2018年中考数学复习第二部分题型研究题型五几何探究题类型三折叠问题针对演练
2018届中考数学一轮复习讲义 第41讲几何图形折叠问题

2018届中考数学一轮复习讲义第41讲几何图形的折叠问题【知识巩固】折叠型问题通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。
折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。
下面我们一起来探究这种题型的解法。
折叠的规律是:折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等。
【典例解析】典例一、三角形中的折叠(2017湖北襄阳)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD 的长为.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】根据D,C,E,F四点共圆,可得∠CDE=∠CFE=∠B,再根据CE=FE,可得∠CFE=∠FCE,进而根据∠B=∠FCE,得出CF=BF,同理可得CF=AF,由此可得F是AB的中点,求得CF=AB=5,再判定△CDF∽△CFA,得到CF2=CD×CA,进而得出CD的长.【解答】解:由折叠可得,∠DCE=∠DFE=90°,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,∴CF=BF,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CFA,∴CF2=CD×CA,即52=CD×8,∴CD=,故答案为:.【变式训练】如图,已知△ABC中,AC=BC,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在B'处,DB'、EB'分别交AC于点F、G,若∠ADF=66°,则∠EGC的度数为66°.【考点】翻折变换(折叠问题);等腰三角形的性质.【分析】由翻折变换的性质和等腰三角形的性质得出∠B′=∠B=∠A,再由三角形内角和定理以及对顶角相等得出∠B′GF=∠ADF即可.【解答】解:由翻折变换的性质得:∠B′=∠B,∵AC=BC,∴∠A=∠B,∴∠A=∠B′,∵∠A+∠ADF+∠AFD=180°,∠B′+∠B′GF+∠B′FG=180°,∠AFD=∠B′FG,∴∠B′GF=∠ADF=66°,∴∠EGC=∠B′GF=66°.故答案为:66°.典例二、四边形的折叠(2017广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.【变式训练】(2017内江)如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(,) B.(2,)C.(,) D.(,3﹣)【考点】PB:翻折变换(折叠问题);D5:坐标与图形性质;LB:矩形的性质.【分析】根据翻折变换的性质结合锐角三角函数关系得出对应线段长,进而得出D点坐标.【解答】解:∵四边形AOBC是矩形,∠ABO=30°,点B的坐标为(0,3),∴AC=OB=3,∠CAB=30°,∴BC=AC•tan30°=3×=3,∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=30°,AD=3,过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=30°,∴∠DAM=30°,∴DM=AD=,∴AM=3×cos30°=,∴MO=﹣3=,∴点D的坐标为(,).故选:A.典例三、圆中的折叠(2016·山东省德州市·4分)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是﹣.【考点】扇形面积的计算;翻折变换(折叠问题).【分析】连接OM交AB于点C,连接OA、OB,根据题意OM⊥AB且OC=MC=,继而求出∠AOC=60°、AB=2AC=,然后根据S弓形ABM=S扇形OAB﹣S△AOB、S阴影=S半圆﹣2S弓形ABM 计算可得答案.【解答】解:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=,在RT△AOC中,∵OA=1,OC=,∴cos∠AOC==,AC==∴∠AOC=60°,AB=2AC=,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB﹣S△AOB=﹣××=﹣,S阴影=S半圆﹣2S弓形ABM=π×12﹣2(﹣)=﹣.故答案为:﹣.【点评】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.【变式训练】(2016·黑龙江龙东·3分)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN 的中点,点P是直径MN上的一个动点,则PA+PB的最小值为2.【考点】轴对称-最短路线问题;圆周角定理.【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB 的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故答案为:2.典例七、折叠在几何图形中的综合应用(2016·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【变式训练】【能力检测】1.