统计学名词解释
统计学名词解释(超全)

统计学名词解释(超全)统计学:是一门搜集、整理、显示和分析统计数据的方法论科学。
总体:就是统计所要研究的事物或现象的全体,即由客观存在的,具有某种共同特征的许多个别事物构成的整体。
参数:是描述总体数量特征的指标,又称总体指标。
样本:是指从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体。
变量:指给所要研究的事物起的名字,包括可变的标志和所有的统计指标。
总体参数:描述总体数量特征的指标,又称总体指标。
样本统计量:是根据样本数据计算出来的样本指标,用来描述样本的数量特征。
普查:为某一特定目的而专门组织的一次性全面调查。
抽样调查:是按随机原则,从总体中抽选部分单位进行观察,并根据部分单位(样本)的调查数据,从数量方面推断总体参数的一种非全面调查。
统计分组:根据被研究现象总体的内在特点以及统计研究的目的,将总体按照一定的标志分为若干个性质不同的组成部分的一种统计方法。
统计表:指显示统计整理结果的表格,就是把通过整理的调查数据,使其成为得以说明现象总体数量特征的分组数据,并按一定顺序排列而形成的表格。
时期数据:反映现象总体在一段时期内发展变化总结果的总量指标。
时点指标:反应现象整体在某一的点(瞬间)上所处状况的总量指标。
众数:是一组数据中出现次数最多的变量值。
时间序列:将反映某种现象的统计指标在不同时间上的数值,按时间顺序排列而成的序列。
发展水平:时间序列中的每一项指标数值,都称为发展水平,它反映了某种现象在一定时期或时点所达到的规模和水平。
均匀发展水平:将不同时间的发展水平加以均匀而得到的均匀数。
发展速度:是反映现象发展变化快慢程度的动态相对指标,是根据两个不同时期的发展水平对比求得的。
环比发展速度:是时间序列中敷陈期发展水平与前期发展水平之比,表明现象逐期发展变化的方向和程度。
定基发展速度:是报告期发展水平与某一固定时期发展水平(最初发展水平)之比,说明现象在较长时期内总的发展变动方向与程度。
统计学名词解释

17.相对指标:也称相对数,就是将两个有联系指标的数值进行对比的结果;
18.时期数列:是由时期指标形成的,数列中的每个指标数值都是反映某种社会经济现象在一段时期内发展过程的总量;
29.简单随机抽样:这是按随机原则从总体N个单位中直接抽取n个单位做样本,使总体中每一个单位都有同等的可能性被抽中;
30.简单相关表:是资料未经分组的相关表,它是相关因素的标志值按照大小顺序并配合结果标志值一一对应而平行排列起来的统计表;
31.常住单位:是指在我国的经济领土上具有经济利益中心的经济单位;
88.组中值:指本组的上限与下限之间的中点值。它代表组内所有单位的标准值的平均水平。
89.次数分布:是指在统计分组的基础上,将总体的所有单位按组归类整理,并按一定顺序排列,形成总体单位在各组间的分布。
90.总体:按数量标志分组就形成变量分配数列,简称变量数列。
91.统计表就是用来表现统计资料汇总整理结果的汇总表。
92.累计次数:是指数列中高于或低于某一变量值的次数总和。
93.强度相对指标:是两个性质不同但是存在一定联系的指标的对比,用来反映事物的强度、密度和普遍程度的指标。
94.众数:是指总体中出现次数最多的标志值。
95.平均发展水平:将不同时期的发展水平加以平均而得的平均数叫平均发展水平,在统计上又称为序时平均数或动态平均数。
44.资本形成
:是指各机构单位通过经济交易获得或处理生产资产的行为;
45.因素分析法:它是利用指数体系,对现象的综合变动从数量上分析其受各因素影响的一种分析方法。
统计学基础名词解释及简答题

统计学基础知识名词解释及简答题一、名词解释1、统计学统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。
2、指标和标志标志是说明总体单位属性或特征的名称。
指标是说明总体综合数量特征和数量关系的数字资料。
3、总体、样本和单位统计总体是统计所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。
简称总体。
构成总体的个体则称为总体单位,简称单位。
样本是从总体中抽取的一部分单位。
4、统计调查统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过程。
它是取得统计数据的重要手段。
5、统计绝对数和统计相对数反映总体规模的绝对数量值,在社会经济统计中称为总量指标。
统计相对数是两个有联系的指标数值之比,用以反映现象间的联系和对比关系。
