键是能够通过复数的运算求得复数,属于基础题. 2.已知集合{}2670A x x x =--<,{}B x x x ==-,则A B =( )A. (]1,0-B. (]7,0-C. [)0,7D. [)0,1【★答案★】A 【解析】 【分析】分别求解出集合A 和集合B ,根据交集的定义求得结果. 【详解】{}()26701,7A x x x =--<=-,{}(],0B x x x ==-=-∞(]1,0A B ∴=-本题正确选项:A【点睛】本题考查集合运算中的交集运算,属于基础题. 3.函数()()22ln x xf x x -=+的图象大致为( )A. B.C. D.【★答案★】B 【解析】 【分析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项.【详解】()f x 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C . 本题正确选项:B【点睛】本题考查函数图象的辨析,关键是能够通过函数的奇偶性、特殊值的符号来进行排除. 4.已知向量a ,b 满足||2a =,||1b =,且||2b a -=则向量a 与b 的夹角的余弦值为( ) A.22B.23C.24D.25【★答案★】C 【解析】 分析】先由向量模的计算公式,根据题中数据,求出12a b ⋅=,再由向量夹角公式,即可得出结果. 【详解】因为向量a ,b 满足||2a =,||1b =,且||2b a -=,所以2||2-=b a ,即2222+-⋅=b a a b ,因此12a b ⋅=, 所以12cos ,422⋅<>===a b a b a b. 故选:C【点睛】本题主要考查由向量的模求向量夹角余弦值,熟记向量夹角公式,以及模的计算公式即可,属于常考题型.5.已知抛物线2:2(0)C x py p =>的准线l 与圆22:(1)(2)16M x y -+-=相切,则(p = )A. 6B. 8C. 3D. 4【★答案★】D 【解析】 【分析】根据题意,求出圆的圆心为()1,2和半径为4,以及抛物线的准线方程:2pl y =-,利用直线与圆相切的性质得出242p+=,即可求出p 的值. 【详解】解:由题可知,圆22:(1)(2)16M x y -+-=的圆心为()1,2,半径为4,抛物线2:2(0)C x py p =>的准线:2p l y =-与圆22:(1)(2)16M x y -+-=相切, 则有242p+=,解得:4p =. 故选:D .【点睛】本题考查圆的标准方程和抛物线的简单性质,以及直线与圆的位置关系的应用,是基本知识的考查.6.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A. 8B. 7C. 6D. 4【★答案★】A 【解析】 【分析】根据等比数列的性质,得到13123322123132221111a a a a a S a a a a a a a a +++++=+==,结合题中数据,即可得出结果.【详解】因为等比数列{}n a 的前n 项和为n S ,且1231112a a a ++=,22a =, 则13123321231322111124a a a a a S a a a a a a a +++++=+===,则38S =. 故选A【点睛】本题考查等比数列的性质,熟记等比数列的性质即可,属于常考题型. 7.“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长、面积以及圆周率的基础.刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为( )(参考数据:32.09460.8269≈)A. 3.1419B. 3.1417C. 3.1415D. 3.1413【★答案★】A 【解析】 【分析】先设圆的半径为r ,表示出圆的面积和正六边形的面积,再由题中所给概率,即可得出结果. 【详解】设圆的半径为r ,则圆的面积为2r π,正六边形的面积为213336222r r r ⨯⨯⨯=,因而所求该实验的概率为22333320.82692rr ππ==,则33 3.141920.8269π=≈⨯.故选A【点睛】本题主要考查与面积有关的几何概型,熟记概率计算公式即可,属于常考题型. 8.已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是( ) A.π6B.π3C.2π3D.5π6【★答案★】B 【解析】 【分析】先由最小正周期,求出ω,再由对x ∈R ,()3f x f π⎛⎫≥ ⎪⎝⎭恒成立,得到2,3k k Z πϕπ=+∈,进而可得()cos 23f x x π⎛⎫=+⎪⎝⎭,求出其单调递减区间,即可得出结果. 【详解】因为函数()()cos f x x ωϕ=+的最小正周期为π,所以22πωπ==,又对任意的x ,都使得()3f x f π⎛⎫≥ ⎪⎝⎭, 所以函数()f x 在3x π=上取得最小值,则223k πϕππ+=+,k Z ∈, 即2,3k k Z πϕπ=+∈,所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭, 令222,3k x k k Z ππππ≤+≤+∈,解得,63k x k k Z ππππ-+≤≤+∈ ,则函数()y f x =在0,3π⎡⎤⎢⎥⎣⎦上单调递减,故a 的最大值是3π.故选B【点睛】本题考查三角函数的图象及其性质,考查运算求解能力.9.已知函数||2()2x f x x =+,设21(log )3m f =,0.1(7)n f -=,()4log 25p f =,则m ,n ,p 的大小关系为( ) A. m p n >> B. p n m >>C. p m n >>D. n p m >>【★答案★】C 【解析】 【分析】先由函数奇偶性的概念判断函数()f x 的奇偶性,再得到其单调性,确定21log 3,0.17-,4log 25的范围,即可得出结果.【详解】因为()22xf x x =+,所以()222()2()xxf x x x f x --=+-=+=,因此()22xf x x =+为偶函数,且易知函数()f x 在()0,∞+上单调递增,又()221log log 31,23=∈,()0.170,1-∈,()42log 25log 52,3=∈, 所以0.1421log 25log 73->>, 因此p m n >>. 故选C【点睛】本题主要考查函数的奇偶性与单调性的应用,熟记函数性质即可,属于常考题型.10.已知双曲线()2222100x y a b a b-=>,>的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若21210F F F A F A →→→⎛⎫+⋅= ⎪⎝⎭,则此双曲线的标准方程可能为( )A. x 2212y -=1B. 22134x y -= C. 221169x y -= D. 221916x y -=【★答案★】D 【解析】 【分析】由向量的加减运算和数量积的性质,可得221||||2AF F F c ==,由双曲线的定义可得1||22AF a c =+,再由三角形的余弦定理,可得35c a =,45c b =,即可判断出所求双曲线的可能方程. 【详解】解:由题可知,1212F A F F F A →→→=-+,若21210F F F A F A →→→⎛⎫+⋅= ⎪⎝⎭,即为2221210F F F F A F F A →→→→⎛⎫+⋅ ⎛⎫-+⎪⎝ ⎭⎪⎭=⎝, 可得21222F AF F →→=,即有221||||2AF F F c ==,由双曲线的定义可知122AF AF a -=, 可得1||22AF a c =+, 由于过F 2的直线斜率为247, 所以在等腰三角形12AF F 中,2124tan 7AF F ∠=-, 则217cos 25AF F ∠=-, 由余弦定理得:22221744(22)cos 25222c c a c AF F c c+-+∠=-=,化简得:35c a =, 即35a c =,45b c =, 可得:3:4a b =,22:9:16a b =,所以此双曲线的标准方程可能为:221916x y -=.故选:D .【点睛】本题考查双曲线的定义和方程、性质,考查向量数量积的性质,以及三角形的余弦定理,考查运算能力,属于中档题.11.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P平面1A BM ,则1C P 的最小值是( )A.305 B.2305C. 275D.475【★答案★】B【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值.【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM ,1//DQ A M 且DNDQ D =,1BMA M M =∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22212512CP ⨯==+ 2212230255C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.12.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2xg x e x =+-的零点为2x ,函数()ln 2xh x x=的最大值为3x ,则( ) A. 123x x x >> B. 213x x x >>C. 312x x x >>D. 321x x x >>【★答案★】A 【解析】 【分析】根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅<⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系. 【详解】()1x f x e x x'=+-在()0,∞+上单调递增且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= 函数()2xg x e x =+-在()0,∞+上单调递增且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭211,42x ⎛⎫∴∈ ⎪⎝⎭又()()11111211112220xg x e x x x g x x x ⎛⎫=+-=-+-=->=⎪⎝⎭且()g x 单调递增 12x x ∴> 由()21ln 2x h x x-'=可得:()()max 12h x h e e ==,即31124x e =< 123x x x ∴>>本题正确选项:A【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难. 二、填空题:本大题共4小题,每小题5分,共20分.把★答案★填在答题卡中的横线上.13.设x ,y 满足约束条件2020260x y x y -≥⎧⎪+≥⎨⎪+-≤⎩,则z x y =+的最小值是________.【★答案★】0 【解析】 【分析】画出可行域,平移基准直线0x y +=到可行域边界的位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知当:0l x y +=平移到过点(2,2)-时,min 0z =.【点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力. 14.某公司对2019年1~4月份的获利情况进行了数据统计,如表所示:利用线性回归分析思想,预测出2019年8月份的利润为11.6万元,则y 关于x 的线性回归方程为_____【★答案★】0.954y x =+ 【解析】 【分析】由已知求得样本点的中心的坐标,结合已知列关于b 与a 的方程组,求解即可得到y 关于x 的线性回归方程.【详解】解:由已知表格中的数据可得,12342.54x +++==,56 6.5825.544y +++==,∴25.52.54b a =+,① 又11.68b a =+,②联立①②解得:0.95b =,4a =.∴y 关于x 的线性回归方程为0.954y x =+.故★答案★为:0.954y x =+.【点睛】本题考查线性回归方程,直接利用公司计算即可,属于基础题15.若一个圆柱的轴截面是面积为4的正方形,则该圆柱的外接球的表面积为_______. 【★答案★】8π. 【解析】 【分析】作出圆柱与其外接球的轴截面,结合题中数据,求出外接球半径,再由球的表面积公式,即可得出结果.【详解】作出圆柱与其外接球的轴截面如下:设圆柱的底面圆半径为r ,则2BC r =,所以轴截面的面积为()224ABCD S r ==正方形,解得1r =,因此,该圆柱的外接球的半径2222222BD R +===, 所以球的表面积为()2428S ππ==.故★答案★8π【点睛】本题主要考查圆柱外接球的相关计算,熟记公式即可,属于常考题型.16.数列{}n a 为1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,…,首先给出11a =,接着复制该项后,再添加其后继数2,于是21a =,32a =,然后再复制前面所有的项1,1,2,再添加2的后继数3,于是41a =,51a =,62a =,73a =,接下来再复制前面所有的项1,1,2,1,1,2,3,再添加4,…,如此继续,则2019a =______. 【★答案★】1 【解析】 【分析】根据数列构造方法可知:21n a n -=,即()21121n nk k a a k -+=≤<-;根据变化规律可得20192a a =,从而得到结果.【详解】由数列{}n a 的构造方法可知11a =,32a =,73a =,154a =,可得:21n a n -= 即:()21121n nk k a a k -+=≤<-201999648523010340921a a a a a a a a ∴========本题正确结果:1【点睛】本题考查根据数列的构造规律求解数列中的项,关键是能够根据构造特点得到数列各项之间的关系,考查学生的归纳总结能力.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2sin sin sin sin sin sin B C b B c C a A A ⎛⎫+=+ ⎪ ⎪⎝⎭.(1)求A 的大小; (2)若2a =,π3B =,求ABC ∆的面积.【★答案★】(1) 4A π=.(2) 334ABC S ∆+=【解析】 【分析】(1)先由正弦定理,将2sin sin sin sin sin sin B C b B c C a A A ⎛⎫+=+ ⎪ ⎪⎝⎭化为222bc b c a a a ⎛⎫+=+ ⎪⎝⎭,结合余弦定理,即可求出角A ;(2)先求出sin C ,再由正弦定理求出b ,根据三角形面积公式,即可得出结果.【详解】(1)因为2sin sin sin sin sin sin B C b B c C a A A ⎛⎫+=+ ⎪ ⎪⎝⎭,由正弦定理可得:222bc b c a a a ⎛⎫+=+ ⎪⎝⎭, 即2222b c a bc +-=,再由余弦定理可得2cos 2bc A bc =,即2cos 2A =, 所以4A π=;(2)因为3B π=,所以()62sin sin 4C A B +=+=, 由正弦定理sin sin a b A B=,可得3b =. 133sin 24ABC S ab C ∆+==. 【点睛】本题主要考查解三角形,熟记正弦定理、余弦定理即可,属于常考题型.18.如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是矩形,A 1D 与AD 1交于点E ,AA 1=AD =2AB =4.(1)证明:AE ⊥平面ECD.(2)求直线A 1C 与平面EAC 所成角的正弦值. 【★答案★】(1)证明见解析;(2)69【解析】 【分析】(1)证明AA 1⊥CD,CD⊥AD,推出CD⊥平面AA 1D 1D ,得到CD⊥AE.证明AE⊥ED.即可证明AE⊥平面ECD ;(2)建立空间坐标系,求出平面的法向量,利用向量法求解直线A 1C 与平面EAC 所成角的正弦值. 【详解】(1)证明:因为四棱柱ABCD ﹣A 1B 1C 1D 1是直四棱柱, 所以AA 1⊥平面ABCD ,则AA 1⊥CD.又CD ⊥AD ,AA 1∩AD =A ,1,AA AD ⊂平面AA 1D 1D , 所以CD ⊥平面AA 1D 1D ,所以CD ⊥AE.因为AA1⊥AD,AA1=AD,所以AA1D1D是正方形,所以AE⊥ED.又CD∩ED=D,,CD ED⊂平面ECD.所以AE⊥平面ECD.(2)如图,以AB所在直线为x轴,以AD所在直线为y轴,以1AA所在直线为z轴,建立如图所示的坐标系,A1D与AD1交于点E,AA1=AD=2AB=4.A(0,0,0),A1(0,0,4),C(2,4,0),D(0,4,0),所以E(0,2,2),(0,2,2)AE=,(2,4,0)AC=,1AC=(2,4,﹣4),设平面EAC的法向量为n=(x,y ,z),可得n ACn AE⎧⋅=⎨⋅=⎩,即240220x yy z+=⎧⎨+=⎩,不妨n=(﹣2,1,-1),所以直线A1C与平面EAC 所成角的正弦值为11||444|46966|636nA CA Cn⋅-++===⋅.