3-1拉格朗日中值定理

合集下载

拉格朗日中值定理

拉格朗日中值定理

实用标准拉格朗日中值定理引言众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ⋂AB 上至少有一点()(),Cf ζζ ,曲线在C 点的切线平行于x 轴,如图1,注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的.2拉格朗日()lagrange 中值定理若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()ab a f b f f--=ζ'拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧⋂AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2,从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理3.1 教材证法证明 作辅助函数 ()()()()f b f a F x f x x b a-=--显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使()()()()0''=---=ab a f b f f F ζζ.即()()()ab a f b f f --=ζ'.3.2 用作差法引入辅助函数法证明 作辅助函数 ()()()()()()⎥⎦⎤⎢⎣⎡---+-=a x a b a f b f a f x f x ϕ 显然,函数()x ϕ在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ϕϕ,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得()()()()0''=---=ab a f b f f ζζϕ,即 ()()()ab a f b f f --=ζ'推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ϕ,因为直线OT 的斜率与直线AB 的斜率相同,即有:()()ab a f b f K K AB OT --==,OT 的直线方程为:()()x ab a f b f y --=,于是引入的辅助函数为:()()()()x ab a f b f x f x ---=ϕ. (证明略)推广2 如图4过点()O a ,作直线''B A ∥AB ,直线''B A 的方程为:()()()a x ab a f b f y ---=,由()x f 与直线函''B A 数之差构成辅助函数()x ϕ,于是有:()()()()()a x ab a f b f x f x ----=ϕ. (证明略) 推广3 如图5过点作()O b ,直线''B A ∥AB ,直''B A 线的方程为()()()b x ab a f b f y ---=,由()x f 与直线A B ''函数之差构成辅助函数()x ϕ,于是有:()()()()()b x ab a f b f x f x ----=ϕ. 事实上,可过y 轴上任已知点()m O ,作//B A ∥AB 得直线为()()m x ab a f b f y +--=,从而利用()x f 与直线的''B A 函数之差构成满足罗尔中值定理的辅助函数()x ϕ都可以用来证明拉格朗日中值定理. 因m 是任意实数,显然,这样的辅助函数有无多个.3.3 用对称法引入辅助函数法在第二种方法中引入的无数个辅助函数中关于x 轴的对称函数也有无数个,显然这些函数也都可以用来证明拉格朗日中值定理.从几何意义上看,上面的辅助函数是用曲线函数()x f 减去直线函数,反过来,用直线函数减曲线函数()x f ,即可得与之对称的辅助函数如下:⑴ ()()()()()()x f a x a b a f b f a f x -⎥⎦⎤⎢⎣⎡---+=ϕ ⑵ ()()()()x f x ab a f b f x ---=ϕ⑶ ()()()()()x f a x a b a f b f x ----=ϕ ⑷ ()()()()()x f b x ab a f b f x ----=ϕ 等等.这类能用来证明拉格朗日中值定理的辅助函数显然也有无数个. 这里仅以⑵为例给出拉格朗日中值定理的证明.证明 显然,函数()x ϕ满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;()3()()()()ab a bf b af b a --==ϕϕ.由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()()()()0''=---=ζζϕf a b a f b f ,从而有()()()ab a f b f f --=ζ',显然可用其它辅助函数作类似的证明.3.4 转轴法由拉格朗日中值定理的几何图形可以看出,若把坐标系xoy 逆时针旋转适当的角度α,得新直角坐标系XOY ,若OX 平行于弦AB ,则在新的坐标系下()x f 满足罗尔中值定理,由此得拉格朗日中值定理的证明.证明 作转轴变换ααsin cos Y X x -=,ααcos sin Y X y +=,为求出α,解出Y X ,得()()x X x f x y x X =+=+=ααααsin cos sin cos ① ()()x Y x f x y x Y =+-=+-=ααααcos sin cos sin ② 由()()b Y a Y =得()()ααααcos sin cos sin b f b a f a +-=+-,从而()()ab a f b f --=αtan ,取α满足上式即可.