如图,一张矩形纸片沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD 等于_________.答案:126°知识点:矩形的性质;翻折变换(折叠问题);三角形内角和定理解析:按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.解答:解:展开如图:∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD=180°﹣36°﹣18°=126°.故选C.2.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°答案:A知识点:矩形的性质;翻折变换(折叠问题)解析:解答:解:∵∠AED′是△AED沿AE折叠而得,∴∠AED′=∠AED.又∵∠DEC=180°,即∠AED′+∠AED+∠CED′=180°,又∠CED′=60°,∴∠AED==60°.故选A.分析:根据折叠前后对应部分相等得∠AED′=∠AED,再由已知求解.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.3. (2016·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=AM,故AN=NG,则∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=×90°=30°,∴∠DAG=60°.故选:C.【点评】此题主要考查了翻折变换的性质以及平行线的性质,正确得出∠2=∠4是解题关键.4.(2016贵州毕节3分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【考点】正方形的性质;翻折变换(折叠问题).【分析】根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)5. (2017贵州安顺)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B 落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠EAC,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.6. (2017宁夏)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为105°.【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案为:105°.【点评】本题主要考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出∠ADB的度数是解决问题的关键.7. (2017青海西宁)如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=8,则AE的长为.【考点】PB:翻折变换(折叠问题);L5:平行四边形的性质.【分析】过点C作CG⊥AB的延长线于点G,易证△D′CF≌△ECB(ASA),从而可知D′F=EB,CF=CE,设AE=x,在△CEG中,利用勾股定理列出方程即可求出x的值.【解答】解:过点C作CG⊥AB的延长线于点G,在▱ABCD中,∠D=∠EBC,AD=BC,∠A=∠DCB,由于▱ABCD沿EF对折,∴∠D′=∠D=∠EBC,∠D′CE=∠A=∠DCB,D′C=AD=BC,∴∠D′CF+∠FCE=∠FCE+∠ECB,∴∠D′CF=∠ECB,在△D′CF与△ECB中,∴△D′CF≌△ECB(ASA)∴D′F=EB,CF=CE,∵DF=D′F,∴DF=EB,AE=CF设AE=x,则EB=8﹣x,CF=x,∵BC=4,∠CBG=60°,∴BG=BC=2,由勾股定理可知:CG=2, ∴EG=EB+BG=8﹣x+2=10﹣x在△CEG 中,由勾股定理可知:(10﹣x )2+(2)2=x 2,解得:x=AE=故答案为:8. 如图,把一个矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在A′的位置上.若OB =,21=OC BC ,求点A′的坐标为 .答案:53 ,54 知识点:坐标与图形性质;矩形的性质;翻折变换(折叠问题)分析:由已知条件可得:BC =1,OC =2.设OC 与A′B 交于点F ,作A′E ⊥OC 于点E ,易得△BCF ≌△OA′F ,那么OA′=BC =1,设A′F =x ,则OF =2﹣x .利用勾股定理可得A′F =,OF =,利用面积可得A′E =A′F×OA′÷OF =,利用勾股定理可得OE =,所以点A’的坐标为().解决本题的关键是利用三角形的全等得到点A′所在的三角形的一些相关的线段的长度,进而利用面积的不同表示方法和勾股定理得到所求的点的坐标. 解答:解:∵OB =5,21=OC BC ∴BC =1,OC =2设OC 与A′B 交于点F ,作A′E ⊥OC 于点E∵纸片OABC 沿OB 折叠∴OA =OA′,∠BAO =∠BA′O =90°∵BC ∥A′E∴∠CBF =∠FA′E∵∠AOE =∠FA′O∴∠AOE =∠CBF∴△BCF ≌△OA′F∴OA′=BC =1,设A′F =x∴OF =2﹣x∴A′F =,OF =∵A′E =A′F×OA′÷OF =∴OE =∴点A’的坐标为(53-,54). 