【点睛】本题主要考查空间直线平面的位置关系的证明,考查空间线面角的计算,意在考查学生对这些知识的理解掌握水平.19.某工厂预购买软件服务,有如下两种方案:方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.(1)设日收费为y 元,每天软件服务的次数为x ,试写出两种方案中y 与x 的函数关系式; (2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.【★答案★】(1) 方案一中:1060,y x x N =+∈,方案二:200,15,20100,15,x x Ny x x x N ≤∈⎧=⎨->∈⎩.(2) 从节约成本的角度考虑,选择方案一. 【解析】 【分析】(1)根据题中条件,建立等量关系,即可得出所需函数关系;(2)分别设两种方案的日收费为X ,Y ,由题中条形图,得到X ,Y 的分布列,求出对应期望,比较大小,即可得出结果.【详解】(1)由题可知,方案一中的日收费y 与x 的函数关系式为1060,y x x N =+∈方案二中的日收费y 与x 的函数关系式为200,15,20100,15,x x Ny x x x N ≤∈⎧=⎨->∈⎩.(2)设方案一种的日收费为X ,由条形图可得X 的分布列为X190 200 210 220 230 P0.10.40.10.20.2所以()1900.12000.42100.12200.22300.2210E X =⨯+⨯+⨯+⨯+⨯=(元) 方案二中的日收费为Y ,由条形图可得Y 的分布列为Y200 220 240 P0.60.20.2()2000.62200.22400.2212E Y =⨯+⨯+⨯=(元)所以从节约成本的角度考虑,选择方案一.【点睛】本题主要考查函数的应用,以及离散型随机变量的分布列与期望,熟记相关概念即可,属于常考题型.20.已知椭圆C :()222210x y a b a b +=>>的离心率为32,焦距为23.(1)求C 的方程; (2)若斜率为12-的直线l 与椭圆C 交于P ,Q 两点(点P ,Q 均在第一象限),O 为坐标原点. ①证明:直线,,OP PQ OQ 的斜率依次成等比数列. ②若Q '与Q 关于x 轴对称,证明:4tan 3POQ '∠>. 【★答案★】(1)2214x y +=; (2)①见解析;②见解析.【解析】 【分析】(1)根据离心率、焦距和222b a c =-可解出,,a b c ,从而得到椭圆方程;(2)①设直线l 的方程为:12y x m =-+,()11,P x y ,()22,Q x y ,将直线方程与椭圆方程联立可得韦达定理的形式,从而求得12y y ;整理可知:2121214Q Q O O P P y y k k k x x ===,从而证得结论;②Q '与Q 关于x 轴对称可知xOQ xOQ'∠=∠,由①知1tan tan 4xOQ xOP '∠⋅∠=,则()tan tan POQ xOQ xOP ''∠=∠+∠,利用两角和差正切公式展开整理,根据基本不等式求得最小值,经验证等号无法取得,从而证得结论.【详解】(1)由题意可得:32223c a c ⎧=⎪⎨⎪=⎩,解得:23a c =⎧⎪⎨=⎪⎩ 2221b a c ∴=-=∴椭圆C 的方程为:2214x y += (2)证明:①设直线l 的方程为:12y x m =-+,()11,P x y ,()22,Q x y由221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 得:()222210x mx m -+-= 则()()222481420m m m∆=--=->,且122xx m +=,()21221x x m =-()22121212121111122422m y y x m x m x x m x x m -⎛⎫⎛⎫∴=-+-+=-++= ⎪⎪⎝⎭⎝⎭()2212212112421OP OQPQ m y y k k k x x m -∴====- 即直线,,OP PQ OQ 的斜率依次成等比数列 ②由题可知:xOQ xOQ '∠=∠ 由①可知:1tan tan 4xOQ xOP '∠⋅∠=,tan 0xOQ '∠>,tan 0xOP ∠> ()tan tan tan tan 1tan tan xOQ xOP POQ xOQ xOP xOQ xOP'∠+∠''∴∠=∠+∠='-∠⋅∠()44tan tan 2tan tan 3343xOQ xOP xOQ xOP ''=∠+∠⨯⋅∠=≥∠ 若xOQ xOP '∠=∠,则,P Q 两点重合,不符合题意;可知无法取得等号4tan 3POQ '∴∠>【点睛】本题考查椭圆标准方程求解、直线与椭圆综合应用问题,涉及到斜率关系的证明和不等式的证明.证明不等式的关键是能够利用倾斜角的关系,利用两角和差正切公式构造出符合基本不等式的形式,利用基本不等式求得最值;易错点是忽略对于取等条件能否成立的验证.21.已知函数()xf x e ax b =++,曲线()y f x =在点(1,f (1))处的切线方程为20ex y --=.(1)求函数()f x 的解析式,并证明:()1f x x -.(2)已知()2g x kx =-,且函数()f x 与函数()g x 的图象交于1(A x ,1)y ,2(B x ,2)y 两点,且线段AB 的中点为0(P x ,0)y ,证明:0()f x g <(1)0y <.【★答案★】(1)()2xf x e =-;证明见解析;(2)证明见解析; 【解析】 【分析】(1)根据题意,对()f x 求导得()x f x a e '=+,利用导数的几何意义和切线方程求出a 和b ,即可求出()f x 的解析式,令()()11x h x f x x e x =-+=--,利用导数研究函数得单调性和最值得出()0h x ≥,即可证明不等式;(2)结合分析法,把所要证明的问题转化为证明212121221112x x x x x x e e x x e----+<<-,设210t x x =->,进而转化为只需证:22tte e t -->,构造函数22()ttF t e e t -=--,利用导数研究函数的单调性,从而可证明出0()f x g <(1)0y <.【详解】解:(1)由题可知,()xf x e ax b =++,则()x f x a e '=+,由于()y f x =在点(1,f (1))处的切线方程为20ex y --=, 所以f (1)2e a b e =++=-,即2a b +=-, 即f '(1)e a e =+=,则0a =,解得:2b =-, 则()2xf x e =-.令()()11x h x f x x e x =-+=--,()1xh x e '=-,令()0h x '=,即10x e -=,解得:0x =,则0x <时,()0h x '<,()h x 单调递减;0x >时,()0h x '>,()h x 单调递增, 所以函数()h x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,()(0)0h x h ∴=,则()1f x x -.(2)由题可知,()2g x kx =-,且12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,则1202()22x x x f x e e+=-=-,12120422x x y y e e y ++-==, 要证0()f x g <(1)0y <成立, 只需证:121224222x x x x e e ek ++--<-<,即证:121222x x x x e k e e++<<,即证:1122122212xx x x x x e e e x e e x +-+<<-, 只需证:212121221112x x x x x x e e x x e----+<<-, 不妨设210t x x =->,即证:2112tt t e e e t -+<<, 要证21t t e e t-<,只需证:22t t e e t -->,令22()t t F t e et -=--,则221()()102t tF t e e -'=+->,()F t ∴在(0,)+∞上为增函数,()(0)0F t F ∴>=,即21t t e e t-<成立; 要证112t t e e t -+<,只需证:112t t e t e -<+,令1()12t t e tG t e -=-+,则22222214(1)(1)()0(1)22(1)2(1)t t t t t t t e e e e G t e e e -+--'=-==<+++, ()G t ∴在(0,)+∞上为减函数,()(0)0G t G ∴<=,即112t te e t -+<成立. ∴2112tt t e e e t -+<<,0t >成立, 0()f x g ∴<(1)0y <成立.【点睛】本题考查导数的几何意义的应用和利用导数证明不等式,还涉及利用导数研究函数的单调性和最值,属于导数知识的综合应用,考查转化思想和运算能力.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l 的方程为0x y a +-=,曲线C 的参数方程为2cos ,sin x y αα=⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)若直线l 与曲线C 交于A ,B 两点,且直线OA 与OB 的斜率之积为54,求a . 【★答案★】(1)l :cos sin0a ,C :()2224sin cos 4ρθθ+=;(2)12a =±. 【解析】 【分析】(1)利用直角坐标与极坐标换算公式直接可得; (2)联立直线l 与曲线C 的极坐标方程,得()()22224sincos 4cos sin aθθθθ++=,设()()1122,,,A B ρθρθ,则125tan tan 4O O B A k k θθ==,解得a 即可. 【详解】(1)将cos x ρθ=,sin y ρθ=代入0x y a +-=的方程中,所以直线l 的极坐标方程为cos sin 0a .在曲线C 的参数方程中,消去α,可得2214x y +=,将cos x ρθ=,sin y ρθ=代入2214x y +=的方程中,所以曲线C 的极坐标方程为()2224sincos 4ρθθ+=.(2)直线l 与曲线C 的公共点的极坐标满足方程组()222cos sin 04sin cos 4a ρθρθρθθ+-=⎧⎪⎨+=⎪⎩,由方程组得()()22224sin cos 4cos sin a θθθθ++=, ()2222224sin cos 4si 2cos n sin cos a a θθθθθθ+=++,两边同除2cos θ,可化为22224tan 48tan 4tan a a θθθ+=++,即()22244tan 8tan 40a a θθ--+-=, 设()()1122,,,A B ρθρθ,则212245tan tan 444O OB A a k k a θθ-===-,解得12a =±. 【点睛】本题考查了参数方程,极坐标方程,普通方程之间的换算关系.考查了直线与椭圆极坐标方程的应用.属于中档题. [选修4-5:不等式选讲] 23.已知函数()|2|f x x =+.(1)求不等式()(2)4f x f x x +-<+的解集;(2)若x ∀∈R ,使得()()(2)f x a f x f a ++恒成立,求a 的取值范围.【★答案★】(1) {}22x x -<<.(2) 22,3⎡⎤--⎢⎥⎣⎦. 【解析】【分析】(1)先由题意得24x x x ++<+,再分别讨论2x -≤,20x -<≤,0x >三种情况,即可得出结果;(2)先由含绝对值不等式的性质,得到()()22f x a f x x a x a ++=++++≥,再由题意,可得22a a ≥+,求解,即可得出结果.【详解】(1)不等式()()24f x f x x +-<+ 可化为24x x x ++<+,当2x -≤时,224x x --<+ ,2x >-,所以无解;当20x -<≤时,24x <+ 所以20x -<≤;当0x >时,224x x +<+,2x < ,所以02x <<,综上,不等式()()24f x f x x +-<+的解集是{}|22x x -<<.(2)因为()()22f x a f x x a x a ++=++++≥又x R ∀∈,使得()()()2f x a f x f a ++≥ 恒成立,则22a a ≥+,()2222a a ≥+,解得223a -≤≤-. 所以a 的取值范围为22,3⎡⎤--⎢⎥⎣⎦. 【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的思想,以及绝对值不等式的性质即可,属于常考题型.感谢您的下载!快乐分享,知识无限!。
广东省佛山市2021届普通高中高三教学质量检测(二模)数学试卷及答案解析

2020~2021年佛山市普通高中高三教学质量检测(二)数 学 参考答案与评分标准一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合 题目要求的.题号 1 2 3 4 5 6 7 8 答案DABDCDCB二、选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要 求.全部选对的得5分,有选错的得 0分,部分选对的得2分.题号 9 10 11 12 答案BDBCACABD三、填空题:本题共4小题,每小题5分,共20 分.13. 43p14. ( )1,1 - 15. 616.1 2 , 1(,1] 2四、解答题:本大题共6小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤.17.【解析】(1)由 a n -b n = 2 n得 a 2=b 2 +4=5 , a 4=b 4 +16=9 ,………………………………………2分设{ }n a 的公差为d ,则 a 4- a 2= 2 , a 1=a 2 -d =3 ………………………………………………3 分 2d = 则{ } n a 的通项公式为 n a =a 1 +(n -1)d =3+(n -1) ´2=2n + 1 .……………………………………4 分 因为 b n =a n - 2 n, …………………………………………………………………………………………5 分 则 ()-(2+22+L +2n)( n +1 )( ) 21 12 212 32222 212nn n n S a a a n n n + ´- + =+++=-=+-+ - L …6分(2)设{ } n b 的公比为q ,当 2 q = 时,{ n a } 是等比数列,当 q ¹2 时,{a n } 不是等比数列. …………7 分 下面进行说明:解法一:由题意知 2 nn na b =+ , 111 11 1 11 1 2()2 2 2 22 1()2nn n nn n n n n n nn q b a b b q b q a b b q q + + ++ - + + + === ++ + ,………………………9分 设 1 2 n n a q a + = ,则 1 2 1 2()2 1()2nn q b q b q q + = + ,整理得 2 12 ()(1)2 2 n q q b q q -=- ,则 2 2 10 20 q q q ì -= ï í ï -= î ,解得 2 2 2 q q = ì í = î , 因此当 2 q = 时, { }n a 是等比数列,公比也是2.………………………………………………………12 分 解法二:由题意知 2 n n n a b =+ ,由 212 n n na a a ++ = 得 122 12 (2)(2)(2) n n n n n nb b b ++ ++ +=++ ,…………9 分 因为 2 12 n n n b b b ++ = 整理得 22 12 222 n n n n n n b b b ++ ++ =+ ,则 244 q q =+ ,解得 2 q = ,…………………11 分因此当 2 q = 时,{ }n a 是等比数列. ……………………………………………………………………12 分 解法三:若{ }n a 是等比数列,则 2213 a a a = ,即( ) ( )( ) 2213 428 b b b +=++ ,…………………………8 分Oz yxPEDCB即 2 221313 8168216 b b b b b b ++=+++ ,即 213 44 b b b =+ ,即 2111 44 b q b b q =+ ,解得 2 q = .