6、时期指标和时点指标时期指标是反映总体在一段时期内累计总量的数字资料,是流量。
时点指标是反映总体在某一时刻上具有的总量的数字资料,是存量。
7、抽样估计和假设检验抽样估计是指根据所抽取的样本特征来估计总体特征的统计方法。
假设检验是先对总体的某一数据提出假设,然后抽取样本,运用样本数据来检验假设成立与否。
8、变量和变异标志的具体表现和指标的具体数值会有差别,这种差别就称为变异。
数量标志和指标在统计中称为变量。
9、参数和统计量参数是反映总体特征的一些变量,包括总体平均数、总体方差、总体标准差等。
统计量是反映样本特征的一些变量,包括样本平均数、样本方差、样本标准差等。
10、抽样平均误差样本平均数与总体平均数之间的平均离散程度称之为抽样平均误差,简称为抽样误差。
重复抽样的抽样平均误差为总体标准差的1/n。
11、抽样极限误差抽样极限误差是指样本统计量和总体参数之间抽样误差的可能范围。
我们用样本统计量变动的上限或下限与总体参数的绝对值表示抽样误差的可能范围,称为极限误差或允许误差。
统计学名词解释超级大全

大量惰性原则:某一事物的某一性质或状态,在反复观察或试验中是保持不 变的。
有效数字:指能影响测量准确性的数字。
变量:又称随机变量。具有变异性的数据。三个特性,离散型,变异性,规 律性。
推断统计:又称抽样统计。它是根据对部分个体进行观测所得到的信息,通 过概括性的分析、论证,在一定可靠程度上去推测相应团体。换言之,就是根据 已知的情况推测未知情况。
实验设计:研究如何更加合理、有效地获得观测资料,如何更正确、更经济、 更有效地达到实验目的,以揭示试验中各种变量关系的实验计划。
统计常态法则:从总体中随机抽取一部分个体所组成的样本,差不多可以保 持总体的特征。这种样本特性保持着总体特性的现象叫做统计常态法则。
次数:某一事件在某一类别中出现的数目,又叫频数,用 f 表示。 频率:指每一组的数据个数除以数据的总和,又称相对次数。用符号 p 表示。 百分频率:频率与百分数的乘积。
组中值:每一组的中点值,常用 m 或 Xc 表示。 全距:全部数据的距离,也称极差,是用一群数据中的最大值减去最小值。 组距:指每一组所包含的间隔或数据单位,用 i 表示。 组限:指每一组的起止点或每一组的界限。
统计表:以表格的形式表达统计资料数量关系的方式或工具。 统计图:以几何图形和形象图形表示统计资料数量关系的工具。
次数分布 累积次数:以简单次数为基础,从最低组开始逐级累加直至最高组,或从最 高组开始逐级累加直至最低组,用符号 cum﹒f 或 F 表示。 累积百分频率:各组累计次数与总次数的比值。
一时性资料:在一定时限内所收集的有关问题的资料为一时性资料。来源三 个方面,教育与心理调查,教育与心理测量和教育与心理实验。
统计学名词解释

统筹学统计学:是一门搜集、整理、显示和分析统计数据的方法论科学。
总体:就是统计所要研究的事物或现象的全体,即由客观存在的,具有某种共同特征的许多个别事物构成的整体。
参数:是描述总体数量特征的指标,又称总体指标。
样本:是指从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体。
变量:指给所要研究的事物起的名字,包括可变的标志和所有的统计指标。
总体参数:描述总体数量特征的指标,又称总体指标。
样本统计量:是根据样本数据计算出来的样本指标,用来描述样本的数量特征。
普查:为某一特定目的而专门组织的一次性全面调查。
抽样调查:是按随机原则,从总体中抽选部分单位进行观察,并根据部分单位(样本)的调查数据,从数量方面推断总体参数的一种非全面调查。
统计分组:根据被研究现象总体的内在特点以及统计研究的目的,将总体按照一定的标志分为若干个性质不同的组成部分的一种统计方法。
统计表:指显示统计整理结果的表格,就是把通过整理的调查数据,使其成为得以说明现象总体数量特征的分组数据,并按一定顺序排列而形成的表格。
时期数据:反映现象总体在一段时期内发展变化总结果的总量指标。
时点指标:反映现象总体在某一的点(瞬间)上所处状况的总量指标。
众数:是一组数据中出现次数最多的变量值。
时间序列:将反映某种现象的统计指标在不同时间上的数值,按时间顺序排列而成的序列。
发展水平:时间序列中的每一项指标数值,都称为发展水平,它反映了某种现象在一定时期或时点所达到的规模和水平。
平均发展水平:将不同时间的发展水平加以平均而得到的平均数。
发展速度:是反映现象发展变化快慢程度的动态相对指标,是根据两个不同时期的发展水平对比求得的。
环比发展速度:是时间序列中报告期发展水平与前期发展水平之比,表明现象逐期发展变化的方向和程度。