故答案为:(53-,54).9. (2017江西)已知点A (0,4),B (7,0),C (7,4),连接AC ,BC 得到矩形AOBC ,点D 的边AC 上,将边OA 沿OD 折叠,点A 的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为 :(,3)或(,1)或(2,﹣2) .【考点】PB :翻折变换(折叠问题);D5:坐标与图形性质;LB :矩形的性质.【分析】由已知得出∠A=90°,BC=OA=4,OB=AC=7,分两种情况:(1)当点A'在矩形AOBC 的内部时,过A'作OB 的垂线交OB 于F ,交AC 于E ,当A'E :A'F=1:3时,求出A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,∠OA'D=∠A=90°,在Rt △OA'F 中,由勾股定理求出OF==,即可得出答案;②当A'E :A'F=3:1时,同理得:A'(,1); (2)当点A'在矩形AOBC 的外部时,此时点A'在第四象限,过A'作OB 的垂线交OB 于F ,交AC 于E ,由A'F :A'E=1:3,则A'F :EF=1:2,求出A'F=EF=BC=2,在Rt △OA'F中,由勾股定理求出OF=2,即可得出答案.【解答】解:∵点A(0,4),B(7,0),C(7,4),∴BC=OA=4,OB=AC=7,分两种情况:(1)当点A'在矩形AOBC的内部时,过A'作OB的垂线交OB于F,交AC于E,如图1所示:①当A'E:A'F=1:3时,∵A'E+A'F=BC=4,∴A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,在Rt△OA'F中,由勾股定理得:OF==,∴A'(,3);②当A'E:A'F=3:1时,同理得:A'(,1);(2)当点A'在矩形AOBC的外部时,此时点A'在第四象限,过A'作OB的垂线交OB于F,交AC于E,如图2所示:∵A'F:A'E=1:3,则A'F:EF=1:2,∴A'F=EF=BC=2,由折叠的性质得:OA'=OA=4,在Rt△OA'F中,由勾股定理得:OF==2,∴A'(2,﹣2);故答案为:(,3)或(,1)或(2,﹣2).。
2018年全国中考数学 图形折叠变换压轴题专题复习

2018年全国中考数学图形折叠变换压轴题专题复习【课标要求】1.图形的初步认识:点、线、面、角(1)掌握画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断立体模型.(3)了解几何体与其三视图、展开图(球除外)之间的关系.(4)掌握比较角的大小,估计一个角的大小,计算角度的和与差,进行度、分、秒简单换算.(5)理解角平分线及其性质,了解补角、余角、对顶角;理解等角的余角相等、等角的补角相等、对顶角相等.(6)掌握基本事实:两点之间,线段最短;经过两点有一条直线,并且只有一条直线.(7)理解垂线、垂线段等概念,垂线段最短的性质,点到直线距离的意义,能度量点到直线的距离;(8)掌握基本事实:过一点有且仅有一条直线垂直于已知直线.(9)掌握用三角尺或量角器过一点画一条直线的垂线;线段垂直平分线及其性质.(10)理解平行线的特征和平行线的识别;了解过直线外一点有且仅有一条直线平行于已知直线;掌握用三角尺和直尺过已知直线外一点画这条直线的平行线.(11)探索并证明平行线的判定定理及逆定理:两条平行线被第三条直线所截,如果内错角相等(或同旁内角互补),那么这两条直线平行。
(12)理解平行线之间距离的意义;掌握度量两条平行线之间的距离的方法.2.轴对称(1)通过实例了解轴对称的概念,并能探索它的基本性质:对应点所连的线段被对称轴垂直平分.(2)掌握能按要求作简单平面图形经过一次或两次轴对称后的图形.(3)掌握简单图形之间的轴对称关系,并指出对称轴.(4)掌握基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及相关性质.(5)掌握利用轴对称进行图案的设计.3.平移和旋转(1)通过具体实例认识平移,理解对应点连线平行(或在同一直线上)且相等的性质;掌握按要求作简单平面图形平移后的图形;掌握选用平移进行图案设计.(2)通过具体实例认识旋转(含中心对称);理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.(3)探索线段、平行四边形、正多边形、圆的中心对称性质.(4)掌握按要求作简单平面图形旋转后的图形.(5)掌握图形之间的轴对称、平移、旋转及其组合四种关系形式.(6)掌握运用轴对称、平移和旋转的组合进行图案设计.(7)在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,培养学生的数学说理的习惯与能力.(8)了解图形的位似,知道利用位似可以将一个图形放大或缩小。
初三数学中考专题复习课折叠问题》ppt课件讲义

k 1
H
O
探究型问题之“折叠问题”
例4:已知扇形 AOB 的半径为︵ 6,圆心角为 90°,E E 是半径 OA 上一点,F 是AB 上一点.将扇形 A AOB 沿 EF 对折,使得折叠后的图形恰好与半径 OB 相切于点 G.
求:点 E 可移动的最大距离是多少? 3
O(G) O
G B
探究型问题之“折叠问题”
将边长为2a的正方形ABCD折叠,使顶点C与AB边 上的点P重合,折痕交BC于E,交AD于F, 边CD折叠 后与AD边交于点H.
(1)如果P为AB边的中点,探究△ PBE的三边之比.
解x得 3a,所2a 以 x5a
4
4
可得△ PBE的三边之比3:4:5.