………10 分当 2 q = 时, ( ) 11 11 2222 n n n n a b b -- =×+=+× ,因为 1 0 b > ,所以12 n na a + = (常数),故{ } n a 是等比数列. ………………………………………………12 分 18.【解析】(1)取DE 中点O ,连结 , O P OC ,CE ,由翻折不变性可知OP DE ^ ,OC DE ^ .………2分又OP OC O = I ,所以DE ^平面OPC . ………………………………………………………………3分 又PC Ì平面OPC ,所以DE PC ^ .…………………4 分 (2)不妨设 2 CD = ,则 2 PD = , 2 OP OC == , 又PC PD = ,所以 22OP OC += 2PC ,所以OP OC ^ .…………………………………………5分 结合(1)可知 ,, OP OC DE 两两垂直,以O 为原点,建立空间直角坐标系O xyz - 如图所示.…6 分 则 ( ) 2,0,0 C, () 0,2,0 D , () 0,2,0 E - , () 2,22,0 B - , ( ) 0,0,2 P , (7)分 所以 () 0,2,2 EP = uuu r , ( )2,22,2 BP =- uuu r , () 2,0,2 CP =- uuu r , ()0,2,2 DP =- uuu r, ……8分设平面PBE 的法向量为 ( ) 1,, x y z = n ,则 1 1 220 22220 EP y z BP x y z ì ×=+= ï í ×=-++= ï î uuu r uuu r n n ,解得 x y z y = ì í =- î , 令 1 y = ,得 () 1 1,1,1 =- n .…………………………………………………………………………………9 分 设平面PCD 的法向量为 ( ) 2,, x y z = n ,则 2 2 220 220 CP x z DP y z ì ×=-+= ï í ×=-+= ï î uuu ruuu r n n ,解得 x z y z = ì í = î , 令 1 z = ,得 ( ) 2 1,1,1 = n . ………………………………………………………………………………10分所以 1212 1211 cos , 3 33 × <>=== ´ n n n n n n . …………………………………………………………11分所以平面PBE 与平面PCD 所成二面角的正弦值为223. …………………………………………12 分 19.【解析】选择条件①: 222222222222cos2cos212sin 12sin 11sin sin 2() A B A B A Ba b a b a b a b-- -=-=--- …3 分 由正弦定理 sin sin a b A B = 可得 22 22 sin sin A B a b = ,所以 2222cos 2cos 21112A B a b a b -=-= , …………6 分 解得 2 b = ,因此 1136sin 12 2224ABC S ab C ==´´´= △ .……………………………………10 分 选择条件②:22222 13 cos 224 a c b c b BA BC ca B ca ac +-+- ×==== uuu r uuu r ,则 221 2c b -= ……①………3 分 再由 22222 11cos 222a b c b c C ab b +-+- === ,可得 22 1 b c b +-= ……②……………………………6 分联立①②,解得 12 b = ,所以 11133 sin 1 22228ABC S ab C ==´´´= △ .……………………………10 分 选择条件③: 132 sin sin()sin (sin cos )sin() 32232A A A A A A p p -+=-´+´=-= , ………3 分 则 7 12 A p = , 12 B p = ,由正弦定理 sin sin a b A B = 可得 1 626244b = +- ,解得 23 b =- ……7 分所以 113233sin 1(23) 2224ABC S ab C - ==´´-´= △ .…………………………………………10 分 20.【解析】(1)当三顶点为长轴两顶点和短轴一顶点时,此时边长分别为2,, a a a ,不可能为正三角形.……………………1分所以正三角形的三顶点只能是短轴两顶点和长轴一顶点,依题意得 1 b = , 323 2a b =´= , ……3 分 故椭圆C 的方程为 2 21 3x y += . …………………………………………………………………………4 分(2)易得椭圆C 的左焦点F 的坐标为 ( )2,0 - . ………………………………………………………5分 显然直线AB 的斜率不为0,设直线AB 的方程为 2 x my =- . ……………………………………6分联立 222 33x my x y ì =- ï í += ï î ,消去x 整理得( ) 2232210 m y my +--= ,设 ( ) 11 , A x y , ( ) 22 , B x y ,………7 分 则 ()21210 m D =+> , 12 222 3 m y y m +=+ , 12 2 13y y m - = + . …………………………………………8 分 ( ) 22221212 21 10101 3mAF BF m y m y m y y m + ×=+-×+-=+= + .……………………………9分 直线OP 的方程为x my = ,联立 2233x my x y = ì í += î ,消去x 整理得( )22330 m y +-= …………………10分 ( ) ( ) 22222 31 13 P m OP m y m + =+=+ .………………………………………………………………………11 分所以 213 AF BF OP ×= ,即存在常数 1 3l = ,使得 2AF BF OP l ×= .…………………………12 分21.【解析】(1)不同的电路子模块共有 33 6 A = 种;……………………………………………………2 分(2) 6种子模块正常工作概率的只有下面三种:用 A 、 B 、C 分别表示事件“1号位接入 A 、B 、C 型元件时,子模块能正常工作”, 则 ( ) ( ) ( ) 0.9110.710.80.90.940.846 P A =´--´-=´= éù ëû , (3)分 ( ) ( ) ( ) 0.8110.710.90.80.970.776 P B =´--´-=´= éù ëû ,..........................................4分 ( ) ( ) ( ) 0.7110.810.90.70.980.686 P C =´--´-=´= éù ëû , (5)分 有 ( ) ( ) ( ) P A P B P C >> ,所以当1号位接入 A 型元件时,子模块正常工作的概率最大,为0.846.…………………………6 分 (3)子模块正常工作的概率越大,期望利润会越高,应把 A 型元件接入1号位. …………………7 分方法一:设每套子模块的利润为 X ,若能正常工作,则 1502010120 X =--= 元,若不能正常工作,则 2010450480 X =---=- 元, ………………………………………………8 分 所以 X 的分布列为X120 480 - P 0.846 0.154…………10 分所以E (X ) =120´0.846-480´0.154= 27.6 元, ………………………………………………11 分 即生产1000套子模块的最大期望利润为1000´27.6= 27600元.………………………………12 分 方法二:设1000套子模块中能正常工作的套数为 X ,利润为Y , ………………………………8 分 则 ( ) 1000,0.846 X B : ,………………………………………………………………………9 分且 ( ) ( ) 15045010002010005321000600480000 Y X X X =---´-++´=- ,………………10 分 所以 ( ) 10000.846846 E X =´= , ( ) ( ) 60048000027600 E Y E X =-= .即生产1000套子模块的最大期望利润为100027.627600 ´= 元.………………………………12 分 22.【解析】(1) ( ) e cos x f x x a ¢ =+- , …………………………………………………………………1 分依题意,0是函数f (x ) 的一个极值点,故f ¢ (0) =e 0 +cos 0-a = 0 ,解得 a = 2 .…………………3 分 当 a = 2 时,f (x ) =e x +sin x - 2 x ,f ¢ (x ) =e x +cos x - 2 , 令g (x ) =e x +cos x - 2 ,则g ¢ (x ) =e x - sin x ,当 x > 0 时,g ¢ (x ) =e x -sin x > 0 ,g (x ) 在(0,+¥ ) 上是增函数,g (x )>g (0) = 0 ,故f ¢ (x ) > 0 , 当 0 x -p << 时,e 0 x > , sin 0 x -> ,所以 ( ) 0 g x ¢ > , ( ) g x 在( ) ,0 -p 上的增函数, ( ) ( ) 00 g x g <= , 故 ( ) 0 f x ¢ < ,又 ( ) 00 f ¢ = ,故0是函数 ( ) f x 在区间( ) , -p +¥ 一个极小值点,在区间( ) , -p +¥ 上, ( ) ( ) 0 f x f ³ ;…………………………………………………………………5 分 又当x £-p 时, ( ) ( ) e sin 2120 xf x x x f =+->-+p > .综上所述,满足条件的实数 2 a = . ……………………………………………………………………6 分 (2)当 22 x a >+ 时, ( ) 22e cos e1 xa f x x a a + ¢ =+->-- ,又 0 x > 时,e 1 x x >+ ,所以 22 e 23 a a + >+ , 所以 22e123120 a a a a a + -->+--=+> ,即 ( ) 0 f x ¢ > , ………………………………………7 分故当 22 x a >+ 时, ( ) ( ) 22 f x f a >+ , ……………………………………………………………8 分 因为 ( ) sin 221 a +³- ,所以 ( ) ( ) ( ) 2222e sin 2222 a f a a a a + +=++-+ 222 e 122 a a a + ³--- …9分令 ( ) () 222222 e1226e 227 a a h a a a a a ++ =----=--- , ………………………………………10 分则 ( ) 2 0e 70 h =-> ,注意到 22 e 23 a a + >+ , 所以 ( ) ( ) 222e422234240 a h a a a a + ¢ =-->+--=> ,即 ( ) h a 是( ) 0,+¥ 上的增函数,所以 ( ) ( ) 20e 70 h a h >=-> ,所以 ( ) 226 f a +> ,故当 22 x a >+ 时, ( ) 6 f x > . ………………………………………………12 分。
2020届高考高三理科数学第二次模拟考试(三 )(附答案)

2020届高考高三理科数学第二次模拟考试(三 )(附答案)一选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则( )A .B .C .D .2.已知为虚数单位,复数,则以下为真命题的是( ) A .的共轭复数为 B .的虚部为C .D .在复平面内对应的点在第一象限3.设不为1的实数,,满足:,则( ) A .B .C .D .4.随机变量服从正态分布,,,则的最小值为( ) A .B .C .822+D .5.若抛物线的焦点与双曲线的一个焦点重合,则双曲线的离心率为( ) A .B .C .D .26.如图是一个算法的程序框图,若该程序输出的结果为,则判断框中应填入的条件是( ){}2log 0A x x =<1|()33xB x ⎧⎫=<⎨⎬⎩⎭A B =I {|11}x x -<<{|01}x x <<{|0}x x >R i 32i2iz +=-z 74i 55-z 85||3z =z a b c 0a b c >>>log log c a b b >log log a a b c >a c b b >b b a c >X ()210,X N σ:()12P X m >=()810P X n ≤≤=21m n+342+622+642+218y x =221y x a -=221y x a-=23323245A .7.已知,且,则( ) A . B . C .D .8.定义:若数列对任意的正整数,都有为常数,则称为“绝对和数列”,叫做“绝对公和”.已知“绝对和数列”中,,绝对公和为3,则其前2019项的和的最小值为( )A .B .C .D .9.已知函数,,的最小值为,则实数的取值范围是( )A .B .C .D . 10.如图,网格纸上小正方形的边长为1,粗线或虚线面出的是某几何体的三视图,俯视图中的两条弧均为圆弧,则该几何体的体积为( )A .B .C .D . 4T >5T >4T <3T <π1tan()42α+=0π2α-<<22sin sin2πcos()4ααα+=-255-3510-31010-255{}n a n 1(n n a a d d ++=){}n a d {}n a 12a =2019S 2019-3010-3025-3027-sin cos y x a x =+π0,3x ⎡⎤∈⎢⎥⎣⎦a a 0,3⎡⎤⎣⎦3,3⎡⎤-⎣⎦(,3⎤-∞⎦3,3⎛⎤-∞ ⎥ ⎝⎦32π643-648π-16π643-8π643-11.设为坐标原点,点,若点满足,则取得最小值时,点的个数是( ) A .1B .2C .3D .无数12.若函数恰有三个零点,则的取值范围为( ) A . B .C .D .二、填空题:本大题共4小题,每小题5分,共20分.13.如图所示,在一个边长为1的正方形内,曲线和曲线围成一个叶形图(阴影部分),向正方形内随机投一点(该点落在正方形内任何一点是等可能的),则所投的点落在叶形图内部的概率是 .14.,则________.15.已知,是直线上任意两点,是外一点,若上一点满足,则的值是________.16.在三棱锥中,,,若三棱锥的所有顶点都在同一球面上,则该球的表面积是_________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.O ()1,1A (),B x y 2222101212x y x y x y ⎧+--+≥⎪≤≤⎨⎪≤≤⎩OA OB ⋅u u u r u u u r B 12()(0)()2ln (0)x x f x xx x a x ⎧+<⎪=⎨⎪->⎩a 1,e ⎛⎫-+∞ ⎪⎝⎭10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫-∞- ⎪⎝⎭1,0e ⎛⎫- ⎪⎝⎭AOBC 2y x =y x =AOBC AOBC ()5543201234521x a x a x a x a x a x a -=+++++23a a +=A B l O l l C 2cos cos OC OA OB θθ=+u u u r u u u r u u u r246sin sin sin θθθ++A BCD -2AC CD ==1AB AD BD BC ====A BCD -17.(12分)在中,角,,所对的边分别是,,.若,,的面积为36. (1)求的值;(2)若点,分别在边,上,且,,求的长.18.(12分)“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.ABC △A B C a b c 22(1sin )2sin cos 222B A Aa ab -=+12c =ABC △a M N AB BC 8AM =AN CM ⊥AN [)20,30[)30,40[)40,50[)50,60[)60,70[]70,80问:(1)估计在40名读书者中年龄分布在的人数; (2)求40名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.19.(12分)如图所示,正方形与矩形所在平面互相垂直,,点为的中点.[)30,60[)60,80[)70,80X 11AA D D ABCD 22AB AD ==E AB(1)求证:平面;(2)设在线段上存在点,使二面角的大小为,求此时的长及点到平面的距离.20.(12分)设点为抛物线外一点,过点作抛物线的两条切线,,切点分别为,.