定基发展速度:是报告期发展水平与某一固定时期发展水平(最初发展水平)之比,说明现象在较长时期内总的发展变动方向与程度。
年距发展速度:反映报告期发展水平对于上年同期发展水平的变化方向与程度。
统计学的名词解释

统计学的名词解释统计学是一门研究数据收集、分析和解释的学科,旨在通过收集和解析数据来支持决策过程和了解现象。
统计学涉及一系列概念和方法,包括数据收集、数据描述性统计、概率理论、假设检验、统计推断和回归分析等。
1. 数据收集:统计学中的第一步是收集数据。
数据可以通过各种方法获得,包括实地观察、实验、调查问卷和从现有的数据集中获取等。
2. 数据描述性统计:在收集到数据后,统计学家使用描述性统计来总结和描述数据的特征。
描述性统计包括计算数据的平均数、中位数、众数、标准差和百分位数等。
3. 概率理论:概率理论是统计学的基石之一。
它研究随机现象发生的可能性,并给出事件发生的数学表达。
概率理论为统计推断和建立模型提供了理论基础。
4. 假设检验:假设检验用于确定一个观察结果是否与一个给定的假设相符。
它提供了一种确定性地评估研究或实验结果的方法,并决定是否拒绝或接受一个假设。
5. 统计推断:统计推断是通过对样本数据进行分析和推断来对总体进行推断的过程。
它使用样本数据估计总体参数,并根据这些估计进行一些统计判断。
6. 回归分析:回归分析是一种统计方法,用于建立和探索变量之间的关系。
它可以用来预测一个变量(因变量)如何随着其他变量(自变量)的变化而变化。
7. 统计模型:统计模型是由统计学方法和理论构建的数学表达式,用于描述和解释观察数据之间的关系。
统计模型可以是简单的线性模型,也可以是更复杂的非线性模型。
8. 抽样方法:在统计学中,由于往往难以调查每一个个体或观察每一个事件,人们通常采用抽样方法来从总体中选择一部分样本进行研究。
常见的抽样方法包括随机抽样和分层抽样等。
9. 统计图表:统计图表是一种可视化数据的方式,用来展示和比较数据。
常见的统计图表包括柱状图、饼图、散点图和箱线图等。
10. 多元统计分析:多元统计分析是一项通过同时考虑多个变量来分析数据的方法。
它包括主成分分析、因子分析和聚类分析等。
总之,统计学是一门研究数据收集、分析和解释的学科,它运用一系列概念和方法来帮助人们理解数据,并从中获取有关现象和决策的信息。
完整版)统计学名词解释
完整版)统计学名词解释统计学名词解释第一章绪论在统计学上,随机变量指的是取值之间不能预料到的变量。
总体,又称母全体或全域,是指具有某种特征的一类事物的全体。
构成总体的每个基本单元称为个体。
从总体中抽取的一部分个体称为样本。
次数指的是某一事件在某一类别中出现的数目,又称为频数。
频率,又称相对次数,指某一事件发生的次数被总的事件数目除,即某一数据出现的次数被这一组数据总个数去除。
概率指某一事物或某一情在某一总体中出现的比率。
一旦确定了某个值,就称这个值为某一变量的观测值。
参数,又称为总体参数,是描述一个总体情况的统计指标。
样本的那些特征值叫做统计量,又称特征值。
第二章统计图表统计表是由纵横交叉的线条绘制,并将数据按照一定的要求整理、归类、排列、填写在内的一种表格形式。
一般由表号、名称、标目、数字、表注组成。
统计图一般采用直角坐标系,通常横轴表示事物的组别或自变量x,称为分类轴。
纵轴表示事物出现的次数或因变量,称为数值轴。
一般由图号及图题、图目、图尺、图形、图例、图组成。
简单次数分布表适合数据个数和分布范围比较小的时候用,它是依据每一个分数值在一列数据中出现的次数或总计数资料编制成的统计表。
而分组次数分布表适合数据个数和分布范围比较大的时候用。
数据量很大时,应该把所有的数据先划分在若干区间,然后将数据按其数值大小划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再用列表的形式呈现出来。
分组次数分布表的编制步骤包括求全距、定组距和组数、列出分组组距、登记次数和计算次数。
相对次数分布表用频数比率或百分数来表示次数,而累加次数分布表则把各组的次数由下而上或由上而下加在一起。
最后一组的累加次数等于总次数。
双列次数分布表用同一个表表示有联系的两列变量的次数分布。
而不等距次数分布表则适用于像工资级别和年龄分组这样的不等距数据。
需要注意的是,归组效应是分组次数分布表的缺点之一,因为原始数据不见了,从而依据这样的统计表算出的平均值会与用原始数据算出的值有出入,出现误差。
(完整版)统计学名词解释
统计学名词解释第一章绪论1.随机变量:在统计学上,把取值之间不能预料到什么值的变量。
2.总体:又称母全体、全域,指具有某种特征的一类事物的全体。