2ax
a
x 2ax
探究型问题之“折叠问题”
2.点的对称性:对称点连线被对称轴(折痕)垂直平分.
探究型问题之“折叠问题”
例1:已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA
所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是
边BC上的一个动点(不与B,C重合),过F点的反y比例k 函(k数 0)
的图象与AC边交于点E.
x
请探索:是否存在这样的点
O
OE 15
4
E A
G M
N
B
F
O'
探究型问题之“折叠问题”
变式3:已知扇形 AOB 的︵ 半径为 6,圆心角为 90°,E 是半径 OA 上一点,F 是AB 上一点.将扇形 AOB 沿 EF 对折,使得折叠后的图形恰好与半径 OB 相切于点 G. (3)若 G 是 OB 中点,求 OE 和折痕 EF 的长;
x 2a y
2018届中考复习专题折叠压轴题(无答案)

中考专题:折叠问题折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。
折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。
图形折叠问题中题型的变化比较多,主要有以下几点:1.图形的翻折部分在折叠前和折叠后的形状、大小不变,是全等形;2.图形的翻折部分在折叠前和折叠后的位置关于折痕成轴对称;3.将长方形纸片折叠,三角形是否为等腰三角形;4.解决折叠问题时,要抓住图形之间最本质的位置关系,从而进一步发现其中的数量关系;5.充分挖掘图形的几何性质,将其中的基本的数量关系,用方程的形式表达出来,并迅速求解,这是解题时常用的方法之一。
折叠问题数学思想:(1)思考问题的逆向(反方向),(2)从一般问题的特例人手,寻找问题解决的思路;(3)把一个复杂问题转化为解决过的基本问题的转化与化归思想;(4)归纳与分类的思想(把折纸中发现的诸多关系归纳出来,并进行分类);(5)从变化中寻找不变性的思想.用“操作”、“观察”、“猜想”、“分析”的手段去感悟几何图形的性质是学习几何的方法。
折叠问题主要有以下题型:题型1:动手问题此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,往往与面积、对称性质联系在一起.题型2:证明问题动手操作的证明问题,既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明.题型3:探索性问题此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系.此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理论。
典型例题一.折叠后求度数例1.将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.600 B.750 C.900 D.950练习1.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55°C.60° D.65°2.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠1=_______°,∠2=_______°A3. 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC =度。
2018中考中的折叠问题

折叠问题学习要点与方法点拨:折叠问题中,常出现的知识点轴对称。
折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长、周长、求重叠面积、求角度、判断线段之间关系等;轴对称性质-----折线,是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。
压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题。
基本图形:在矩形ABCD中,将△ABF沿BE折叠至△FBE,可得何结论?(1)基本图形练习:如图,将三角形纸片ABC沿过点A的直线折叠,使得AC落在AB上,折痕为AD,展开纸片;再次折叠,使得A 和D点重合,折痕为EF,展开纸片后得到△AEF,则△AEF是等腰三角形,对吗?(2)折叠中角的考法与做法:将矩形纸片ABCD沿过点B的直线折叠,使得A落在BC边上的点F处,折痕为BE(图1);再沿过点E的直线折叠,使点D落在BE边上的点D’,折痕为EG(图2),再展开纸片,求图(3)中角a的大小。
(3)折叠中边的考法与做法:如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是多少?★解题步骤:第一步:将已知条件标在图上;第二步:设未知数,将未知数标在图上;第三步:列方程,多数情况可通过勾股定理解决。
模块精讲例1.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.①求证:①OCP①①PDA;①若①OCP与①PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求①OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.例2.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=用含k的代数式表示).例3、如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,①EBF关于直线EF的对称图形是①EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;例4、如图,已知矩形纸片ABCD ,AD=2,AB=4.将纸片折叠,使顶点A 与边CD 上的点E 重合,折痕FG 分别与AB ,CD 交于点G ,F ,AE 与FG 交于点O .(1)如图1,求证:A ,G ,E ,F 四点围成的四边形是菱形;(2)如图2,当△AED 的外接圆与BC 相切于点N 时,点N 恰好是线段BC 的中点,求折痕FG 的长.例5、已知AD ∥BC ,AB ⊥AD ,点E ,点F 分别在射线AD ,射线BC 上.