(1)若点为,求直线的方程;(2)若点为圆上的点,记两切线,的斜率分别为,,求的取值范围.1BD ∥1A DE AB M 1D MC D --6πAM E 1DMC P 2:y x Γ=P ΓPA PB AB P (1,0)-AB P 22(2)1x y ++=PA PB 1k 2k 1211||k k -21.(12分)已知函数,.(1)当时,讨论的单调性;(2)设,若关于的不等式在上有解,求的取值范围.()ln xe f x a x ax x=--+a ∈R 0a <()f x ()()()g x f x xf x '=+x ()()212xxg x e a x ≤-++-[]1,2a请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系中,直线l 的参数方程为(t 为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点P 是曲线上的动点,点Q 在OP 的延长线上,且,点Q 的轨迹为. (1)求直线l 及曲线的极坐标方程; (2)若射线与直线l 交于点M ,与曲线交于点(与原点不重合), 求的最大值.xOy 13x t y t =-⎧⎨=+⎩1C 2cos ρϕ=1C ||3||PQ OP =2C 2C π(0)2θαα=<<2C N ||||ON OM23.(10分)【选修4-5:不等式选讲】 设函数.(1)若不等式解集为,求实数的值;(2)在(1)的条件下,若不等式解集非空,求实数的取值范围.理科数学(三)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】,,则. 2.【答案】D 【解析】因为,所以的共轭复数为,故A 错误; 的虚部为,故B 错误; ,故C 错误; 在复平面内对应的点为,在第一象限,故选D .()2f x x a a =-+()2f x ≤{}80x x -≤≤a 2()(1)3f x k x ≤--k {}{}2log 0|01A x x x x =<=<<Q {}1|3|13xB x x x ⎧⎫⎪⎪⎛⎫=<=>-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{|01}A B x x =<<I 32i (32i)(2i)47i 2i (2i)(2i)55z +++===+--+z 47i55-z 75224765||()()555z =+=z 47(,)553.【答案】D【解析】因为底数与的大小关系不确定,故B 错; 同理,C 也错;取,,,则,,从而,故A 错; 因为为上的增函数,而,故,故D 正确,综上,故选D . 4.【答案】D 【解析】由题意,,, 当且仅当,即,时等号成立,故选D .5.【答案】A【解析】∵将抛物线的方程化成标准式, ∴,,可得抛物线的焦点为,∵双曲线的一个焦点与抛物线的焦点重合, ∴,可得,设双曲线的离心率为,则,所以,故选A . 6.【答案】C【解析】程序运行过程中,各变量值如下表所示: 是否继续循环i ,T ,S ,循环前1,0,0, 第一圈2,1,; a 10.1c =2b =3a =log 0c b <log 0a b >log log c a b b <()0by xb =>()0,+∞0ac >>b b a c >12m n +=()21214242224262642n m n m m n m n m n m n m n⎛⎫∴+=+⋅+=+++≥+⋅=+ ⎪⎝⎭42n m m n=222m -=212n -=218y x =28x y =28p =22p=218y x =()0,2221y x a -=218y x =2124a +==3a =221y x a -=e 243e =233e =12第二圈是3,2,; 第三圈是4,3,; 第四圈是5;4;; 第五圈否,即时退出循环,故继续循环的条件应为,故选C . 7.【答案】A【解析】∵,则,∵,,,可得.∴.故选A . 8.【答案】C【解析】依题意,要使其前2019项的和的最小值只需每一项的值都取最小值即可, ∵,绝对公和,∴或(舍), ∴或(舍),∴或(舍), …,∴满足条件的数列的通项公式,∴所求值为()()()()12201825193402019121230252a a a a a a a +++++++=-+--⨯=-L , 2334454T =4T <tan πta 111tan n 2()4ααα+==-+1tan 3α=-sin tan cos ααα=22sin cos 1αα+=,02πα⎛⎫∈- ⎪⎝⎭10sin 10α=-()()()22sin sin cos 4sin sin cos 2sin sin 22sin cos cos cos 4π4παααααααααααα+++==⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭102522sin 22105α⎛⎫==⨯-=- ⎪ ⎪⎝⎭2019S 12a =3d =21a =-21a =32a =-32a =41a =-41a ={}n a 21211n n a n n =⎧⎪=-⎨⎪-⎩,,为大于的奇数,为偶数故选C . 9.【答案】C【解析】因为,的最小值为且时,,故,恒成立,也就是,当时,有,当时,有,故,所以选C .10.【答案】C【解析】如图所示,在棱长为4的正方体中,分别为其对应棱上的中点, 将正方体裁取四分之一圆柱和四分之一圆锥后对应的几何体即为三视图所对应的几何体,其中正方体的体积,四分之一圆柱的体积, 四分之一圆锥的体积, 则所求组合体的体积为. 本题选择C 选项.11.【答案】B【解析】,即,sin cos y x a x =+3π0,x ⎡⎤∈⎢⎥⎣⎦a 0x =y a =sin cos x a x a +≥3π0,x ⎡⎤∈⎢⎥⎣⎦()1cos sin a x x -≤0x =a ∈R π0,3x ⎛⎤∈ ⎥⎝⎦sin 11cos tan 2x a x x≤=-3a ≤1111,,,F F G H 111DEF D E F -111B B G H -31464V ==111DEF D E F -()221π244π4V =⨯⨯⨯=111B B G H -()23114π24π433V =⨯⨯⨯⨯=1231664π3V V V V =--=-222210x y x y -+-+≥()()22111x y -+-≥表示以为圆心、以1为半径的圆周及其以外的区域.当目标函数的图象同时经过目标区域上的点、时,目标函数取最小值3.故点B 有两个,故选B . 12.【答案】D【解析】①当时,,∵函数与在时都单调递减,∴函数在区间上也单调递减,又,所以函数在内有一个零点. ②当时,令,∴. 令,解得. 当时,;当时,. ∴函数在区间上单调递减;在区间上单调递增.∴函数在时求得极小值,也即在时的最小值. ∵函数在其定义域上有3个零点,且由(1)可知在区间内已经有一个零点了,所以在区间上必须有2个零点,即图象与直线在上()1,1z OA OB x y =⋅=+u u r u u r()1,2()2,1z OA OB x y =⋅=+u u u r u u u r0x <()122xf x x⎛⎫=+ ⎪⎝⎭12xy ⎛⎫= ⎪⎝⎭2y x =0x <()122xf x x⎛⎫=+ ⎪⎝⎭(),0-∞()10f -=()f x (),0-∞0x >()()ln .0g x x x x =>()1ln g x x '=+()0g x '=1x e=10x e <<()0f x '<1x e>()0f x '>()g x 10,e ⎛⎫ ⎪⎝⎭1,e⎛⎫+∞ ⎪⎝⎭()g x 1x e =1e-0x >()f x (),0-∞()0,+∞()ln g x x x =y a =()0,+∞有两个公共点, 如图所示:∴,故选D .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】【解析】,,. 14.【答案】40【解析】,,,,.15.【答案】【解析】∵A 、B 、C 三点共线,且,∴,(三点共线的充要条件) ∴,∴,∴,1,0a e ⎛⎫∈- ⎪⎝⎭13111AOBC S =⨯=正方形13231200211=d 333S x x x x x ⎛⎫-=-= ⎪⎝⎭⎰阴影113=13AOBCS P S ==阴影正方形()()3232325C 2180a x x x =-=280a =()()2323235C 2140a x x x =-=-340a =-3240a a +=51-2cos cos OC OA OB θθ=+u u u r u u u r u u u r 2cos cos 1θθ+=2cos 1cos θθ=-22cos 1cos sin θθθ=-=()()6322sin cos cos 1sin cos 1cos cos cos θθθθθθθθ==⋅-=-=-()cos 1cos 2cos 1θθθ=-=-﹣∴,由,得或,舍去, ∴, ∴原式,故答案为. 16.【答案】【解析】由已知可得,,,∴平面,设三棱锥外接球的球心为,正三角形的中心为,则⊥平面, 连接,,, 在直角梯形中,有,,,可得2712R =, 故所求球的表面积为,故答案为.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2). 【解析】(1)由题意知,则, 化简,得,由正弦定理得,2462sin sin sin cos cos 2cos 1θθθθθθ++=++-cos 1cos 2cos 12cos θθθθ=+-+-=2cos 1cos θθ=-15cos 2θ-+=15cos 12θ--=-<15cos 2θ-+=2cos 51θ==-51-7π3BC AB ⊥BC BD ⊥BC ⊥ABD O ABD 1O 1OO ABD 1O B 1OO OC 1O BCO 133O B =1BC =OC OB R ==274ππ3R =7π36231022cossin 2B a a b A =+1cos 2sin 2Ba ab A +⋅=+cos sin a B b A =sin cos sin sin A B B A =因为,所以, 因为,所以, 因为,,所以,解得. (2)由(1)知,,故为等腰直角三角形,,所以, 在中,,则,且, 从而,所以.18.【答案】(1)人;(2)平均数,中位数55;(3)分布列见解析,. 见解析【解析】(1)由频率分布直方图知年龄在的频率为, 所以40名读书者中年龄分布在的人数为人. (2)40名读书者年龄的平均数为.设中位数为,由于频率, 则,即40名读书者年龄的中位数为55. sin 0A ≠tan 1B =()0,πB ∈π4B =12c =36ABC S =△1π12sin 3624a ⨯⨯=62a =222cos 62b ac ac B =+-=ABC △π4A B ∴∠=∠=π2C ∠=ACM △222cos 210CM AC AM AC AM BAC =+-⋅∠=2225cos 25AC CM AM ACM AC CM +-∠==⋅AN CM ⊥225sin sin 1cos 5ANC ACM ACM ∠=∠=-∠=310sin ACAN ANC==∠245447EX =[)30,60()00100020003010060++⨯=....[)30,604006024⨯=.2500535014502550365025750154⨯+⨯+⨯+⨯+⨯+⨯=......x 1110000500100020003022⎛⎫==⨯+++⨯ ⎪⎝⎭....()1506050552x =+⨯-=(3)年龄在的读书者有人, 年龄在的读书者有, 所以的所有可能取值是0,1,2,,,,的分布列如下:0 1 2数学期望. 19.【答案】(1)证明见解析;(2). 【解析】(1)证明:连结,交于点, ∵四边形为正方形,∴是的中点, ∵点为的中点,连接.∴为的中位线,∴,又∵不包含于平面,平面,∴平面.(2)由题意可得:,以点为原点,,,所在直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,[)60,800.035104014⨯⨯=[)70,800.0110404⨯⨯=人X ()20421410C C C 45091P X ===()11421410C C C 40191P X ===()02421410C C 21C 69P X ===X XP45914091691∴4540640129191917EX =⨯+⨯+⨯=314-1AD 1A D O 11ADD A O 1AD E AB OE EO 1ABD △1EO BD ∥1BD 1A DE OE ⊂1A DE 1BD ∥1A DE 1D D ABCD ⊥平面D DA DC 1DD x y z则,,,,,, 设,,,设平面的法向量为,则,得, 令,有,而平面的一个法向量为, 要使二面角的大小为, 而, 解得,故, 此时,. 故点E 到平面的距离为. 20.【答案】(1);(2).【解析】(1)设直线PA 方程为,直线PB 方程为,()0,0,0D ()0,2,0C ()11,0,1A ()10,0,1D ()1,2,0B ()1,1,0E ()()001,,002M y y ≤≤()01,2,0MC y =--Q u u u u r ()10,2,1D C =-u u u u r1D MC ()1,,x y z =n 1110MC D C ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu rn n ()02020x y y y z ⎧-+-=⎨-=⎩1y =()102,1,2y =-n MCD ()20,0,1=n 1D MC D --π6()122221021223coscos ,2212π6y ⋅=〈===⋅-++〉n n n n n n ()0032023y y =-≤≤323AM =-13,1,23⎛⎫= ⎪ ⎪⎝⎭n ()11,1,1D E =-u u u ur 1D MC 111313134433D E d -⋅-===uuu rn n 1x =4,213⎡⎤⎣⎦11x m y =-21x m y =-由,可得, 因为PA 与抛物线相切,所以,取,则,,即,同理可得, 所以.(2)设,则直线PA 方程为, 直线PB 方程为.由,可得. 因为直线PA 与抛物线相切,所以.同理可得,所以时方程的两根.所以,,则=.又因为,则,所以. 21.【答案】(1)在上单调递增,在上单调递减;(2).【解析】(1)由题意知,, 令,当时,恒成立,∴当时,;当时,, ∴函数在上单调递增,在上单调递减. (2)∵,∴,121x m y y x=-⎧⎨=⎩2110y m y -+=2140Δm =-=12m =1A y =1A x =()1,1A ()1,1B -:1AB x =00(,)P x y 1100y k x k x y =-+2200y k x k x y =-+11002y k x k x y y x=-+⎧⎨=⎩211000k y y k x y --+=11201001014(4410)k k x y Δx k y k --+==-+=202024410x k y k -+=12,k k 2004410x k y k -+=0120y k k x +=12014k k x =20122001y k k x x -=-200y x x -2200(2)1x y ++=031x -≤≤-2021200120121141(24)k k y x x k k x k k --+==---=205134()4,21324x ⎡⎤=-++∈⎣⎦()f x ()0,1()1,+∞(],0-∞()()()221x x x ax e x a xe e f x a x x x---=--='+()()()1xF x ax ex =--0a <0xax e-<1x >()0F x <01x <<()0F x >()f x ()0,1()1,+∞()()()g x f x xf x =+'()ln 2xg x a x e ax a =--+-由题意知,存在,使得成立.即存在,使得成立,令,∴. ①时,,则,∴函数在上单调递减, ∴成立,解得,∴;②当时,令,解得;令,解得, ∴函数在上单调递增,在上单调递减, 又,∴,解得,∴无解; ③当时,,则,∴函数在上单调递增, ∴,不符合题意,舍去; 综上所述,的取值范围为.22.【答案】(1),;(2). 【解析】(1)消去直线l 参数方程中的t ,得,由,,得直线l 的极坐标方程为, 故.由点Q 在OP 的延长线上,且,得, 设,则, []01,2x ∈()()0200012x x g x e a x ≤-++-[]01,2x ∈()2000ln 102x a x a x a -++--≤()()[]2ln 1,1,22x h x a x a x a x =-++--∈()()()[]11,1,2x a x ah x a x x x x---=++-=-∈'1a ≤[]1,2x ∈()0h x '≤()h x []1,2()()min 2ln20h x h a a ==-+≤0a ≤0a ≤12a <<()0h x '>1x a <<()0h x '<2a x <<()h x []1,a [],2a ()112h =()2ln20h a a =-+≤0a ≤a 2a ≥[]1,2x ∈()0h x '≥()h x []1,2()()min 1102h x h ==>a (],0-∞:cos sin 4l ρθρθ+=28:cos C ρθ=21+4x y +=cos x ρθ=sin y ρθ=cos sin 4ρθρθ+=4cos sin ρθθ=+||3||PQ OP =||4||OQ OP =(),Q ρθ,4P ρθ⎛⎫⎪⎝⎭由点P 是曲线上的动点,可得,即,所以的极坐标方程为.(2)因为直线l 及曲线的极坐标方程分别为,, 所以,, 所以, 所以当时,取得最大值为. 23.【答案】(1);(2). 【解析】(1)函数,∴不等式化为,∴, 解得, 又的解集为,∴,解得. (2)在(1)的条件下,,不等式化为, 令,作出的图象,如图所示;1C 2cos 4ρθ=8cos ρθ=2C 8cos ρθ=2C 4cos sin ρθθ=+8cos ρθ=4cos sin OM αα=+||8cos ON α=()||π2cos cos sin 1cos2sin212sin 2||4ON OM αααααα⎛⎫=+=++=++ ⎪⎝⎭π8α=||||ON OM 21+2a =-332222|k k k k ⎧⎫⎪⎪<--≤≤>⎨⎬⎪⎪⎩⎭或或()2f x x a a =-+()2f x ≤22x a a -≤-222a x a a -≤-≤-322a x a -≤≤+()2f x ≤0{|}8x x ≤≤-32820a a -=-⎧⎨+=⎩2a =-()42f x x =+-()()213f x k x -≤-()2411x k x ++≤﹣()5,4413,4x x g x x x x +≥-⎧=++=⎨--<-⎩()g x由图象知,要使不等式的解集非空,应满足:或, 即或, 解得或或, 所以实数的取值范围是. 211k ->2114k -≤-22k >234k ≤2k <-3322k -≤≤2x >k 332222|k k k k ⎧⎫⎪⎪<--≤≤>⎨⎬⎪⎪⎩⎭或或。