3.个体:构成总体的每个基本单元称为个体。
4.样本:从总体中抽取的一部分个体,称为总体的一个样本。
5.次数:指某一事件在某一类别中出现的数目,又称为频数。
6.频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
7.概率:某一事物或某一情在某一总体中出现的比率。
8.观测值:一旦确定了某个值。
就称这个值为某一变量的观测值。
9.参数:又称为总体参数,是描述一个总体情况的统计指标。
10.统计量:样本的那些特征值叫做统计量,又称特征值。
第二章统计图表1.统计表:是由纵横交叉的线条绘制,并将数据按照一定的要求整理、归类、排列、填写在内的一种表格形式。
一般由表号、名称、标目、数字、表注组成。
2.统计图:一般采用直角坐标系,通常横轴表示事物的组别或自变量x,称为分类轴。
纵轴表示事物出现的次数或因变量,称为数值轴。
一般由图号及图题、图目、图尺、图形、图例、图组成。
3.简单次数分布表:依据每一个分数值在一列数据中出现的次数或总计数资料编制成的统计表,适合数据个数和分布范围比较小的时候用。
4.分组次数分布表:数据量很大时,应该把所有的数据先划分在若干区间,然后将数据按其数值大小划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再用列表的形式呈现出来,适合数据个数和分布范围比较大的时候用。
5.分组次数分布表的编制步骤:(1)求全距(2)定组距和组数(3)列出分组组距(4)登记次数(5)计算次数6.分组次数分布的意义:(1)优点:A.可将杂乱无章数据排列成序,以发现各数据的出现次数及分布状况。
B.可显示一组数据的集中情况和差异情况等。
(2)缺点:原始数据不见了,从而依据这样的统计表算出的平均值会与用原始数据算出的值有出入,出现误差,即归组效应。
统计学名词解释
名词解释●统计工作:是从数量方面对社会经济现象做调查研究的一种工作,是人们为认识客观事物而进行的搜集、整理、分析和提供统计资料的工作过程;●统计资料:是统计工作的成果,是指在统计实践活动中所取得的,反映统计研究对象有关特征的各种综合性的数字资料和分析报告;●统计学:是阐述统计理论与方法的系统性科学,是统计工作实践的理论概括和科学总结,是研究、整理、分析统计资料的理论和方法的科学;●总体:是指客观存在的,在某一相同性质基础上结合起来的许多个别事物的整体●总体单位:构成总体的个别事物●样本:从总体当中抽取出来,用从代表这一总体的部分个体组成的集合●标志:是说明总体单位属性或特征的名称●统计指标:说明总体数量特征的,简称指标;有俩种理解,一是指反映现象总体数量特征的概念;二是指反映现象总体数量特征的概念及其数量表现;●普查:是专门组织的一次性的全面调查;这种调查,主要用来搜集一些比较全面而又不能或不宜从经常调查中得出的统计资料;●重点调查:是一种非全面调查,它是从所要调查的单位中选择一部分重点单位进行调查●抽样调查:也是一种非全面调查,它是按照随机原则从被研究总体中抽取出一定数量的单位样本进行调查,根据样本指标数值来推算总体指标数值的一种调查●典型调查:是一种十分重要的、行之有效的非全面调查方法;它是从研究总体中有意识地选取若干具有代表性单位典型单位进行调查,用来了解总体的详细情况●统计调查:根据统计工作任务和统计设计的要求,用科学的方法,有计划有组织地向调查单位搜集调查资料的过程●统计分组:根据统计研究的需要,将统计总体按照一定的标志区分为若干组成部分的一种统计方法●分配数列:又称分布数列、次数数列,是在统计分组的基础上形成的,用来反映总体单位在各组中分布状况的统计数列●总量指标:是反映社会经济现象的总体规模和水平的统计指标;总量指标通常是将总体单位数相加或总体单位某一数量标志值相加得到的,大多数是统计整理的直接成果,是用绝对数的形式表示的,因此也称统计绝对数●相对指标:是将两个有联系的反映社会经济现象的统计指标相互对比得到的一种抽象的比值,是反映社会经济现象间数量对比关系的综合指标●平均指标:是反映总体各单位某一数量标志值一般水平的综合指标,又称统计平均数●标志变异指标:是反映总体各单位标志值的差异程度的,即反映分配数列中各标志值的变动范围或离差程度的综合指标,也叫标志变动度,简称变异指标●成数:具有某种表现或不具有某种表现的单位数占全部总体单位数的比重●时间数列:是将说明社会经济象在各个不同时期或时点上某种数量特征的指标数值,按时间的先后顺序排列起来而形成的统计数列; 