若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G ,则( )A .1+tan ∠ADB= B .2BC=5CF C .∠AEB+22°=∠DEF D .4cos ∠AGB=例题6.如图,正方形ABCD 的边长为2,⊙O 的直径为AD ,将正方形的BC 边沿EC 折叠,点B 落在圆上的F 点,求BE 的长26课堂练习1、如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E 重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=_________.图3 图43、如图3,在等腰三角形纸片ABC中,AB=AC,①A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则①CBE= _________°.4、如图4,①ABC的中位线DE=5cm,把①ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则①ABC的面积为_________cm2.5、如图1,在梯形ABCD中,AB①CD,①B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE①PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将①PEC沿PE翻折至①PEG位置,①BAG=90°,求BP长.6、已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P 为BC 边上的动点(点P 不与点B 、C 重合),经过点O 、P 折叠该纸片,得点B'和折痕OP .设BP=t . (Ⅰ)如图①,当时∠BOP=30°,求点P 的坐标;(Ⅱ)如图②,经过点P 再次折叠纸片,使点C 落在直线PB'上,得点C'和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(Ⅲ)在(Ⅱ)的条件下,当点C'恰好落在边OA 上时,求点P 的坐标(直接写出结果即可).7、如图,将半径为8的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB 长为( )课后巩固习题1.如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=5,DB=7,则BC 的长是多少?OxA CB P B 'O xyA C BP B 'C 'Q图1①图②y DC BOA2.已知如图:⊙O的半径为8cm,把弧AmB沿AB折叠使弧AmB经过圆心O,再把弧AOB沿CD折叠,使弧COD经过AB的中点E,则折线CD的长为___________________3、如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC 于点E、F,连接DE、DF.求证:四边形AEDF是菱形.4、如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿EF所在的直线折叠得到△GEF,直线FG、EG分别交AD于点M、N,当EG过点D时,点E即停止运动.设BE=x,△GEF与梯形ABCD的重叠部分的面积为y.(1)证明△AMF是等腰三角形;(2)当EG过点D时(如图(3)),求x的值;(3)将y表示成x的函数,并求y的最大值.5如图,在矩形ABCD中,AB=6,BC=8,把△BCD沿着对角线BD折叠,使点C落在C'处,BC交AD于点G,E,F,分别是C'D和BD上的点,线段EF交AD于点H,把△FDE沿着EF折叠,使点D落在D'处,点D'恰好与点A重合.(1)求证:三角形ABG≌△C'DG。
2018年河南中考动态折叠变化题 (共22张PPT)

例题12:如图,矩形ABCD中,AB= 2,AD=2,点E是BC边上的一个动点,连接 1或 2或2 2 。 AE,过点D作DF⊥AE于点F,当△CDF是等腰三角形时,BE的长为_________
矩形有关的动态折叠几何题
例题13:如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线 EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直 2 2或4 2 2 。 线EF折叠,使点A恰好落在直线l上,则DF的长为_________
'
THANKS!
例题16:如图:在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把三角 形DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP 9 2 24 7 或 的长为______ 2 7 。
正方形有关的动态折叠几何题
例题1:如图正方形ABCD中,边长为8,点E为BC上一个动点,且点E不与点B,C重 合,把三角形ABE沿AE折叠,当点B对应点为B’落在正方形的对称轴上时,则BE的 8 3 16 8 3或 或8 2-8。 长___________ 3
2018
考点模块 中考15题动态折叠问题
矩形有关的动态折叠几何题
例题1:如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 3 或3 沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为______ 2
例题2:如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把 △ADE沿AE折叠,当点D的对应点刚好D′落在矩形ABCD的对称轴上时,则DE 5 5 3 或 的长为_____ . 2 3
2018中考数学专题复习翻折问题(pdf)
矩形构造法之翻折问题翻折问题作为几何知识的重要组成部分,翻折问题历来是全国中考命题的热点,可以预见,此类问题仍会在2018年的考试中大量呈现。
但绝大多数学生对此类问题毫无头绪,丢分情况十分严重,为此笔者进行了一些有益的尝试,试图为学生打开破解之道。
限于篇幅,本文仅探究直角三角形的翻折问题。
首先,我们必须引进一个非常重要的数学工具——“纵横比”所谓“纵横比”就是指依附直线上任意两点,构建直角三角形,使得横直角边平行x 轴,纵直角边平行y 轴。