2020高三二轮数学模拟卷理答案.doc

高考仿真模拟卷·数学(理)·参考答案与解析高考仿真模拟卷(一)1.解析:选B.由已知得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2}, 所以A ∩B ={-1,0,1,2},故选B.2.解析:选A.因为i -1i +1=(i -1)(1-i )(i +1)(1-i )=i ,所以该复数在复平面上对应的点的坐标为(0,1).故选A.3.解析:选B.由于随机变量X 服从正态分布N (3,σ2),又P (X ≤4)=0.84,所以P (X ≥4)=P (X ≤2)=0.16,P (2<X <4)=1-0.32=0.68.4.解析:选B.由题意得,BA →·BC →=0,BA →·CA →=|BA →|2=36,所以BA →·BD →=BA →·(BC →+CD →)=BA →·⎝⎛⎭⎫BC →+23CA →=0+23×36=24,故选B. 5.解析:选B.程序运行过程如下: 首先初始化数据,S =0,i =1,第一次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =0+ln 2=ln 2,i =i +1=2,此时不应跳出循环; 第二次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =ln 2+ln 32=ln 3,i =i +1=3,此时不应跳出循环; 第三次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =ln 3+ln 43=ln 4,i =i +1=4,此时不应跳出循环; 第四次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =ln 4+ln 54=ln 5,i =i +1=5,此时应跳出循环; i =4时,程序需要继续执行,i =5时,程序结束, 故在判断框内应填i ≤4?.故选B.6.解析:选B.由题意,可得⎩⎪⎨⎪⎧2a 1+7d =23,5a 1+5×42d =35, 解得d =3,故选B.7.解析:选C.依题意,注意到f (-x )=1-2-x 1+2-x ·cos(-x )=2x (1-2-x )2x (1+2-x )cos x =2x -12x +1cos x =-f (x ),因此函数f (x )是奇函数,其图象关于原点对称,结合各选项知,选项A ,B 均不正确;当0<x <1时,1-2x1+2x<0,cos x >0,f (x )<0,结合选项知,C 正确,选C.8.解析:选D.由三视图可知,该手工制品是由两部分构成,每一部分都是相同圆锥的四分之一,且圆锥的底面半径为3,高为4,故母线长为5,故每部分的表面积为2×12×4×3+14×12×6π×5+14×9π=12+6π,故两部分表面积为24+12π.9.解析:选D.由题可得sin ⎝⎛⎭⎫2×3π8+φ=0,又0<φ<π2,所以φ=π4,所以f (x )=sin ⎝⎛⎭⎫2x +π4,由π2+2k π≤2x +π4≤3π2+2k π(k ∈Z ),得f (x )的单调递减区间是⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ). 10.解析:选C.三辆车的出车顺序可能为:123、132、213、231、312、321, 方案一坐3号车的可能:132、213、231,所以P 1=36;方案二坐3号车的可能:312、321,所以P 1=26;所以P 1+P 2=56.故选C.11.解析:选D.设双曲线的左焦点为F 1,由双曲线的对称性可知四边形MF 2PF 1为平行四边形.所以|MF 1|=|PF 2|,MF 1∥PN . 设|PF 2|=m ,则|MF 2|=3m , 所以2a =|MF 2|-|MF 1|=2m , 即|MF 1|=a ,|MF 2|=3a .因为∠MF 2N =60°,所以∠F 1MF 2=60°, 又|F 1F 2|=2c ,在△MF 1F 2中,由余弦定理可得4c 2=a 2+9a 2-2·a ·3a ·cos 60°, 即4c 2=7a 2,所以c 2a 2=74,所以双曲线的离心率e =c a =72.故选D. 12.解析:选D.由已知可得y =2e x 与y =ln x -ln 2=ln x2互为反函数,即y =2e x 与y =lnx -ln 2的图象关于直线x -y =0对称,|PQ |的最小值为点Q 到直线x -y =0的最小距离的2倍,令Q (t ,ln t -ln 2),过点Q 的切线与直线x -y =0平行,函数y =ln x -ln 2的导数为y ′=1x ,其斜率为k =1t =1,所以t =1,故Q (1,-ln 2),点Q 到直线x -y =0的距离为d =|1-(-ln 2)|12+(-1)2=1+ln 22,所以|PQ |min =2d =2(1+ln 2).13.解析:消费支出超过150元的人数为(50×0.004+50×0.002)×100=30. 答案:3014.解析:作出不等式组所表示的平面区域如图中阴影部分所示,设z =a·OP →=x -y ,则y =x -z ,易知当y =x -z 经过⎩⎪⎨⎪⎧x +y -5=0,x -2y +1=0的交点(3,2)时,z =x -y 取得最大值,且z max =1. 答案:115.解析:采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为3,1,5,长方体的外接球即为该四面体的外接球,外接球的直径即为长方体的体对角线3+1+5=3,所以球半径为32,体积为43πr 3=9π2.答案:9π216.解析:因为f (x )是奇函数,f (-x )=-f (x ),所以a n +1-⎝⎛⎭⎫a n +cos n π2=0,a n +1=a n+cosn π2.a 1=1,a 2=a 1+cos π2=1,a 3=a 2+cos 2π2=0,a 4=a 3+cos 3π2=0,如此继续,得a n +4=a n .S 2 019=504(a 1+a 2+a 3+a 4)+a 1+a 2+a 3=504×2+1+1+0=1 010.答案:1 010 17.解:因为3(b 2+c 2)=3a 2+2bc ,所以b 2+c 2-a 22bc =13,由余弦定理得cos A =13,所以sin A =223.(1)因为sin B =2cos C ,所以sin(A +C )=2cos C , 所以223cos C +13sin C =2cos C ,所以23cos C =13sin C ,所以tan C = 2. (2)因为S =22,所以12bc sin A =22,所以bc =32.① 由余弦定理a 2=b 2+c 2-2bc cos A , 可得4=b 2+c 2-2bc ×13,所以b 2+c 2=5.②因为b >c >0,所以联立①②可得b =322,c =22.18.解:(1)由已知,得P (A )=C 22C 23+C 23C 23C 48=635.所以事件A 的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4.由已知得P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以随机变量X 的分布列为:随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.19.解:(1)证明:因为AB ⊥侧面BB 1C 1C ,BC 1⊂侧面BB 1C 1C ,故AB ⊥BC 1,在△BCC 1中,BC =1,CC 1=BB 1=2,∠BCC 1=π3,BC 21=BC 2+CC 21-2BC ·CC 1·cos ∠BCC 1=12+22-2×1×2×cos π3=3,所以BC 1=3,故BC 2+BC 21=CC 21,所以BC ⊥BC 1,而BC ∩AB =B ,所以C 1B ⊥平面ABC .(2)由(1)可知,AB ,BC ,BC 1两两垂直.以B 为原点,BC ,BA ,BC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则B (0,0,0),A (0,1,0),B 1(-1,0,3),C (1,0,0),C 1(0,0,3). 所以CC 1→=(-1,0,3),所以CE →=(-λ,0,3λ),E (1-λ,0,3λ), 则AE →=(1-λ,-1,3λ),AB 1→=(-1,-1,3). 设平面AB 1E 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AE →n ⊥AB 1→,即⎩⎨⎧(1-λ)x -y +3λz =0-x -y +3z =0,令z =3,则x =3-3λ2-λ,y =32-λ,故n =⎝ ⎛⎭⎪⎫3-3λ2-λ,32-λ,3是平面AB 1E 的一个法向量.因为AB ⊥平面BB 1C 1C ,BA →=(0,1,0)是平面BB 1E 的一个法向量, 所以|cos 〈n ,BA →〉|=⎪⎪⎪⎪⎪⎪n ·BA →|n ||BA →|=⎪⎪⎪⎪⎪⎪32-λ1×⎝ ⎛⎭⎪⎫3-3λ2-λ2+⎝⎛⎭⎫32-λ2+(3)2=32. 两边平方并化简得2λ2-5λ+3=0,所以λ=1或λ=32(舍去).20.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,-2). 所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k (x -2),y 2=2x ,得ky 2-2y -4k =0,可知y 1+y 2=2k ,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+2(y 1+y 2)(x 1+2)(x 2+2).①将x 1=y 1k +2,x 2=y 2k +2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k (y 1+y 2)k =-8+8k =0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN .综上,∠ABM =∠ABN .21.解:(1)易知函数f (x )的定义域为(0,+∞), h (x )=f (x )x =ln x -k (x -1)x (x >0),则h ′(x )=1x -k x 2=x -kx2,当k ≤0时,h ′(x )>0对任意的x >0恒成立,所以h (x )是(0,+∞)上的增函数,此时h (x )不存在极值.当k >0时,若0<x <k ,则h ′(x )<0;若x >k ,则h ′(x )>0.所以h (x )是(0,k )上的减函数,是(k ,+∞)上的增函数,故h (x )的极小值为h (k )=ln k -k +1,不存在极大值. 综上所述,当k ≤0时,h (x )不存在极值; 当k >0时,h (x )极小值=ln k -k +1,不存在极大值.(2)由(1)知当k ≤0或k =1时,f (x )=0,即h (x )=0仅有唯一解x =1,不符合题意. 当0<k <1时,h (x )是(k ,+∞)上的增函数,当x >1时,有h (x )>h (1)=0, 所以f (x )=0没有大于1的根,不符合题意.当k >1时,由f ′(x )=0,即f ′(x )=1+ln x -k =0,解得x 0=e k -1, 若x 1=kx 0=k e k -1,又x 1ln x 1=k (x 1-1),所以k e k -1ln(k e k -1)=k (k e k -1-1),即ln k -1+e 1-k =0.令v (x )=ln x -1+e 1-x ,则v ′(x )=1x-e 1-x =e x -e x x ex ,令s (x )=e x -e x ,s ′(x )=e x-e ,当x >1时,总有s ′(x )>0,所以s (x )是(1,+∞)上的增函数,即s (x )=e x -e x >s (1)=0,故当x >1时,v ′(x )>0,v (x )是(1,+∞)上的增函数,所以v (x )>v (1)=0, 即ln k -1+e 1-k =0在(1,+∞)上无解. 综上可知,不存在满足条件的实数k .22.解:(1)由⎩⎨⎧x =1+2ty =2t,得x -y =1,所以直线l 的极坐标方程为ρcos α-ρsin α=1, 即2ρ(cos αcos π4-sin αsin π4)=1,即2ρcos ⎝⎛⎭⎫α+π4=1.由ρ=sin θ1-sin 2θ,所以ρ=sin θcos 2θ,所以ρcos 2θ=sin θ,所以(ρcos θ)2=ρsin θ, 即曲线C 的直角坐标方程为y =x 2. (2)设P (x 0,y 0),则y 0=x 20,所以P 到直线l 的距离d =|x 0-y 0-1|2=|x 0-x 20-1|2=⎪⎪⎪⎪-⎝⎛⎭⎫x 0-122-342,所以当x 0=12时,d min =328,此时P ⎝⎛⎭⎫12,14, 所以当P 点为⎝⎛⎭⎫12,14时,P 到直线l 的距离最小,最小值为328. 23.解:(1)由已知可得 f (x )=⎩⎪⎨⎪⎧4,x ≥22x ,-2<x <2,-4,x ≤-2所以,f (x )≥2的解集为{x |x ≥1}. (2)证明:由(1)知,|x +2|-|x -2|≤4,1y +11-y =⎝⎛⎭⎫1y +11-y [y +(1-y )]=2+1-y y +y 1-y ≥4(当且仅当y =12时取等号),所以|x +2|-|x -2|≤1y +11-y.高考仿真模拟卷(二)1.解析:选A.A ={x |x <-1或x >2},B ={x |1<x <4},所以A ∩B =(2,4).故选A. 2.解析:选B.由z (1+i)=i 得z =i1+i ,所以|z |=|i||i +1|=12=22,故答案为B. 3.解析:选B.因为向量a =(x ,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,所以2x -4=0,2y =-4,解得x =2,y =-2,所以a =(2,1),b =(1,-2),所以a +b =(3,-1),所以|a +b |= 32+(-1)2=10.4.解析:选A.因为f (-x )=|-x |ln|-x |x 4=|x |ln|x |x4=f (x ),所以f (x )是偶函数, 可得图象关于y 轴对称,排除C ,D ;当x >0时,f (x )=ln xx 3,f (1)=0,f ⎝⎛⎭⎫12<0,排除B. 5.解析:选A.因为sin ⎝⎛⎭⎫π2-α=cos α=35,所以sin α=±45,因为α∈⎝⎛⎭⎫0,π2,所以sin α=45,所以tan α=43,所以tan 2α=2tan α1-tan 2α=831-169=-247,故选A.6.解析:选A.设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A , 所以P (A )=C 23C 210=115,因此P (A )=1-P (A )=1-115=1415,故本题选A.7.