时间数列中每项数值是与时间相对应的,所以又称动态数列●时期数列:在绝对数动态数列中,各项指标都是反映某种现象在一段时间内发展过程的总量●时点数列:在绝对数动态数列中,每个指标所反映的事现象在某一时点上瞬间所处状态的数量水平●发展水平:社会经济现象在某时期或某时点达到的指标数值●统计指数:广义指同类社会经济现象数量对比的相对数,包括动态相对数、比较相对数、计划完成程度相对数等;狭义指用来反映由不能直接加总的多要素所构成的复杂社会经济现象综合变动程度的特殊相对数●抽样误差:指在遵守随机原则的条件下,用抽样指标代表总体所产生的不可避免的误差;●简单随机抽样:又称纯随机抽样;它是对全及总体的所有单位不进行任何分类或排队处理,而是完全按照随机原则从总体中抽出样本单位加以观察,以保证总体中每个单位有相等被抽中的机会●类型抽样:也称分层抽样或分类抽样;它首先把全及总体按某一标志分成若干组,然后分别在各组内按随机原则抽取一定数目的样本单位构成样本的抽样方式●等距抽样:又称机械抽样或系统抽样,它是先将总体各单位按某一标志排队,然后按固定的顺序和间隔来抽选样本单位的一种抽样组织形式●整群抽样:将总体各单位划分成若干群或组,然后以群或组为单位从中随机抽取一些群,对中选群的所有单位进行全面调查的抽样组织形式●相关关系:是现象之间确实存在有数量上的依存关系,但这种数量上的关系式不确定的●相关表:指按照相关现象的数量对应关系以及一定的逻辑顺序编制成的一种统计表。
统计学名词解释
10、统计整理:根据统计研究目的和统计分析的要求,使统计调查所获得的原始资料进行科学的分类和汇总,或对简单加工过的资料进行再加工,使之系统化、条理化,从而得出能够反映事物总体特征资料的工作过程。
11、统计分组:根据研究任务的需要和事物内在的特点,将统计总体按照一定的标志划分为若干组成部分的一种统计方法。
A60----70分这一组B70----80分这一组C60---70或70---80两组都可以D作为上限的那一组
4、2003年-----2004年间,甲单位的商品销售额平均增长速度是乙单位的103%,这是(B)
A比例相对指标 B比较相对指标 C强度相对指标 D动态相对指标
5、变量数列中的各组(单位数)表示我们所要考察(标志值)在各组中出现的次数,所以称为次数。
6、变量数列中各组标志值出现的次数称(频数),各组单位数占单位总数的比重称(频率)。
7、所谓同度量因素,就是在计算综合指数时,吧不能直接相加的(指标)过渡到可以总的指标的那个(媒介因素)。
8、编制时间序列应遵循的基本原则就是保证构成时间数列的(各个指标值)具有(可比)性
统计整理:根据统计研究的目的,把统计调查所搜集到的资料(原始资料、次级资料)进行科学的加工,使之系统化、条理化、科学化,从而得出能够反映事物总体特 征的资料的工作过程
统计分组:根据研究的目的和现象的内在特点,按某个标志(或几个标志)把被研究的总体分为若干不同性质的组。
抽样调查:是一种非全面,按随机原则从全部研究对象中抽取部分单位进行观察,并根据样本的实际数据对总体的数量特征作出具有一定可靠程度的估计和判断的一种统计调查方法。。
A相对数时间序列 B时期数列 C平均数时间数列 D时点数列
10、“首末折半法”适用于(B)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.中文名称:显著性水平英文名称:significance level定义:通常以α表示,是一个临界概率值。
它表示在“统计假设检验”中,用样本资料推断总体时,犯拒绝“假设”错误的可能性大小。
α越小,犯拒绝“假设”的错误可能性越小。
概念:估计总体参数落在某一区间内,可能犯错误的概率为显著性水平,用α表示1-α为置信度或置信水平,其表明了区间估计的可靠性统计假设检验也称为显著性检验,即指样本统计量和假设的总体参数之间的显著性差异。
显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。
显著性差异就是实际样本统计量的取值和假设的总体参数的差异超过了通常的偶然因素的作用范围,说明还有系统性的因素发生作用,因而就可以否定某种条件不起作用的假设。
假设检验时提出的假设称为原假设或无效假设,就是假定样本统计量与总体参数的差异都是由随机因素引起,不存在条件变动因素。
假设检验运用了小概率原理,事先确定的作为判断的界限,即允许的小概率的标准,称为显著性水平。
如果根据命题的原假设所计算出来的概率小于这个标准,就拒绝原假设;大于这个标准则接受原假设。
这样显著性水平把概率分布分为两个区间:拒绝区间,接受区间。
显著性水平不是一个固定不变的数字,其越大,则原假设被拒绝的可能性愈大,原假设为真而被否定的风险也愈大。