由()x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,知()x Y 在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()b Y a Y =,因此,由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()()0cos s in '=+-=αζαζf Y ,即()()()ab a f b f f --==αζtan ' 3.5 用迭加法引入辅助函数法让()x f 迭加一个含待顶系数的一次函数m kx y +=,例如令()()()m kx x f x +-=ϕ或()()m kx x f x ++-=ϕ,通过使()()b a ϕϕ=,确定出m k ,,即可得到所需的辅助函数.例如由 ()()()m kx x f x +-=ϕ,令()()b a ϕϕ=得()()()()m kb b f m ka a f +-=+-,从而()()ab a f b f k --=,而m 可取任意实数,这样我们就得到了辅助函数()()()m x ab a f b f x ---=ϕ,由m 的任意性易知迭加法可构造出无数个辅助函数,这些函数都可用于证明拉格朗日中值定理.3.6 用行列式引入辅助函数法证明 构造一个含()x f 且满足罗尔中值定理的函数()x ϕ,关键是满足()()b a ϕϕ=.我们从行列式的性质想到行列式()()()111xf x af a b f b 的值在,x a x b ==时恰恰均为0,因此可设易证()()()()111xf x x af a bf b ϕ=,展开得 ()()()()()()()x f b x bf a af x af b f a x bf x ϕ=++---.因为()x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,所以()x ϕ在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()0a b ϕϕ==,所以由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()0'=ζϕ. 因为()()()()()0''=---=ζζϕf b a b f a f即: ()()()ab a f b f f --=ζ'3.7 数形相结合法引理 在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别为()(),A a f a ,()(),B b f b ,()(),C c f c ,则ABC ∆面积为()()()1112ABCa f a Sb f b a cf c ∆=, 这一引理的证明在这里我们不做介绍,下面我们利用这一引理对拉格朗日中值定理作出一种新的证明. 这种方法是将数形相结合,考虑实际背景刻意构造函数使之满足罗尔中值定理的条件.如图, 设()(),c f c 是直线AB 与()y f x =从A 点开始的第一个交点,则构造()()()()211141af a x cf c xf x ϕ=, 易验证()x ϕ满足罗尔中值定理的条件:在闭区间[],a c 上连续,在开区间(),a c 内可导,而且()()b a ϕϕ=,则至少存在一点()b a ,∈ζ,使()/0ϕζ=,即:()()()()()()01111111'=ζζζf c f c a f a f c f ca f a但是()()()1101a f a cf c f ζζ≠,这是因为,如果 ()()()1101a f a c f c f ζζ=, 则()()()()f f c f c f a c c aζζ--=--,这样使得()(),f ζζ成为直线AB 与()y f x =从A 点的第一个交点,与已知矛盾).故()()()0111=ζζf c f ca f a,即()()()()()ac a f c f a b a f b f f --=--=ζ'. 若只从满足罗尔中值定理的要求出发,我们可以摈弃许多限制条件,完全可以构造()()()()111af a x bf b xf x ϕ=来解决问题,从而使形式更简洁,而且启发我们做进一步的推广:可构造()()()()()()()111g a f a x g b f b g x f x ϕ=来证明柯西中值定理. 3.8 区间套定理证法证明 将区间[],I a b =二等分,设分点为1ζ,作直线1x ζ=,它与曲线()y f x = 相交于1M ,过1M 作直线11L M ∥弦b a M M . 此时,有如下两种可能:⑴ 若直线11M L 与曲线()y f x =仅有一个交点1M ,则曲线必在直线11M L 的一侧.否则,直线11M L 不平行于直线a bM M . 由于曲线()y f x =在点1M 处有切线,根据曲线上一点切线的定义,直线11M L 就是曲线()y f x =在点1M 处的切线,从而()()()ab a f b f f --=1ζ.由作法知,1ζ在区间(),a b 内部,取ζζ=1于是有 ()()()ab a f b f f --=ζ ⑵ 若直线11M L 与曲线()y f x =还有除1M 外的其他交点,设()111,N x y 为另外一个交点,这时选取以11,x ξ为端点的区间,记作[]111,I a b =,有1,112b al I b a -⊇-<, ()()()()1111f b f a f b f a b a b a--=--,把1I 作为新的“选用区间”,将1I 二等分,并进行与上面同样的讨论,则要么得到所要求的点ζ,要么又得到一个新“选用区间”2I .