解析:选B.第一次运行,i =10,满足条件,S =1×10=10,i =9; 第二次运行,i =9满足条件,S =10×9=90,i =8; 第三次运行,i =8满足条件,S =90×8=720,i =7; 此时不满足条件,输出的S =720.故条件应为8,9,10满足,i =7不满足,所以条件应为i >7.8.解析:选C.因为1=log 2 0182 018>a =log 2 018 2 019>log 2 018 2 018=12,b =log 2 019 2 018<log 2 0192 019=12,c =2 01812 019>2 0180=1,故本题选C.9.解析:选C.由递推公式可得:当n 为奇数时,a n +2-a n =4,数列{a 2n -1}是首项为1,公差为4的等差数列, 当n 为偶数时,a n +2-a n =0,数列{a n }是首项为2,公差为0的等差数列, S 2 017=(a 1+a 3+…+a 2 017)+(a 2+a 4+…+a 2 016) =1 009+12×1 009×1 008×4+1 008×2=2 017×1 010-1.本题选择C 选项.10.解析:选A.设P (x 0,x 0),所以切线的斜率为12x 0,又因为在点P 处的切线过双曲线的左焦点F (-1,0),所以12x 0=x 0x 0+1,解得x 0=1,所以P (1,1),因此2c =2,2a =5-1,故双曲线的离心率是5+12,故选A.11.解析:选D.b c +c b =b 2+c 2bc ,这个形式很容易联想到余弦定理cos A =b 2+c 2-a 22bc ,①而条件中的“高”容易联想到面积,12a ×36a =12bc sin A ,即a 2=23bc sin A ,②将②代入①得:b 2+c 2=2bc (cos A +3sin A ),所以b c +cb =2(cos A +3sin A )=4sin ⎝⎛⎭⎫A +π6,当A =π3时取得最大值4,故选D.12.解析:选A.依题意得,AB =2AD =2,∠DAB =π3,由余弦定理可得BD =3,则AD 2+DB 2=AB 2,则∠ADB =π2,又四边形ABCD 是等腰梯形,故四边形ABCD 的外接圆直径为AB ,设AB 的中点为O 1,球的半径为R ,因为SD ⊥平面ABCD ,所以R 2=12+⎝⎛⎭⎫SD 22=54,则S =4πR 2=5π,故选A. 13.解析:因为S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入得d =-2.故S n =13n -n (n -1)=-n 2+14n ,根据二次函数性质,当n =7时,S n 最大且最大值为49.答案:4914.解析:由题意得(1-3x )8展开式的通项为T r +1=C r 8(-3x )r=(-1)r C r 8x r3,r =0,1,2, (8)所以(a +3x )(1-3x )8展开式的常数项为(-1)0C 08·a =a =4,所以(4+3x )(1-3x )8展开式中x 2项的系数为4·(-1)6C 68x 63+3x ·(-1)3C 38x 33=-56x 2,所以展开式中x 2的系数是-56.故答案为-56. 答案:-5615.解析:法一:因为DE →=12DO →,DO →=OB →=12DB →,所以DE →=12DO →=14DB →,所以DE →=13EB →,由DF ∥BC ,得DF →=13CB →,所以CF →=CD →+DF →=CD →+13CB →=CO →+OD →+13(CO →+OB →)=43CO →+23OD →=-23AC →+13BD →,所以λ=-23,μ=13,λ+μ=-13.法二:不妨设ABCD 为矩形,建立平面直角坐标系如图,设AB =a ,BC =b ,则A (0,0),B (a ,0),C (a ,b ),D (0,b ),O ⎝⎛⎭⎫a 2,b 2,设E (x ,y ),因为DE →=12DO →,所以(x ,y -b )=12⎝⎛⎭⎫a 2,-b 2,所以x =a 4,y =34b ,即E ⎝⎛⎭⎫a 4,34b ,设F (0,m ),因为CF →∥CE →,CF →=(-a ,m -b ),CE →=⎝⎛⎭⎫-34a ,-14b ,所以14ab +34a (m -b )=0,解得m =23b ,即F ⎝⎛⎭⎫0,23b ,CF →=⎝⎛⎭⎫-a ,-13b .又AC →=(a ,b ),BD →=(-a ,b ),由CF →=λAC →+μBD →,得⎝⎛⎭⎫-a ,-13b =λ(a ,b )+μ(-a ,b )=((λ-μ)a ,(λ+μ)b ),所以λ+μ=-13.答案:-1316.解析:由题意得ln x +x =kx 有两个不同的解,k =ln xx +1,则k ′=1-ln x x 2=0⇒x =e ,因此当0<x <e 时,k ∈⎝⎛⎭⎫-∞,1+1e ,当x >e 时,k ∈⎝⎛⎭⎫1,1+1e ,从而要使ln x +x =kx 有两个不同的解,需k ∈⎝⎛⎭⎫1,1+1e . 答案:⎝⎛⎭⎫1,1+1e 17.解:(1)因为f (x )=3sin(3π+x )·cos(π-x )+cos 2⎝⎛⎭⎫π2+x ,所以f (x )=3(-sin x )·(-cos x )+(-sin x )2=32sin 2x +1-cos 2x 2=sin ⎝⎛⎭⎫2x -π6+12. 由2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,即函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z .(2)由f (A )=32得,sin ⎝⎛⎭⎫2A -π6+12=32,所以sin ⎝⎛⎭⎫2A -π6=1,因为0<A <π,所以0<2A <2π,-π6<2A -π6<11π6,所以2A -π6=π2,所以A =π3,因为a =2,b +c =4,① 根据余弦定理得,4=b 2+c 2-2bc cos A =b 2+c 2-bc =(b +c )2-3bc =16-3bc , 所以bc =4,② 联立①②得,b =c =2.18.解:(1)依题意得,a =0.04×5×1 000=200,b =0.02×5×1 000=100.(2)设抽取的40名学生中,成绩为优秀的学生人数为x ,则x 40=350+300+1001 000,解得x=30,即抽取的40名学生中,成绩为优秀的学生人数为30. 依题意,X 的可能取值为0,1,2,P (X =0)=C 210C 240=352,P (X =1)=C 110C 130C 240=513,P (X =2)=C 230C 240=2952,所以X 的分布列为X 0 1 2 P3525132952所以X 的数学期望E (X )=0×352+1×513+2×2952=32.19.解:(1)证明:取BC 的中点Q ,连接NQ ,FQ ,则NQ =12AC ,NQ ∥AC .又MF =12AC ,MF ∥AC ,所以MF =NQ ,MF ∥NQ ,则四边形MNQF 为平行四边形,即MN ∥FQ .因为FQ ⊂平面FCB ,MN ⊄平面FCB , 所以MN ∥平面FCB .(2)由AB ∥CD ,AD =DC =CB =1,∠ABC =60°可得∠ACB =90°,AC =3,BC =1,AB =2.因为四边形ACFE 为矩形,所以AC ⊥平面FCB ,则∠AFC 为直线AF 与平面FCB 所成的角,即∠AFC =30°,所以FC =3.因为FB =10,所以FC ⊥BC ,则可建立如图所示的空间直角坐标系C -xyz ,所以A (3,0,0),B (0,1,0),M ⎝⎛⎭⎫32,0,3,MA →=⎝⎛⎭⎫32,0,-3,MB →=⎝⎛⎭⎫-32,1,-3. 设m =(x ,y ,z )为平面MAB 的法向量,则⎩⎪⎨⎪⎧MA →·m =0,MB →·m =0,即⎩⎨⎧32x -3z =0,-32x +y -3z =0.取x =23,则m =(23,6,1)为平面MAB 的一个法向量.又n =(3,0,0)为平面FCB 的一个法向量, 所以cos 〈m ,n 〉=m·n |m||n|=23×37×3=237.则平面MAB 与平面FCB 所成角的余弦值为237.20.解:(1)由题意知,b 等于原点到直线y =x +2的距离,即b =21+1=2,又2a =4,所以a =2,c 2=a 2-b 2=2,所以椭圆C 的两个焦点的坐标分别为()2,0,()-2,0.(2)由题意可设M (x 0,y 0),N (-x 0,-y 0),P (x ,y ),则x 20a 2+y 20b 2=1,x 2a 2+y 2b2=1, 两式相减得y 2-y 20x 2-x 20=-b 2a 2,又k PM =y -y 0x -x 0,k PN =y +y 0x +x 0, 所以k PM ·k PN =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20=-b 2a 2,所以-b 2a 2=-14,又a =2,所以b =1,故椭圆C 的方程为x 24+y 2=1.21.解:(1)f ′(x )=1x -k x 2=x -kx2,x >0.当k ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增,无极值.当k >0时,当0<x <k 时,f ′(x )<0,当x >k 时,f ′(x )>0,故f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞),f (x )的极小值为h (k )=f (k )=ln k +1.当k >0时,h (k )≤ak 恒成立,即ln k +1≤ak ,即a ≥ln k +1k恒成立.令φ(k )=ln k +1k ,则φ′(k )=1-(1+ln k )k 2=-ln kk 2,令φ′(k )=0,得k =1,当0<k <1时,φ′(k )>0,φ(k )单调递增,当k >1时,φ′(k )<0,φ(k )单调递减,故k =1为φ(k )在(0,+∞)上唯一的极大值点,也是最大值点,所以φ(k )max =φ(1)=1,所以a ≥1,即实数a 的取值范围是[1,+∞).(2)证明:由(1)知,当k >0时,f (x )在(0,k )上单调递减,在(k ,+∞)上单调递增,设α<β,则一定有0<α<k <β.构造函数g (x )=f (x )-f (2k -x )=ln x +k x -ln (2k -x )-k2k -x ,0<x <k ,g ′(x )=1x +12k -x -k x 2-k(2k -x )2=2kx (2k -x )-2k (x 2-2kx +2k 2)x 2(2k -x )2 =-4k (x -k )2x 2(2k -x )2. 因为0<x <k ,所以g ′(x )<0,即g (x )在(0,k )上单调递减,又f (k )-f (2k -k )=0,所以g (x )>0,所以f (x )>f (2k -x ).因为0<α<k ,所以f (α)>f (2k -α),因为f (α)=f (β),所以f (β)>f (2k -α),因为0<α<k ,所以2k -α>k ,又函数f (x )在(k ,+∞)上单调递增,所以β>2k -α,所以α+β>2k .22.解:(1)x 2=⎣⎡⎦⎤2sin ⎝⎛⎭⎫α+π42=(sin α+cos α)2=sin 2α+1=y ,所以C 1的普通方程为y =x 2.将ρ2=x 2+y 2,ρsin θ=y 代入C 2的方程得x 2+y 2=4y -3,所以C 2的直角坐标方程为x 2+y 2-4y +3=0.(2)将x 2+y 2-4y +3=0变形为x 2+(y -2)2=1,它的圆心为C (0,2).设P (x 0,y 0)为C 1上任意一点,则y 0=x 20,从而|PC |2=(x 0-0)2+(y 0-2)2=x 20+(x 20-2)2=x 40-3x 20+4=⎝⎛⎭⎫x 20-322+74,所以当x 20=32时,|PC |min =72, 故曲线C 1上的点与曲线C 2上的点的距离的最小值为72-1. 23.解:(1)由已知可得f (x )=⎩⎪⎨⎪⎧1-2x ,x <0,1,0≤x <1,2x -1,x ≥1,所以f (x )min =1,所以只需|m -1|≤1,解得-1≤m -1≤1, 所以0≤m ≤2,所以实数m 的最大值M =2. (2)证明:因为a 2+b 2≥2ab , 所以ab ≤1,所以ab ≤1,当且仅当a =b 时取等号,① 又ab ≤a +b 2,所以ab a +b ≤12,所以ab a +b ≤ab2,当且仅当a =b 时取等号,②由①②得,ab a +b ≤12,所以a +b ≥2ab . 高考仿真模拟卷(三)1.解析:选C.因为A =(-2,1),B =(-∞,0)∪(1,+∞),所以∁R B =[0,1],A ∩(∁R B )=[0,1),选C.2.解析:选A.由复数z 1与z 3所对应的点关于原点对称,z 3与z 2关于实轴对称可得, 复数z 1与z 2所对应的点关于虚轴对称,z 1=3+4i ,所以z 2=-3+4i , 所以z 1·z 2=(3+4i)(-3+4i)=-25.3.解析:选C.抛掷红、蓝两枚骰子,第一个数字代表红色骰子,第二个数字代表蓝色骰子,当红色骰子点数为偶数时,有18种,分别为:(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中两颗骰子点数之和不小于9的有6种,分别为:(4,5),(4,6),(6,3),(6,4),(6,5),(6,6),所以当已知红色骰子的点数为偶数时,两颗骰子的点数之和不小于9的概率是P =618=13.故选C.4.解析:选B.本题可以转为等差数列问题:已知首项a 1=5,前30项的和S 30=390,求公差d .由等差数列的前n 项公式可得,390=30×5+30×292d ,解得d =1629.5.解析:选A.因为函数f (x )=x ln |x |,可得f (-x )=-f (x ),f (x )是奇函数,其图象关于原点对称,排除C ,D ;当x >0时,f ′(x )=ln x +1,令f ′(x )>0得x >1e ,得出函数f (x )在⎝⎛⎭⎫1e ,+∞上是增函数,排除B ,故选A.6.解析:选D.由m ⊥OA →,得3x +4y =0,即y =-34x ,所以tan α=-34,tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=tan α+11-tan α=-34+11-⎝⎛⎭⎫-34=17.7.解析:选D.设奇数项的公差为d ,偶数项的公比为q ,由a 3+a 4=7,a 5+a 6=13,得1+d +2q =7,1+2d +2q 2=13,解得d =2,q =2,所以a 7+a 8=1+3d +2q 3=7+16=23,故选D.8.解析:选C.第一次循环r =70,m =105,n =70;第二次循环r =35,m =70,n =35;第三次循环r =0,m =35,n =0.故输出的m 等于35.9.解析:选A.在△ADC 中,因为AC =32,AD =3,cos ∠ADC =cos ⎝⎛⎭⎫∠ABC +π2=-sin ∠ABC =-33,所以代入AC 2=AD 2+DC 2-2AD ·DC ·cos ∠ADC ,可得DC 2+2DC -15=0,舍掉负根有DC =3.所以BC =DC cot ∠ABC =3 2.AB =AD +BD =AD +DCsin ∠ABC =3+33=4 3.于是根据三角形的面积公式有:S △ABC =12AB ·BC ·sin ∠ABC =12·43·32·33=6 2.故选A.10.解析:选C.由AB =BC =2,AC =2,可知∠ABC =π2,取AC 的中点M ,则点M 为△ABC 外接圆的圆心,又O 为四面体ABCD 的外接球球心,所以OM ⊥平面ABC ,且OM 为△ACD 的中位线,所以DC ⊥平面ABC , 故三棱锥D -ABC 的体积为V =13×12×2×2×23=233.故选C.11.解析:选B.由题意知四边形F 1F 2PQ 的边长为2c ,连接QF 2,由对称性可知,|QF 2|=|QF 1|=2c ,则三角形QPF 2为等边三角形.过点P 作PH ⊥x 轴于点H ,则∠PF 2H =60°,因为|PF 2|=2c ,所以在直角三角形PF 2H 中,|PH |=3c ,|HF 2|=c ,则P (2c ,3c ),连接PF 1,则|PF 1|=23c .由双曲线的定义知,2a =|PF 1|-|PF 2|=23c -2c =2(3-1)c ,所以双曲线的离心率为c a =13-1=3+12.12.解析:选B.令g (x )=f (x )x 2,则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3,由于x ∈(0,1),且xf ′(x )>2f (x ),所以g ′(x )>0,故函数g (x )在(0,1)上单调递增.