显著性水平应根据所研究的的性质和我们对结论准确性所持的要求而定。
2.显著性检验显著性检验就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否显著地有差异。
或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。
显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。
显著性检验的含义显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设)(null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α,α称为显著性水平;⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。
这样的假设检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为0.01、0.05、0.10等。
一般情况下,根据研究的问题,如果放弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
显著性检验的原理“无效假设”显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。
所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异系抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。
若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的(即实验处理有效)。
“无效假设”成立的机率水平检验“无效假设”成立的机率水平一般定为5%(常写为p≤0.05),其含义是将同一实验重复100次,两者结果间的差异有5次以上是由抽样误差造成的,则“无效假设”成立,可认为两组间的差异为不显著,常记为p>0.05。
若两者结果间的差异5次以下是由抽样误差造成的,则“无效假设”不成立,可认为两组间的差异为显著,常记为p≤0.05。
如果p≤0.01,则认为两组间的差异为非常显著。
显著性检验的基本思想显著性检验的基本思想可以用小概率原理来解释。
1、小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件事实上发生了,那只能认为事件不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确。
2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积为。
这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。
3、检验所用的显著水平:针对具体问题的具体特点,事先规定这个检验标准。
4、在检验的操作中,把观察到的显著性水平与作为检验标准的显著水平标准比较,小于这个标准时,得到了拒绝原假设的证据,认为样本数据表明了真实差异存在。
大于这个标准时,拒绝原假设的证据不足,认为样本数据不足以表明真实差异存在。
5、检验的操作可以用稍许简便一点的作法:根据所提出的显著水平查表得到相应的值,称作临界值,直接用检验统计量的观察值与临界值作比较,观察值落在临界值所划定的尾部内,便拒绝原假设;观察值落在临界值所划定的尾部之外,则认为拒绝原假设的证据不足。
3.显著性检验的步骤显著性检验的一般步骤或格式,如下:1、提出假设H0:______H1:______同时,与备择假设相应,指出所作检验为双尾检验还是左单尾或右单尾检验。
2、构造检验统计量,收集样本数据,计算检验统计量的样本观察值。
3、根据所提出的显著水平,确定临界值和拒绝域。
4、作出检验决策。
把检验统计量的样本观察值和临界值比较,或者把观察到的显著水平与显著水平标准比较;最后按检验规则作出检验决策。
当样本值落入拒绝域时,表述成:“拒绝原假设”,“显著表明真实的差异存在”;当样本值落入接受域时,表述成:“没有充足的理由拒绝原假设”,“没有充足的理由表明真实的差异存在”。
另外,在表述结论之后应当注明所用的显著水平。
4.常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。
包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。