“纵直角边”与“横直角边”的长度之比。
如图:已知A (x 1, y 1),B (x 2, y 2)在直线AB 上,则直线AB 的“纵横比”为:ACBC =1212y y x x --在此基础上,我们继续探究,不难得出一个精彩的结论:121212(,),,,,,AC x BD x OA OB A l l l l AC ODl l OC BD C D AC ODACO ODB OC C OC BD ODBD⊥⊥∴⊥⊥⊥⊥⊥==若不为坐标轴则两直线的纵横比互为倒数。
如图:已知,,求证:轴轴垂足分别为证明:作易证:△∽△“矩形构造法”之对称:一般在涉及某点关于直线对称点求解的问题,可通过构建某点关于直线的“纵横比”,得到横平竖直的直角三角形后进行翻折对称,再构造翻折后直角三角形的外接矩形,得到相似,从而求解。
其解题的核心思想是 “斜转直”。
(将原题中倾斜的直角边之比,通过构造直角三角形的外接矩形,得到相似,从而转化成横平竖直的直角边之比,又称为“纵横比”)此处所列举的例题希望大家认真领会,并通过这些例题得出解决对称点问题的一般通法。
以下,我们一起来领略“纵横比”的神奇!例题1:平面直角坐标系中,直线y =3x +3,与x 轴交于点A ,与y 轴交于点B ,点O 关于直线y =3x +3对称点为O ′,求O ′坐标.解题思路剖析:粗看此题,似乎感觉无从下手。
倘若我们换个思路,引进纵横比的解题思想呢?OB 、OA 、AB 可以看成一个天然的纵横比三角形,我们将△AOB 沿AB 进行翻折,得到RT △AO ′B ,接下来,我们应该如何处理“倾斜”的两条直角边O ′A ,O ′B 呢?根据此前的结论,若不为坐标轴的两直线垂直,则其纵横比互为倒数。
2018年中考数学一轮复习专题图形折叠问题及答案
2018年中考数学一轮复习专题图形折叠问题及答案2018年中考数学一轮复习专题图形折叠问题综合复习一选择题:1.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A.40° B.35° C.20° D.15°2.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°3.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12 D.164.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为()A.3 B.4 C.5 D.65.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C. D.6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为()A.12 B.10 C.8 D.67.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7B.8 C.9 D. 108.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°9.如图,将边长为12cm的正方形ABCD折叠,使得点A落在CD 边上的点E处,折痕为MN.若CE的长为7cm,则MN的长为()A. 10 B. 13 C. 15 D. 1210.如图,将矩形纸片ABCD的四个角向内翻折,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=12厘米,EF=16厘米,则边AD 的长是 ( )A.12厘米 B.16厘米 C.20厘米 D.28厘米11.如图,在矩形 OABC 中,OA=8,OC=4,沿对角线 OB 折叠后,点 A 与点 D 重合,OD 与 BC交于点 E,则点 D 的坐标是()A.(4,8)B.(5,8)C.(,) D.(,)12.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A. B. 2 C. 3 D.13.如图,矩形纸片ABCD中,AD=3cm,点E在BC上,将纸片沿AE折叠,使点B落在AC上的点F处,且∠AEF=∠CEF,则AB的长是( )A.1 cm B.cm C.2 cm D. cm14.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为()A.3或4 B.4或3C.3或4 D.3或415.如图,在矩形ABCD中,点E、F分别在边AB,BC上,且AE=AB.将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q.对于下列结论:①EF=2BE,②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )A.①② B.②③C.①③ D.①④16.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合,若此时=,则△AMD′的面积与△AMN的面积的比为( )A.1:3 B.1:4 C.1:6 D.1: 917.图,矩形ABCD中,点E是AD的中点,将△ABE折叠后得到△GBE,延长B G交CD于点F,若CF=1,FD=2,则BC的长为( )A.3B.2C.2D.218.如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于().A.2 B.3 C.4 D.519.如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD 时,的值为()A.B.C.D.20.如图,在矩形纸片ABCD中,AB=3,AD=5.折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC 边上移动时,折痕的端点P,Q也随之移动。
中考数学复习第二部分题型研究题型五几何探究题类型三折叠问题课件
②圆M在直线AC上运动,在运动过程中,能否与y轴也相切?如果能相切,求出此时 ⊙M与x轴、y轴和直线AD都相切时的圆心M的坐标;如果不能相切,请说明理由. 【思维教练】⊙M与y轴相切,可知圆心M到y轴的距离即点M横坐标为半径r,再结合点 M在直线AC上,用含r的式子表示出点M的纵坐标,利用点M横、纵坐标相等可求出r的 值.