又α,β为锐角三角形的两个内角,则π2>α>π2-β>0,所以1>sin α>sin ⎝⎛⎭⎫π2-β>0,即1>sin α>cos β>0,所以g (sin α)>g (cos β),即f (sin α)sin 2α>f (cos β)cos 2β,所以cos 2βf (sin α)>sin 2αf (cos β). 13.解析:依题意,得1a +4b =12⎝⎛⎭⎫1a +4b ·(a +b ) =12⎣⎡⎦⎤5+⎝⎛⎭⎫b a +4a b ≥12⎝⎛⎭⎫5+2b a ·4a b=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92. 答案:9214.解析:依题意,结合茎叶图,将题中的数由小到大依次排列得到:86,86,90,91,93,93,93,96,因此这8位学生得分的众数是93,中位数是91+932=92.答案:93,9215.解析:由AB →·AC →=6,∠A =60°,可得|AB →|·|AC →|=12,又在△ABC 中,13=AB 2+AC 2-2AB ·AC cos A ,所以AB 2+AC 2=25,因为AB >AC ,所以AB =4,AC =3.以A 为坐标原点,AB 所在的直线为x 轴建立如图所示的平面直角坐标系,则B (4,0),C ⎝⎛⎭⎫32,332,所以BC →=⎝⎛⎭⎫-52,332,因为M 是BC 的中点,所以M ⎝⎛⎭⎫114,334,H ⎝⎛⎭⎫114,0,所以MH →=⎝⎛⎭⎫0,-334,所以MH →·BC →=-278.答案:-27816.解析:函数f (x )=a ln x -x +a +3x 在定义域(0,+∞)内无极值等价于f ′(x )≥0或f ′(x )≤0在定义域(0,+∞)内恒成立.因为f ′(x )=ax -1-a +3x 2=-x 2+ax -(a +3)x 2,设g (x )=-x 2+ax -(a +3),则g (x )≥0或g (x )≤0在(0,+∞)内恒成立,可分两种情况进行讨论,即方程g (x )=-x 2+ax -(a +3)=0无解或只有小于等于零的解,因此Δ≤0或⎩⎪⎨⎪⎧Δ≥0,a2≤0,g (0)≤0,解得-2≤a ≤6或-3≤a ≤-2.故实数a 的取值范围为[-3,6]. 答案:[-3,6]17.解:(1)记甲运动员击中n 环为事件A n (n =1,2,3,…,10);乙运动员击中n 环为事件B n (n =1,2,3,…,10);甲运动员击中的环数不少于9环为事件A 9∪A 10,乙运动员击中的环数不少于9环为事件B 9∪B 10,根据已知事件A 9与事件A 10互斥,事件B 9与事件B 10互斥,事件A 9∪A 10与B 9∪B 10相互独立.P (A 9∪A 10)=P (A 9)+P (A 10)=1-0.2-0.15=0.65, P (B 9∪B 10)=P (B 9)+P (B 10)=0.2+0.35=0.55.所以甲、乙两名射击运动员击中的环数都不少于9环的概率等于0.65×0.55=0.357 5. (2)设甲、乙两名射击运动员击中的环数分别为随机变量X 、Y ,根据已知得X 、Y 的可能取值为:7,8,9,10.甲运动员射击环数X 的概率分布列为甲运动员射击环数X E (X )=7×0.2+8×0.15+9×0.3+10×0.35=8.8. 乙运动员射击环数Y 的概率分布列为乙运动员射击环数Y E (Y )=7×0.2+8×0.25+9×0.2+10×0.35=8.7.因为E (X )>E (Y ), 所以从随机变量均值意义的角度看,选甲去比较合适. 18.解:(1)当n =1时,a 1=S 1=2-a ; 当n ≥2时,a n =S n -S n -1=2n -1.因为{a n }为等比数列,所以2-a =1,解得a =1.所以a n =2n -1. 设数列{b n }的公差为d .因为b 2+5,b 4+5,b 8+5成等比数列, 所以(b 4+5)2=(b 2+5)(b 8+5),又b 1=3,所以(8+3d )2=(8+d )(8+7d ), 解得d =0(舍去)或d =8.所以b n =8n -5. (2)由a n =2n -1,得log 2a n =2(n -1),所以{log2a n }是以0为首项,2为公差的等差数列,所以T n =n (0+2n -2)2=n (n -1).由b n =8n -5,T n >b n ,得n (n -1)>8n -5, 即n 2-9n +5>0,因为n ∈N *,所以n ≥9. 故所求n 的最小正整数为9.19.解:(1)设BD =x (0<x <3),则CD =3-x .由AD ⊥BC ,∠ACB =45°知,△ADC 为等腰直角三角形,所以AD =CD =3-x . 由折起前AD ⊥BC 知,折起后,AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D ,所以AD ⊥平面BCD .又∠BDC =90°, 所以S △BCD =12BD ·CD =12x (3-x ).于是V ABCD=13AD ·S △BCD=13(3-x )·12x (3-x )=112·2x (3-x )·(3-x )≤112⎣⎡⎦⎤2x +(3-x )+(3-x )33=23(当且仅当2x =3-x ,即x =1时,等号成立),故当x =1,即BD =1时,三棱锥A -BCD 的体积最大.(2)以D 为原点,建立如图所示的空间直角坐标系D -xyz . 由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =CD =2.于是可得D (0,0,0),B (1,0,0),C (0,2,0),A (0,0,2),M (0,1,1),E ⎝⎛⎭⎫12,1,0,所以BM →=(-1,1,1).设N (0,λ,0),则EN →=⎝⎛⎭⎫-12,λ-1,0. 因为EN ⊥BM ,所以EN →·BM →=0,即⎝⎛⎭⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12,N ⎝⎛⎭⎫0,12,0. 所以当DN =12(即N 是CD 上靠近点D 的一个四等分点)时,EN ⊥BM .设平面BMN 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ⊥BN →,n ⊥BM →,及BN →=⎝⎛⎭⎫-1,12,0, 得⎩⎪⎨⎪⎧-x +12y =0,-x +y +z =0,所以⎩⎪⎨⎪⎧y =2x ,z =-x .取x =1得n =(1,2,-1).设EN 与平面BMN 所成角的大小为θ,则由EN →=⎝⎛⎭⎫-12,-12,0, 可得sin θ=|cos 〈n ,EN →〉|=⎪⎪⎪⎪⎪⎪n ·EN →|n |·|EN →|=⎪⎪⎪⎪-12-16×22=32, 即θ=60°,故EN 与平面BMN 所成角的大小为60°.20.解:(1)证明:因为f ′(x )=x e x ≥0,即f (x )在[0,1]上单调递增,所以f (x )≥f (0)=0,结论成立.(2)令g (x )=e x -1x ,则g ′(x )=(x -1)e x +1x 2>0,x ∈(0,1),所以,当x ∈(0,1)时,g (x )<g (1)=e -1, 要使e x -1x<b ,只需b ≥e -1.要使e x -1x >a 成立,只需e x -ax -1>0在x ∈(0,1)上恒成立.令h (x )=e x -ax -1,x ∈(0,1),则h ′(x )=e x -a ,由x ∈(0,1),得e x ∈(1,e),①当a ≤1时,h ′(x )>0,此时x ∈(0,1),有h (x )>h (0)=0成立,所以a ≤1满足条件; ②当a ≥e 时,h ′(x )<0,此时x ∈(0,1),有h (x )<h (0)=0,不符合题意,舍去; ③当1<a <e 时,令h ′(x )=0,得x =ln a ,可得当x ∈(0,ln a )时,h ′(x )<0,即x ∈(0,ln a )时,h (x )<h (0)=0,不符合题意,舍去.综上,a ≤1.又b ≥e -1,所以b -a 的最小值为e -2.21.解:(1)由焦点坐标为(1,0),可知p2=1,所以p =2,所以抛物线C 的方程为y 2=4x .(2)证明:当直线l 垂直于x 轴时,△ABO 与△MNO 相似, 所以S △ABO S △MNO =⎝⎛⎭⎫|OF |22=14;当直线l 与x 轴不垂直时,设直线AB 的方程为y =k (x -1). 设M (-2,y M ),N (-2,y N ),A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,整理得k 2x 2-(4+2k 2)x +k 2=0,所以x 1·x 2=1.所以S △ABOS △MNO=12·|AO |·|BO |·sin ∠AOB 12·|MO |·|NO |·sin ∠MON=|AO ||MO |·|BO ||NO |=x 12·x 22=14. 综上,S △ABO S △MNO =14. 22.解:(1)由已知可得圆心O 的直角坐标为⎝⎛⎭⎫-22,-22,所以圆心O 的极坐标为⎝⎛⎭⎫1,5π4.(2)由直线l 的极坐标方程可得直线l 的直角坐标方程为x +y -1=0,所以圆心O 到直线l 的距离d =|-2-1|2,圆O 上的点到直线l 的距离的最大值为|-2-1|2+r =3,解得r =2-22. 23.解:(1)显然a ≠0,当a >0时,解集为⎣⎡⎦⎤-1a ,3a ,则-1a =-6,3a =2,无解; 当a <0时,解集为⎣⎡⎦⎤3a ,-1a ,令-1a =2,3a =-6,得a =-12. 综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32, 由此可知,h (x )在⎝⎛⎦⎤-∞,-14上单调递减,在⎝⎛⎭⎫-14,32上单调递增,在⎣⎡⎭⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72,由题意知,-72≤7-3m ,则实数m 的取值范围是⎝⎛⎦⎤-∞,72.高考仿真模拟卷(四)1.解析:选B.因为M ={x |1≤x <3},N ={1,2},所以M ∩N ={1,2}.故选B. 2.解析:选C.由(z -1)i =4+2i ,得z -1=4+2i i =2-4i ,所以z =3-4i ,所以|z |=5.3.解析:选D.由题意知,四所中学报名参加某高校2017年自主招生考试的学生总人数为100,抽取的学生人数与学生总人数的比值为50100=12.所以应从A ,B ,C ,D 四所中学抽取的学生人数分别为20,15,5,10.4.解析:选C.因为a 5=a 2q 3<0,a 2<0,所以q >0,所以a n <0恒成立,所以S n -S n -1=a n <0,{S n }单调递减,故为充分条件;S n -S n -1=a n <0⇒a 2<0,a 5<0,故为必要条件.故选C.5.解析:选B.依题意得cos C =a 2+b 2-c 22ab =12,C =60°,因此△ABC 的面积等于12ab sinC =12×3×32=34.6.解析:选A.因为a =log 123<log 122=-1,0<b =⎝⎛⎭⎫130.2<1,c =2>1,所以a <b <c . 7.解析:选A.由(a -2b )·a =a 2-2a ·b =0,得a ·b =a 22=|a |22=8,从而a 在b 方向上的投影为a ·b |b |=82=4,故选A.8.解析:选C.第一次循环S =2,n =2,第二次循环S =6,n =3,第三次循环S =2,n =4,第四次循环S =18,n =5,第五次循环S =14,n =6,第六次循环S =78,n =7,需满足S ≥K ,此时输出n =7,所以18<K ≤78,所以整数K 的最大值为78.9.解析:选B.设长方体三条棱的长分别为a ,b ,c , 由题意得⎩⎪⎨⎪⎧ab =6bc =8ac =12,解得⎩⎪⎨⎪⎧a =3b =2c =4.再结合题意可得,铁球的直径最大只能为2. 故选B.10.解析:选B.设Q (x 0,y 0),中点M (x ,y ),则P (2x -x 0,2y -y 0)代入x 2+y 2=9, 得(2x -x 0)2+(2y -y 0)2=9, 化简得:⎝⎛⎭⎫x -x 022+⎝⎛⎭⎫y -y 022=94, 又x 20+y 20=25表示以原点为圆心半径为5的圆,故易知M 的轨迹是在以⎝⎛⎭⎫x 02,y 02为圆心,以32为半径的圆绕原点一周所形成的图形,即在以原点为圆心,宽度为3的圆环带上,即应有x 2+y 2=r 2(1≤r ≤4),那么在C 2内部任取一点落在M 内的概率为16π-π25π=1525=35.故选B.11.解析:选A.由题意得,F (c ,0),该双曲线的一条渐近线为y =-ba x ,将x =c 代入y=-b a x 得y =-bc a,所以bca =2a ,即bc =2a 2,所以4a 4=b 2c 2=c 2(c 2-a 2),所以e 4-e 2-4=0,解得e 2=1+172,故选A.12.解析:选A.二次函数f (x )=x 2+(a +8)x +a 2+a -12图象的对称轴为直线x =-a +82,由f (a 2-4)=f (2a -8)及二次函数的图象,可以得出a 2-4+2a -82=-a +82,解得a =-4或a=1,又a <0,所以a =-4,所以f (x )=x 2+4x ,所以f (n )-4a n +1=n 2+4n +16n +1=(n +1)2+2(n +1)+13n +1=n +1+13n +1+2≥2(n +1)·13n +1+2=213+2,又n ∈N *,所以当且仅当n +1=13n +1,即n =13-1时等号成立,当n =2时,f (n )-4a n +1=283,n =3时,f (n )-4a n +1=294+2=374<283,所以最小值为374,故选A.13.解析:因为函数f (x )=tan x +sin x +2 017,所以f (-x )=-tan x -sin x +2 017,从而f (-x )+f (x )=4 034,又f (m )=2,所以f (-m )=4 032.答案:4 03214.解析:不等式组表示的平面区域如图中阴影部分所示,假设z =x +ay 在点C (2,1)处取得最小值,则2+a =4,a =2,此时y =-12x +12z ,其在点C (2,1)处取得最小值,符合题意.假设z =x +ay 在点B (2,5)处取得最小值,则2+5a =4,a =25,此时y =-52x +52z ,其在点C 处取得最小值,不符合题意.假设z =x +ay 在点A (8,-1)处取得最小值,则8-a =4,a =4,此时y =-14x +14z ,其在点A处取得最小值,符合题意.所以a 的值为2或4.答案:2或415.解析:由S n =2n -1,得a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-2n -1+1=2n -1,a 1=1适合上式,所以a n =2n -1. 则b n =a 2n -7a n +6=⎝⎛⎭⎫a n -722-254.所以当n =3时(b n )min =⎝⎛⎭⎫4-722-254=-6.故答案为-6. 答案:-616.解析:该球形容器最小时,十字立方体与球内接,此时球直径2R 等于由两个正四棱柱组合而成的几何体的对角线,即2R =42+42+22=6,球形容器的表面积为4πR 2=36π.答案:36π17.解:(1)f (x )=23sin x cos x +cos 2x -sin 2x =3sin 2x +cos 2x =2⎝⎛⎭⎫32sin 2x +12cos 2x=2sin ⎝⎛⎭⎫2x +π6, 所以函数f (x )的最小正周期T =π.(2)由题意可知,不等式f (x )≥m 有解,即m ≤f (x )max .因为x ∈⎣⎡⎦⎤0,π2, 所以2x +π6∈⎣⎡⎦⎤π6,7π6, 故当2x +π6=π2,即x =π6时,f (x )取得最大值,且最大值为f ⎝⎛⎭⎫π6=2.从而可得m ≤2 . 18.解:(1)由题意知,ξ的所有可能取值为0,10,20,30. P (ξ=0)=15×14×13=160,P (ξ=10)=45×14×13+15×34×13+15×14×23=960=320,P (ξ=20)=45×34×13+45×14×23+15×34×23=2660=1330,P (ξ=30)=45×34×23=25.所以ξ的分布列为所以E (ξ)=0×160+10×320+20×1330+30×25=1336.(2)记“甲队得30分,乙队得0分”为事件A ,“甲队得20分,乙队得10分”为事件B ,则A ,B 互斥.又P (A )=⎝⎛⎭⎫343×160=91 280,P (B )=C 23⎝⎛⎭⎫342×14×320=811 280,故甲、乙两队总得分之和为30分且甲队获胜的概率为P (A +B )=P (A )+P (B )=901 280=9128. 19.