2.t'检验应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。
4.方差分析用于正态分布、方差齐性的多组间计量比较。
常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST 检验等。
5.X2检验是计数资料主要的显著性检验方法。
用于两个或多个百分比(率)的比较。
常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。
6.零反应检验用于计数资料。
是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。
属于直接概率计算法。
7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。
可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。
其主要缺点是容易丢失数据中包含的信息。
所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。
8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
5.显著性差异显著性差异(significance level),是一个统计学名词。
它是统计学(Statistics)上对数据差异性的评价。
当数据之间具有了显著性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的,如比-西一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显著性差异。
也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显著性差异。
例如,记忆术研究发现,被试学习某记忆法前的成绩和学习记忆法后的记忆成绩会有显著性差异,这一差异很可能来自于学××记忆法对被试记忆能力的改变。
显著性差异是一种有量度的或然性评价。
比如,我们说A、B两数据在0.05水平上具备显著性差异,这是说两组数据具备显著性差异的可能性为95%,两个数据所代表的样本还有5%的可能性是没有差异的,这5%的差异是由于随机误差造成的。
通常情况下,实验结果达到0.05水平或0.01水平,才可以说数据之间具备了差异显著或是极显著。
在作结论时,应确实描述方向性(例如显著大于或显著小于)sig值通常用P>0.05 表示差异性不显著;0.01<P<0.05 表示差异性显著;P<0.01表示差异性极显著。
如果我们是检验某实验(Hypothesis Test)中测得的数据,那么当数据之间具备了显著性差异,实验的虚无假设(Null Hypothesis)就可被推翻,对立假设(Alternative Hypothesis)得到支持;反之若数据之间不具备显著性差异,则实验的备则假设可以被推翻,虚无假设得到支持。
6.P值它的含义是概率(Probability),简单地说就是随机事件发生的可能性的大小。
概率用从0到1之间的小数表示,也可表示为百分数。
统计学通常认为如果P值小于0.05,则该事件可视为小概率事件,即一次抽样中几乎不可能发生的事件。
如果P值小于0.01,同样也是小概率事件,只是进一步表明发生的概率更小。
在我们的单页宣传资料中,当统计图表上注明P值时,大多数情形下它表示的是对照组与控制组试验数据的均数相比较的假设检验的结果。
如果P<0.05或0.01,即可认为两组数据不是来自同一总体,它们之间均数的差异具有显著性。
这样,就用数据说明了我们所销售的药品与对照药品相比,其疗效的改善是有意义的,这也是作为一个新药所必须具备的条件。
当然,这并不意味着在任何情形下我们的药都优于对照药,因为统计学上的所有结论都是概率性结论。
但我们可以说,在大多数情况下,或者说起码有95%的可能性,这两种药疗效的差异存在显著性。
借助统计学手段来解决医学问题已经被越来越多的专家接受,特别是在涉及到大样本的临床试验数据时,整个试验过程,从试验方案的设计到试验报告的完成,都已被统计学家们精确控制。
所以当你携带药品宣传资料拜访医师时,你可以充满自信地说:"所有的结论,都是无隙可击的。
"离差平方和离差平方和是各项与平均项之差的平方的总和。
残差平方和为了明确解释变量和随机误差各产生的效应是多少,统计学上把数据点与它在回归直线上相应位置的差异称残差,把每个残差的平方后加起来称为残差平方和,它表示随机误差的效应。