第二部分 题型研究
题型五 几何探究题
类型三 折叠问题
典例精讲
例 3 在平面直角坐标系中,矩形OABC的边OA、OC分别落在x轴、y轴上,O为坐标 原点,且OA=8, OC=4,连接AC,将矩形OABC对折,使点A与点C重合,折痕ED与 BC交于点D,交OA于点E,连接AD,如图①.
例3题图
(1)求点D的坐标和AD所在直线的函数关系式; 【思维教练】要求点D坐标,需求得CD,根据折叠性质易知CE=AE,且A、C两点关于 ED对称,再由四边形OABC为矩形,BC∥OA转化得∠CDE=∠CED,从而CE=CD,而 在Rt△OCE中,OC已知,OE可用含CE的式子表示,用勾股定理即可求得CE,从而求 得点D的坐标;而直线AD的解析式只需将A、D两点坐标代入,利用待定系数法即可求
解.
解:(1)设CE=t, ∵矩形OABC对折,使A与C重合(折痕为ED),OA=8,OC=4, ∴CE=AE=t,∠AED=∠CED, ∴OE=OA-AE=8-t, 在Rt△OCE中,∵OC2+OE2=CE2, ∴42+(8-t)2=t2, 解得t=5, 即CE=AE=5,
∵BC∥OA,∴∠CDE=∠AED,
②解:⊙M在直线AC上运动,在运动过程中,能与y轴也相切. 如果⊙M与y轴相切,可知圆心M到y轴的距离为半径, 由①可知M(8-2r,r),所以只需使8-2r=r, 即当r为 8 时,⊙M与x轴、y轴和直线AD都相切,
2018中考数学专题复习综合与实践——折叠问题(修订)
2018中考数学学业水平测试分类解析汇编——折叠问题一、选择题1. (2012广东梅州3分)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=【】A.150°B.210°C.105°D.75°2. (2012江苏南京2分)如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’F⊥CD时,CFFD的值为【】3. (2012江苏连云港3分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是【】A 1B 1 C.2.5 D4. (2012广东河源3分)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合.若∠A=75º,则∠1+∠2=【】A.150º B.210º C.105º D.75º5. (2012福建南平4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD 上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【】A.32B.52C.94D.36. (2012湖北武汉3分)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是【】A.7 B.8 C.9 D.107. (2012湖北黄石3分)如图所示,矩形纸片ABCD中,AB=6cm,BC=8 cm,现将其沿EF对折,使得点C与点A重合,则AF长为【】A. 25cm8B.25cm4C.25cm2D. 8cm8. (2012湖北荆门3分)如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为【】A. 8 B. 4C. 8 D. 69. (2012四川内江3分)如图,在矩形ABCD中,AB=10,BC=5点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为【】A.15B.20C.25D.3010. (2012四川资阳3分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是【】A. B.C.D.11. (2012贵州黔东南4分)如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于【】A.1 B.2 C.3 D.412. (2012贵州遵义3分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为【】A.B.C.D.13. (2012山东泰安3分)如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为【】A.9:4 B.3:2 C.4:3 D.16:914. (2012山东潍坊3分)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将ΔABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=【】.A B.215. (2012广西河池3分)如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连结CN.若△CDN的面积与△CMN的面积比为1︰4,则MNBM的值为【】A.2 B.4 C.D.16. (2012河北省3分)如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于【】A.70° B.40° C.30° D.20°17. (2012青海西宁3分)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴涵许多数学知识,我们还可以通过折纸验证数学猜想.把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论【】A.角的平分线上的点到角的两边的距离相等B.在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半C.直角三角形斜边上的中线等于斜边的一半D.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形二、填空题1. (2012上海市4分)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D在AC上,将△ADB沿直线BD翻折后,将点A落在点E处,如果AD⊥ED,那么线段DE的长为▲ .2. (2012浙江丽水、金华4分)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是▲ .3. (2012浙江绍兴5分)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为▲ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分题型研究
题型五几何探究题
类型三折叠问题
针对演练
1. 如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB 边上的点,连接EF.