如此下去,有且只有如下两种情形中的一种发生:(a) 在逐次等分“选用区间”的过程中,遇到某一个分点k ζ,作直线k x ζ=它与曲线()y f x =交于k M ,过点k M 作直线k k L M ∥弦b MM , 它与曲线()y f x =只有一个交点k M ,此时取ζζ=k 即为所求.(b) 在逐次等分“选用区间”的过程中,遇不到上述那种点,则得一闭区间序列{n I },满足:① 12I I I ⊇⊇⊇ []n n n b a I ,=② ()02n n n b ab a n --<→→∞ ③()()()()n n n n f b f a f b f a b a b a--=-- 由①②知,{n I }构成区间套,根据区间套定理,存在唯一的一点() 3,2,1=∈n I n ζ,此点ζ即为所求. 事实上ζ==∞→∞→n n n n b a lim lim ,()fξ存在()()()ζf a b a f b f nn n n n =--∞→lim ,由③lim n →∞()()()()n n n n f b f a f b f a b a b a--=--,所以()()()a b a f b f f --=ζ,从“选用区间”的取法可知,ζ确在(),a b 的内部. 3.9 旋转变换法证明 引入坐标旋转变换A : cos sin x X Y αα=- ⑴ ααcos sin Y X y += ⑵因为 22cos sin cos sin 10sin cos αααααα-∆==+=≠所以A 有逆变换/A :()()cos sin cos sin X x y x f x X x αααα=+=+= ⑶()()sin cos sin cos Y x y x f x Y x αααα=-+=-+= ⑷ 由于()x f 满足条件: ()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导,因此⑷式中函数()Y x 在闭区间[]b a ,上连续,在开区间()b a ,内可导.为使()Y x 满足罗尔中值定理的第三个条件,只要适当选取旋转角α,使()()Y a Y b =, 即()()sin cos sin cos a f a b f b αααα-+=-+,也即()()tan f b f a b aα-=-.这样,函数()Y x 就满足了罗尔中值定理的全部条件,从而至少存在一点()b a <<ζζ,使()()0cos si n =+=αζαζf Y 即()αζtan =f . 由于所选取旋转角α满足()()a b a f b f --=αt a n ,所以()()()ab a f b f f --=ζ.结论本论文仅是对拉格朗日中值定理的证明方法进行了一些归纳总结其中还有很多方法是我没有想到的,而且里面还有很多不足之处需要进一步的修改与补充. 通过这篇论文我只是想让人们明白数学并不是纯粹的数字游戏,里面包含了很多深奥的内容. 而且更重要的是我们应该学会去思考,学会凡是多问几个为什么,不要让自己仅仅局限于课本上的内容,要开动脑筋学会举一反三,不要单纯为了学习而学习,让自己做知识的主人!总之,数学的发展并非是无可置疑的,也并非是反驳的复杂过程,全面的思考问题有助于我们思维能力的提高,也有助于创新意识的培养.参考文献[1] 华东师范大学数学系. 数学分析(上册)(第二版)[M].北京:高等教育出版社.1991:153-161[2] 吉林大学数学系. 数学分析(上册)[M].北京:人民教育出版社.1979:194-196 [3] 同济大学应用数学系. 高等数学(第一册)[M].北京:高等教育出版社(第五版).2004:143-153[4] 周性伟,刘立民. 数学分析[M].天津:南开大学出版社.1986:113-124 [5] 林源渠,方企勤. 数学分析解题指南[M].北京:北京大学出版社.2003:58-67 [6] 孙清华等. 数学分析内容、方法与技巧(上)[M].武汉:华中科技大学出版社.2003:98-106[7] 洪毅. 数学分析(上册)[M].广州:华南理工大学出版社.2001:111-113[8] 党宇飞. 促使思维教学进入数学课堂的几点作法[J].上海:数学通报.2001,1:15-18 [9] 王爱云. 高等数学课程建设和教学改革研究与实践[J].西安:数学通报.2002,2:84-88 [10] 谢惠民等. 数学分析习题课讲义[M].北京:高等教育出版社.2003:126-135 [11] 刘玉莲,杨奎元等. 数学分析讲义学习指导书(上册)[M].北京:高等教出版社.1994:98-112[12] 北京大学数学力学系. 高等代数. 北京:人民教育出版社. 1978:124-135 [13] 裴礼文. 数学分析中的典型问题与方法[M].北京:高等教育出版社.1993:102-110 [14] 郑琉信.数学方法论[M].南京:广西教育出版社.1996:112-123 [15] 陈传璋等. 数学分析(上册)[M].北京:人民教育出版社.1983:87-92 [16] 李成章,黄玉民. 数学分析(上)[M].北京:科学出版社.1995:77-86附 录柯西中值定理若 ⑴ 函数()f x 与()g x 都在闭区间[]b a ,上连续; ⑵ ()x f '与()x g '在开区间()b a ,内可导;⑶ ()x f' 与()x g '在()b a ,内不同时为零;⑷ ()()g a g b ≠,则在()b a ,内至少存在一点ζ,使得()()()()a b a f b f g f --=ζζ''. 区间套定理若[]{},n n a b 是一个区间套,则存在唯一一点ζ,使得[],n n a b ζ∈,1,2,n = 或 n n a b ζ≤≤,1,2,n =。