解:(1)证明:连接BG ,因为BC ∥AD ,AD ⊥底面AEFB ,所以BC ⊥底面AEFB ,又AG ⊂底面AEFB ,所以BC ⊥AG ,因为AB =12EF ,且AB ∥EF ,所以AB 綊EG ,因为AB=AE ,所以四边形ABGE 为菱形,所以AG ⊥BE ,又BC ∩BE =B ,BE ⊂平面BCE ,BC ⊂平面BCE ,所以AG ⊥平面BCE .(2)由(1)知四边形ABGE 为菱形,AG ⊥BE ,AE =EG =BG =AB =4, 设AG ∩BE =O ,所以OE =OB =23,OA =OG =2, 以O 为坐标原点,建立如图所示的空间直角坐标系,则O (0,0,0),A (-2,0,0),E (0,-23,0),F (4,23,0),C (0,23,4),D (-2,0,4),所以AC →=(2,23,4),AE →=(2,-23,0),设平面ACE 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0,所以⎩⎨⎧2x +23y +4z =0,2x -23y =0,令y =1,则x =3,z =-3,即平面ACE 的一个法向量为n =(3,1,-3),易知平面AEF 的一个法向量为AD →=(0,0,4),设二面角C -AE -F 的大小为θ,由图易知θ∈⎝⎛⎭⎫0,π2,所以cos θ=|n ·AD →||n |·|AD →|=437×4=217.20.解:(1)由题意知,F (x )=f (x )h (x )=x 2ln x ,F ′(x )=2x ln x +x (x >0). 令F ′(x )>0,得x >1e,故F (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞;令F ′(x )<0,得0<x <1e ,故F (x )的单调递减区间为⎝⎛⎭⎫0,1e .(2)由题意知,G (x )=e x -bx ,故G ′(x )=e x -b ,又b >0,令G ′(x )=e x -b =0,得x =ln b ,故当x ∈(-∞,ln b )时,G ′(x )<0,此时G (x )单调递减;当x ∈(ln b ,+∞)时,G ′(x )>0,此时G (x )单调递增.故G (x )min =b -b ln b ,所以m ≤b -b ln b ,则mb ≤b 2-b 2ln b . 设r (b )=b 2-b 2ln b (b >0),则r ′(b )=2b -(2b ln b +b )=b -2b ln b ,由于b >0,令r ′(b )=0,得ln b =12,b =e ,当b ∈(0,e)时,r ′(b )>0,r (b )单调递增;当b ∈(e ,+∞)时,r ′(b )<0,r (b )单调递减,所以r (b )max =e 2,即当b =e ,m =12e 时,mb 取得最大值e2.21.解:(1)因为点P (2,t )到焦点F 的距离为52,所以2+p 2=52,解得p =1,故抛物线C 的方程为y 2=2x ,P (2,2), 所以l 1的方程为y =45x +25,联立得⎩⎪⎨⎪⎧y =45x +25,y 2=2x ,可解得x Q =18,又|QF |=x Q +12=58,|PF |=52,所以|QF ||PF |=5852=14.(2)设直线l 2的方程为x =ny +m (m ≠0),代入抛物线方程可得y 2-2ny -2m =0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2n ,y 1y 2=-2m ,① 由OA ⊥OB 得,(ny 1+m )(ny 2+m )+y 1y 2=0, 整理得(n 2+1)y 1y 2+nm (y 1+y 2)+m 2=0,②将①代入②解得m =2或m =0(舍去),满足Δ=4n 2+8m >0, 所以直线l 2:x =ny +2,因为圆心M (a ,0)到直线l 2的距离d =|a -2|1+n 2, 所以|DE |=212-(a -2)21+n 2,显然当a =2时,|DE |=2,所以存在实数a =2,使得|DE |为定值.22.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得4+ρ2-4ρcos(θ-π3)=4,所以圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3.作图如图所示.(2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得M 的参数方程为⎩⎨⎧x =6+2cos α2y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos αy =sin α(α为参数),所以点M 的轨迹的普通方程为(x -3)2+y 2=1.23.解:(1)由于a =1,故f (x )=⎩⎪⎨⎪⎧1-x ,x <1.x -1,x ≥1.当x <1时,由f (x )≥12(x +1),得1-x ≥12(x +1),解得x ≤13;当x ≥1时,由f (x )≥12(x +1),得x -1≥12(x +1),解得x ≥3.综上,不等式f (x )≥12(x +1)的解集为⎝⎛⎦⎤-∞,13∪[3,+∞). (2)当a <2时,g (x )=⎩⎪⎨⎪⎧a -2,x ≤a ,2x -2-a ,a <x <2,2-a ,x ≥2,g (x )的值域A =[a -2,2-a ],由A ⊆[-1,3],得⎩⎪⎨⎪⎧a -2≥-1,2-a ≤3,解得a ≥1,又a <2,故1≤a <2; 当a ≥2时,g (x )=⎩⎪⎨⎪⎧a -2,x ≤2,-2x +2+a ,2-a ,x ≥a ,2<x <a ,g (x )的值域A =[2-a ,a -2],由A ⊆[-1,3],得⎩⎪⎨⎪⎧2-a ≥-1,a -2≤3,解得a ≤3,又a ≥2,故2≤a ≤3. 综上,a 的取值范围为[1,3].高考仿真模拟卷(五)1.解析:选C.A ={x |x ≤3},B ={2,3,4}, 所以A ∩B ={2,3},故选C.2.解析:选D.由已知可得z =1+i 2-i =(1+i )(2+i )(2-i )(2+i )=1+3i 5=15+35i ,所以z =15-35i.3.解析:选A.所给圆的圆心为坐标原点,半径为2,当弦长大于2时,圆心到直线l 的距离小于1,即|m |5<1,所以-5<m <5,故所求概率P =5-(-5)9-(-6)=23.4.解析:选C.因为4a 1,a 3,2a 2成等差数列,所以2a 3=4a 1+2a 2,又a 3=a 1q 2,a 2=a 1q ,则2a 1q 2=4a 1+2a 1q ,解得q =2或q =-1,故选C.5.解析:选A.a =b =1时,两条直线ax -y +1=0与直线x -by -1=0平行, 反之由ax -y +1=0与直线x -by -1=0平行,可得ab =1,显然不一定是a =b =1, 所以,必要性不成立,所以“a =b =1”是“直线ax -y +1=0与直线x -by -1=0平行”的充分不必要条件. 故选A.6.解析:选A.BD →=AD →-AB →,所以BC →= 2 BD →=2(AD →-AB →),所以BC →·AB →=2(AD →-AB →)·AB →= 2 AD →·AB →- 2 AB →2=0-2×22=-4 2.7.解析:选C.该程序框图的功能是计算S =2+lg 12+lg 23+…+lg nn +1=2-lg(n +1)的值.要使输出的S 的值为-1,则2-lg(n +1)=-1,即n =999,故①中应填n <999?.8.解析:选C.F (1,0),故直线AB 的方程为y =x -1,联立方程组⎩⎪⎨⎪⎧y 2=4x y =x -1,可得x 2-6x +1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|F A |=x 1+1, |FB |=x 2+1,所以||F A |-|FB ||=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=36-4=4 2. 故选C.9.解析:选B.如图所示,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上的截距.由图可知,当a >1时,直线y =-x +a 与曲线y =f (x )只有一个交点.10.解析:选C.由题意得BC =CD =a ,∠BCD =90°,所以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2020年广东省佛山市高三第二次模拟考试理科数学试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.
注意事项:
1.答卷前,考生要务必填写答题卷上的有关项目.
2.选择题每小题选出答案后,用2B铅笔把答案涂在答题卷相应的位置上.
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如
需改
动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的
答案无效.
4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.
第Ⅰ卷(选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.已知集合A={x|x2>2 x },B={x|1≤x≤3},则A∪B=( )
A、{x|0≤x<1} B、{x|x0或
x
1}
C、{x|2<x≤3} D、{x|x≤1或
x
3}
2.复数z满足(z+2)(1+i)=3+i,则|z|=()
A、1 B、2 C、3 D、
2
3.(1x)10的二项展开式中,x的系数与x4的系数之差为( )
A、220 B、90 C、90 D、
0
4.设变量x,y满足约束条件,则目标函数z=x+6y的最大值为()
A、3 B、4 C、18 D、
40
5.设函数()fx=sinx+cosx2+cos2x,则下列结论错误的是()
A、()fx的最小正周期为π B、y=()fx的图像关于直线x=8对称
C、()fx的最大值为2+1 D、()fx的一个零点为
x
=78
6.已知,则()
A、abc B、acb C、cab D、
bac
7.已知点A(3,-2)在抛物线C:x2=2py (p0)的准线上,过点A的直线与抛物线在第一象
限相切于点B,记抛物线的焦点为F,则|BF|=()
A、6 B、8 C、10 D、
12
8.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并
往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为()
2
A、35 B、79 C、715 D、3145
9.2019年,全国各地区坚持稳中求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,
发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率
为57.8%.下图为2019年居民消费价格月度涨跌幅度:
下列结论中不正确的是()
A、2019年第三季度的居民消费价格一直都在增长
B、2018年7月份的居民消费价格比同年8月份要低一些
C、2019年全年居民消费价格比2018年涨了2.5%以上
D、2019年3月份的居民消费价格全年最低
10.已知P为双曲线C:22221(00)xyabab,上一点,O为坐标原点,F1,F2为曲线C左
右焦点.若|OP|=|OF2|,且满足tanPF2F1=3,则双曲线的离心率为( )
A、52 B、2 C、102 D、
3
11.已知A,B,C是球O的球面上的三点,AOB=AOC=60º,若三棱锥OABC体积的最大
值为1,则球O的表面积为()
A、4π B、9π C、16π D、
20π
12.双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角
坐标系xOy中,把到定点F1(a,0),F2(a,0)距离之积等于a2(a0)的点的轨迹称为双纽线
C.已知点P (x0,y 0)是双纽线C
上一点,下列说法中正确的有()
①双纽线C关于原点O中心对称;②;
③双纽线C上满足|PF1|=|PF2|的点P有两个;④|PO|的最大值为2a.
3
A、①② B、①②④ C、②③④ D、①③
第Ⅱ卷(非选择题共90分)
本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23
为选考题,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分,满分20分.
13.设命题,则p为 .
14.已知函数,若f (a)=3,则f(a)= .
15.在面积为1的平行四边形ABCD中,DAB=6,则ABBCuuuruuurg=________;
点P是直线AD上的动点,则的最小值为________.
16.数学兴趣小组为了测量校园外一座“不可到达”建筑物的高度,采用“两次测角法”,并
自制了测量工具:将一个量角器放在复印机上放大4倍复印,在中心处绑上一个铅锤,用于测
量楼顶仰角(如图);推动自行车来测距(轮子滚动一周为1.753米).
该小组在操场上选定A点,此时测量视线和铅锤线之间的夹角在量角器上度数为37º;推动自行
车直线后退,轮子滚动了10圈达到B点,此时测量视线和铅锤线之间的夹角在量角器上度数为
53.测量者站立时的“眼高”为1.55m,根据以上数据可计算得该建筑物的高度约为
米.(精确到0.1)
参考数据:
三、解答题:本大题共7小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤.
17.(本小题满分12分)
已知等比数列{an}的前n项和为SnSn0,满足S1,S2,S3成等差数列,且a1a2=a3.
(1)求数列{an}的通项公式;
(2)设,求数列{bn}的前n项和Tn.
4
18.(本小题满分12分)
如图,在四棱锥PABCD中,底面ABCD是矩形,PA=PD=3,PB=PC=6,
APB=CPD=90,点M,N分别是棱BC,
PD
的中点.
(1)求证:MN//平面PAB;
(2)若平面PAB平面PCD,求直线MN与平面PCD所成角的正弦值.
19.(本小题满分12分)
已知椭圆C:22221(0)xyabab的离心率为22,且过点(2,1).
(1)求椭圆C的方程;
(2)过坐标原点的直线与椭圆交于MN,两点,过点M作圆x2+y2=2的一条切线,交椭圆于
另一点P,连接PN,证明:|PM||=PN|.
20.(本小题满分12分)
2020年是我国全面建成小康社会和“十三五”规划收官之年,也是佛山在经济总量超万亿
元新起点上开启发展新征程的重要历史节点.作为制造业城市,佛山一直坚持把创新摆在制造
业发展全局的前置位置和核心位置,聚焦打造成为面向全球的国家制造业创新中心,走“世界
科技+佛山智造+全球市场”的创新发展之路.在推动制造业高质量发展的大环境下,佛山市某
工厂统筹各类资源,进行了积极的改革探索.下表是该工厂每月生产的一种核心产品的产量
x5x20(件)与相应的生产总成本y
(万元)的四组对照数据.
x
5 7 9 11
y
200 298 431 609
工厂研究人员建立了y与x的两种回归模型,利用计算机算得近似结果如下:
5
模型①:;
模型②:.
其中模型①的残差(实际值预报值)图如图所示:
(1)根据残差分析,判断哪一个更适宜作为y关于x的回归方程?并说明理由;
(2)市场前景风云变幻,研究人员统计历年的销售数据得到每件
产品的销售价格q(万元)是一个与产量x相关的随机变量,分布列为:
结合你对(1)的判断,当产量x为何值时,月利润的预报期望值最大?最大值是多少(精确到
0.1
)?
21.(本小题满分12分)
已知函数()-fxxasinx (xa).
(1)若()fx0恒成立,求a的取值范围;
(2)若a-14,证明:()fx在(0,2)有唯一的极值点x0,
且.
请考生在第22,23题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题
号.
22.(本小题满分10分)[选修44:坐标系与参数方程选讲]
在平面直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极
6
点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为=4cos.
(1)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(2)设点M的极坐标为(4,0),射线=(02)与C1的异于极点的交点为A,与
C
2
的异于极点的交点为B,若AMB=4,求tan的值.
23.(本小题满分10分)[选修45:不等式选讲]
已知函数,aR.
(1)若f(0)>8,求实数a的取值范围;
(2)证明:对xR,恒成立.
7
参考答案
8
9
10
11