(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S
AE的长;
△EDF,求
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长.
第1题图
2. (2017山西)背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或32,42,52的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作如图①,在矩形纸片ABCD中,AD=8 cm,AB=12 cm.
第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图④,将图③中的矩形纸片沿AH 折叠,得到△AD ′H ,再沿AD ′折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.
第2题图
问题解决
(1)请在图②中证明四边形AEFD 是正方形;
(2)请在图④中判断NF 与ND ′的数量关系,并加以证明;
(3)请在图④中证明△AEN 是(3,4,5)型三角形;
探索发现
(4)在不添加字母的情况下,图④中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.
3. 问题探究
(1)如图①,边长为4的等边△OAB 位于平面直角坐标系中,将△OAB 折叠,使点B 落在OA 的中点处,则折痕长为________;
(2)如图②,矩形OABC 位于平面直角坐标系中,其中OA =8,AB =6,将矩形沿线段MN 折叠,点B
落在x 轴上,其中AN =13
AB ,求折痕MN 的长; 问题解决:
(3)如图③,四边形OABC 位于平面直角坐标系中,其中OA =AB =6,CB =4,BC ∥OA ,AB ⊥OA 于点A ,点Q (4,3)为四边形内部一点,将四边形折叠,使点B 落在x 轴上,问是否存在过点Q 的折痕,若存在,求出折痕长,若不存在,请说明理由.
第3题图
答案
1. 解:(1)如解图①,∵折叠后点A 落在AB 边上的点D 处,
第1题解图①
∴EF ⊥AB ,△AEF ≌△DEF .
∴S △AEF =S △DEF .
∵S 四边形ECBF =3S △EDF ,
∴S 四边形ECBF =3S △AEF .
∵S △ACB =S △AEF +S 四边形ECBF ,
∴S △ACB =S △AEF +3S △AEF =4S △AEF .
∴
S△AEF S△ACB =14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°,
∴△AEF ∽△ABC .
∴
S△AEF S△ABC =(AE AB )2. ∴(AE AB )2=14
. 在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,
∴AB 2=AC 2+BC 2
,即AB =42+32=5; ∴(AE 5)2=14,∴AE =52
, (2)①四边形AEMF 是菱形.
证明:如解图②,∵折叠后点A 落在BC 边上的点M 处,
∴∠CAB =∠EMF ,AE =ME ,
又∵MF ∥CA ,
∴∠CEM =∠EMF ,
∴∠CAB =∠CEM ,
∴EM ∥AF ,
∴四边形AEMF 是平平四边形,
而AE =ME ,
∴四边形AEMF 是菱形,
②连接AM ,与EF 交于点O ,如解图②,设AE =x ,则AE =ME =x ,EC =4-x ,
第1题解图②
∵∠CEM =∠CAB ,∠ECM =∠ACB =90°,
∴Rt △ECM ∽Rt △ACB ,
∴EC AC =EM AB
, ∵AB =5,
∴
4-x 4=x 5,解得x =209. ∴AE =ME =209,EC =169
. 在Rt △ECM 中,∵∠ECM =90°,
∴CM 2=EM 2-EC 2.
即CM =EM2-EC2=
(209)2-(169)2=43,
∵四边形AEMF 是菱形,
∴OE =OF ,OA =OM ,AM ⊥EF ,
∴S 菱形AEMF =4S AOE =2OE·AO ,
在Rt △AOE 和Rt △ACM 中,
∵tan ∠EAO =tan ∠CAM ,
∴OE AO =CM AC
, ∵CM =43
,AC =4, ∴AO =3OE ,
∴S 菱形AEMF =6OE 2
,
又∵S 菱形AEMF =AE·CM,
∴6OE 2=209×43, 解得OE =2109
, ∴EF ==2OE =4109
. 2. (1)证明:∵四边形ABCD 是矩形,∴∠D =∠DAE =90°, 由折叠知:AE =AD ,∠AEF =∠D =90°,
∴∠D =∠DAE =∠AEF =90°,
∴四边形AEFD 是矩形,
∵AE =AD ,
∴矩形AEFD 是正方形;
(2)解:NF =ND ′;
证明:如解图①,连接HN ,。