3-1 微分中值定理

3-1 微分中值定理

f ( n1) ( x0 ) 其中 Rn ( x) ( x x0 )n1 拉格朗日余项 (n 1)!
这里的 是 x0 与 x 之间的某个值。
3-1 微分中值定理
在泰勒公式中,如果取 x0 0 时,得到带有拉格朗日余项的麦克劳林 (Maclaurin)公式
f ''(0) 2 f ( n ) (0) n f ( x) f (0) f '(0) x x x 2! n! Rn ( x)
3-1 微分中值定理
考点3:利用罗尔(Roller)中值定理证明方程根的存在性
例 : 不用求出函数 f ( x) ( x 1)( x 2)( x 3)( x 4) 的导数,说明方程
f '( x) 0 有几个实数根,并指出他们所在的区间。
零点定理 例: 证明方程 x 3x 1 0 在区间 (0,1) 内有唯一的实根。
定理3.2 :罗尔(Rolle)中值定理: 如果函数 f ( x) 满足下列条件: (1)在闭区间 [a, b]上连续 (2)在开区间 (a, b) 内可导 (3)且 f (a) f (b) 则有:至少存在一点 (a, b) 使得 f '( ) 0 注意:罗尔中值定理是拉格朗日中值定理当 f (a) f (b) 时的一种特例。
f (b) f (a) f '( ) g (b) g (a) g '( )
注意:拉格朗日中值定理是柯西中值定理当 g ( x) x 时的一种特例。
3-1 微分中值定理

g ( x) cos x 在区间 [0, ] 上是 例: 验证函数 f ( x) sin x , 2 否满足柯西中值定理的条件,并求出柯西中值定理结论中 的 。

重庆大学高等数学习题3-1

重庆大学高等数学习题3-1

A 组1.验证拉格朗日中值定理对函数32452y x x x =-+-在区间[0,1]上的正确性 解析:考查拉格朗日中值定理的应用,只需在[0,1]内找出一点使得=0y ',证明:已知函数在[0,1]内连续,在(0,1)内可导,则其满足拉格朗日中值定理的两个条件 令()y y x =,则(1)2y =-,(0)2y =-又因为2()12101y x x x '=-+,令[(1)(0)]()(10)y y y x '-=-,即()0y x '=,解得1,21052412x ±==则存在(0,1)ξ∈,使得(1)(0)()(10)y y y ξ'-=-2.证明方程3220x x C -+=在区间[0,1]上不可能有两个不同的实根,其中C 为任意常数 解析:考查罗尔定理的应用,本题可以利用反证法来证明证明:设32()2f x x x C =-+,假设存在两点1x ,2x (12x x >),使得12()()0f x f x == 则在12[,]x x 内,满足罗尔定理,即存在12(,)x x ξ∈,使得()0f ξ'=2()34f x x x '=-,令()0f x '=,解得0x =,x =(不在所设区间内,舍去) 若0ξ=,则1x ,2x 中必有一个不存在,与所设假设不符 则方程3220x x C -+=在区间[0,1]上不可能有两个不同的实根3.若方程10110n n n a x a x a x --+++=L 有一个正根0x x =,证明:方程12011(1)0n n n a nx a n x a ---+-++=L 必有一个小于0x 的正根解析:考查罗尔定理的应用,判断利用哪个中值定理可以通过所得条件得出,设1011()n n n f x a x a x a x --=+++L ,则由已知条件可得0()(0)0f x f ==,这样满足罗尔定理的第三个条件证明:设1011()n n n f x a x a x a x --=+++L ,0()(0)0f x f == 且12011()(1)n n n f x a nx a n x a ---'=+-++L根据罗尔定理可知,存在一点0(0,)x ξ∈,使得()0f ξ'=即12011(1)0n n n a nxa n x a ---+-++=L 必有一个小于0x 的正根4.设2350a b -<,证明:方程532340x ax bx c +++=有唯一的实根解析:考查连续函数的性质,分析题干所给条件,2350a b -<正是判断函数53()234f x x ax bx c =+++导数根的存在性的依据,而lim ()x f x →-∞=-∞,lim ()x f x →+∞=+∞,则可以判断函数的根的唯一性证明:设53()234f x x ax bx c =+++,42()563f x x ax b '=++令2t x =,2()563f t t at b '=++(0t ≥)而222(6)543366012(35)0a b a b a b -⋅⋅=-=-<则2()5630f t t at b '=++=没有实数解,且lim ()x f x →+∞'=+∞因此可得()0f x '>恒成立,方程532340x ax bx c +++=有唯一的实根 5.设0a b >>。

拉格朗日中值定理

拉格朗日中值定理

拉格朗日中值定理拉格朗日中值定理是微积分中的重要定理之一,它是由法国数学家约瑟夫·路易·拉格朗日在18世纪提出的。

拉格朗日中值定理是微分学中的基本定理之一,它建立了函数在一个闭区间内存在某一点的导数与函数在该闭区间的两个端点的函数值之间的关系。

拉格朗日中值定理在数学分析中有重要的应用,尤其在凸函数理论、微分方程、最优化理论等领域中起着重要的作用。

在许多实际问题中,通过应用拉格朗日中值定理,可以简化问题的求解过程,提高计算的效率。

拉格朗日中值定理可以描述为:如果函数f(x)在闭区间[a, b]上可导且在开区间(a, b)内连续,那么在(a, b)内,至少存在一个点c,使得f(b) - f(a) = f'(c)(b - a)。

其中,c是在(a, b)内的某一点,f'(c)表示f(x)在c处的导数。

拉格朗日中值定理的证明过程可以进行如下推导:首先,利用柯西中值定理证明了存在一个点c,使得f(b) - f(a) = f'(c)(b - a)成立。

然后,由于f(x)在闭区间[a, b]上连续,所以f(x)在[a, b]上达到了最大值和最小值,即存在两个点x1、x2,使得f(x1) ≤ f(x) ≤ f(x2)对任意x ∈ [a, b]成立。

由于f(x1) ≤ f(x) ≤ f(x2),所以可以推断出f'(x1) ≤ f'(c) ≤ f'(x2),其中x1、x2均属于区间(a, b)。

根据确界的性质,可以得到f'(x1) ≤ f'(c) ≤ f'(x2)中存在一个点c,使得f'(c) = f'(x1) = f'(x2),即在(a, b)内至少存在一个点c,使得f'(c) = (f(b) - f(a))/(b - a)。

拉格朗日中值定理的应用是非常广泛的。

例如,可以利用该定理证明连续函数在区间内的等式和不等式,求解函数在某一区间内的最大值和最小值,证明函数的单调性等。

3-1中值定理与洛必达法则

3-1中值定理与洛必达法则

练习
P.64 7(2,7,8)
二、 0 , ,0 ,1 , 型未定式解法
0 0

1. 0 型
关键:将其它类型未定式化为洛必达法则可解决 0 ( ), ( ) 的类型: . 0
1 1 步骤: 0 , 或 0 0 . 0 x 2e x . ( 0 ) 例7 求 xlim x x x ( e ) e e lim lim 解: 原式 lim 2 x ( x ) x 2 x x x 2 x

0 0
例12
解 原 式 lim 1 sin x lim (1 sin x).
x
x cos x 求 lim . x x
极限不存在
x

1
洛必达法则失效。
1 实际上 原 式 lim (1 cos x ) 1. x x
小结
洛必达法则

1 g 1 f f g 1 g 1 f

证明 cos x cos y x y
设 f ( t ) cos t
当x y时 f ( x ) 在 以x与y为 端 点 的 区 间 上 满足拉格朗日中值定的 理条件
证:
f ( x ) f ( y ) f ( )( x y ), ( 在x与y之 间)
cos x cos y sin ( x y ),
第三章 导数的应用
罗尔中值定理 中值定理 拉格朗日中值定理 柯西中值定理 函数之商 应用
0 及 0
型的极限
研究函数性质及曲线性态 利用导数解决实际问题
§3.1 中值定理与洛必达法则
(一)中值定理

3-1 微分中值定理

3-1 微分中值定理

结束

二、罗尔定理
费马(Fermat)引理 设 f(x0)为函数 f(x)在开区间(a b)内的最大(小)值, 若 f (x0)存在, 则 f (x0) 0 证明 设 f(x0)为最大值.
当x (a, b)时, f ( x) f ( x0 ) 0.
当x x0时,
当x x0时,
8
首页
上页
返回
下页
结束

罗尔(Rolle)定理 如果函数 yf(x) 满足 (1) 在闭区间[a b]上连续; (2) 在开区间(a b)内可导; (3) f(a) f(b), 那么在(a b)内至少存在一点 使得 f () 0
9
首页
上页
返回
下页
结束

例1 不求导数 判断函数 f(x)(x1)(x2)(x3)的导 数有几个实根 以及其所在范围 解 f(1)f(2)f(3)0 f(x)在[1 2] [2 3]上满足罗尔 定理的三个条件 由罗尔定理 在(1 2)内至少存在一点1 使 f (1)0 1是 f (x) 的一个实根; 在(2 3)内至少存在一点2 使f (2)0 2也是f (x) 的一个实根 f (x)是二次多项式 至多有两个实根. 所以 f (x)有两个实根, 分别在区间(1 2)及(2 3)内
思考题 设 f (x)在 [0,1] 上连续, 在 (0,1) 内可导, 且 f (1) 0.
证明: 在 (0,1) 内至少存在一点 , 使
2 f ( ) f ( ) 0.
提示: 考虑方程 2 xf ( x) x 2 f ( x) 0. 化为方程 [ x 2 f ( x)] 0.
11
首页
上页
返回

拉格朗日中值定理的含义

拉格朗日中值定理的含义

拉格朗日中值定理的含义
拉格朗日中值定理,简称Lagrange中值定理,又称为3次函数中值定理,是
一种定理,它精确给出了多项式在其实部分对称轴上的定义值,有助于解决像例中这样的问题。

简言之,这一定理用于确定三次多项式在其实部分对称轴上的值。

拉格朗日中值定理指出一个三次曲线在其实部分对称轴上的值等于给定的曲线
F(x)的第二阶导数和F(x)的定义集的总值的平均值。

因此,它解决了如何确定三
次曲线在其实现部分对称轴上的确切值问题,从而为解决多项式系统方程提供便利。

根据本定理,只要知道了多项式曲线的顶部,就可以直接求出在起始点附近的函数值。

拉格朗日中值定理的重要性不言而喻,它有助于我们提出一定的拟合方程,具
有重要的理论意义和实际意义,能够提供更好的准确性、可靠性和有效性。

由于拉格朗日中值定理的给出的近似值是准确的,因此,它在数学上也产生了重要的科学意义,成为数学中最基本的定理之一。

拉格朗日中值定理有助于我们解决一系列曲线研究问题,如模型函数的拟合、
曲线和曲面的绘制等问题。

此外,由于它具有清晰、准确、解决多项式系统方程的性质,它还可以用于数值分析应用。

所以,拉格朗日中值定理的研究已成为这一领域的重要研究内容,也是许多资格考试中的考查内容。

拉格朗日中值定理

拉格朗日中值定理

一拉格朗日中值定理拉格朗日中值定理,又被称为有限增量定理,是微积分中的一个基本定理。

拉格朗日中值公式的形式其实就是泰勒公式的一阶展开式的形式。

在现实应用当中,拉格朗日中值定有着很重要的作用。

拉格朗日中值定理是所有的微分中值定理当中使用最为普遍的定理。

拉格朗日中值定理的形成和发展过程都显示出了数学当中的一个定理的发展是一个推翻陈旧,出现创新的一个进程。

发现一些新的简单的定理去替代旧的复杂的定理,就是由初级走向高级。

用现代的语言来描述,在一个自变量x从x变为x+1的过程中,如果函数f(x)本身就是一个极限值,那么函数f(x+1)的值也应该是一个极限值,其值就应该和f(x)的值近似相等,即f(x+1)−f(x)≈01这就是非常著名的费马定律,当一个函数f(x)在x=a处可以取得极值,并且函数是可导函数,则f′(x)=0。

著名学者费马再给出上述定理时,此时的微积分研究理论正处于初始阶段,并没有很成熟的概念,没有对函数是否连续或者可导作出限制,因此在现代微积分理论成熟阶段这种说法就显得有些漏洞。

在所有的微分中值定理中,最重要的定理就是拉格朗日中值定理。

最初的拉格朗日中值定理和现在成熟的拉格朗日中值定理是不一样的,最初的定理是函数f(x)在闭区间[a,b]内任取两点x0和x1,并且函数f(x)在此闭区间内是连续的,f′(x)的最大值为A,f′(x)最小值为B,则f(x1)−f(x0)的值必须是A和B之间的一个值。

这x1−x0是拉格朗日定理最初的证明。

下述就是拉格朗日中值定理所要求满足的条件。

如果存在一个函数满足下面两个条件,(1)函数f 在闭区间[a,b]上连续;(2)函数f 在开区间(a,b)内可导;那么这个函数在此开区间内至少存在着一点尉,使得f′(ξ)=f(b)−f(a)b−a.拉格朗日中值定理是导数的一个延伸概念,在导数运算中是的很基本概念。

例1:函数f(x)=2x2−8,即f′(x)=4x。

当x在开区间(0,+∞)时,有f′(x) >0,f(x)在开区间(0,+∞)单调递增;当x在开区间(−∞,0)时,有f′(x)<0,f(x)在开区间(−∞,0)单调递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1,2
5 13 12
0,1 ,
使得
f '( ) f (1) f (0) .
10
因此,拉格朗日中值定理对函数 f (x) 4x3 5x2 + x 2
在区间[0,1]上成立.
注:只需要有一个根满足就行,这是一个存在性定理。
例2 意
证明:对任
0 a b, 不等式
b a ln b b a 成立.
解 f (x) 4x3 5x2 +x2 是初等函数,故它在闭区 [0 ,1]
间 上连续,在开区间(0,1)内可导,所以函数在 [0,1]上满
足拉格朗日中值定理的条件.

f
'(x)
f
(1) f 1 0
(0)
,即
12 x2 10x+1 0,

5 13
5 + 13
x1 12 , x2 12 ,
即存在
由于 f '( ) 0 ,则 f (x2 ) f (x1) 0 ,即 f (x2 ) f (x1) 也就是说,函数 f (x) 在区间 I上任意两点的函数值相等,
故 f (x) 在区间 I上为一常数.
推论2 若两个函数 f (x)与g(x) 的导数在区间 I 内相等,即
f '(x) g'(x)(x I ),则 f (x) g(x) C (常数).
b
a
a
解 设 f (x) ln x .显然它在 [a, b]上满足
拉格朗日中值定理的条件,所以有
ln b ln a
1
b a (ln x)' x

(a b)
即 ln b ln b ln a b a .
a
因为
0a b
,故
ba ba ba,
b
a
所以
b a ln b b a .
证明略(思考)
曲线 y f (x)在 [a,b]上是一条连续的曲线弧 AB,
曲线弧 AB 内部每一点处都有不垂直于 x 轴的切线.
如图所示,连接端点A和B作弦AB,则
f '( ) K AB f (b) f (a) . ba
例1 验证拉格朗日中值定理对函数 f (x) 4x3 5x2 + x 2
在区间[0 ,1]上的正确性.
b
aa
推论1 若函数 f (x)在区间 I上满足f '(x) 0,则 f (x)在区间 I 上必为一常数. 证 设 x1, x2 为区间 I 上任意两点(不妨设 x1 x2),显然
f (x) 在 [x1, x2 ] 上满足拉格朗日中值定理的条件,
所以 f (x2 ) f (x1) f '( )( x2 x1) (x1 x2 )
3.1 拉格朗日中值定理 一、定理 二、例题 三、推论
定理3-1(拉格朗日(Lagrange)中值定理) 如果函数满足下列条件:
(1)在闭区间上连续, (2)在开区间内可导, 那么在(a,b)内至少存在一点ξ,使得:
f (b) f (a) f '( ),
ba
y
几何直观 C B
ห้องสมุดไป่ตู้
A
Oa ξ
bx
由定理的条件可知,
相关文档
最新文档