全国甲2022年高考数学压轴卷理(含答案)
2022年高考数学试卷(理)(全国甲卷)(解析卷)

绝密★启用前2022年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1若1z =-+,则1zzz =-( )A1-+B. 1-C. 13-+D. 13--【答案】C 【解析】【分析】由共轭复数的概念及复数的运算即可得解.【详解】1(1113 4.z zz =-=-+-=+=113z zz ==--故选 :C2. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:..则( )A. 讲座前问卷答题的正确率的中位数小于70%B. 讲座后问卷答题的正确率的平均数大于85%C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.3. 设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B È=ð( )A. {1,3}B. {0,3}C. {2,1}- D. {2,0}-【答案】D【解析】【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B È=-,所以(){}U 2,0A B È=-ð.故选:D.4. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A. 8B. 12C. 16D. 20【答案】B 【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=´´=.故选:B.5. 函数()33cos x xy x -=-在区间ππ,22éù-êúëû的图象大致为( )A. B.C. D.【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x p p -éù=-Î-êúëû,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x p æöÎç÷èø时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.6 当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f ¢=( )A. 1- B. 12-C.12D. 1【答案】B 【解析】【分析】根据题意可知()12f =-,()10f ¢=即可解得,a b ,再根据()f x ¢即可解出.【详解】因为函数()f x 定义域为()0,¥+,所以依题可知,()12f =-,()10f ¢=,而.()2a bf x x x ¢=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x¢=-+,因此函数()f x 在()0,1上递增,在()1,+¥上递减,1x =时取最大值,满足题意,即有()112122f ¢=-+=-.故选:B.7. 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则( )A. 2AB AD = B. AB 与平面11AB C D 所成的角为30°C. 1AC CB = D. 1B D 与平面11BB C C 所成的角为45°【答案】D 【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB Ð,1B D 与平面11AA B B 所成角为1DB A Ð,所以11sin 30c b B D B D==o,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ^于E ,易知BE ^平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE Ð,因为tan c BAE a Ð==30BAE йo ,B 错误;对于C,AC ==,1CB ==,1AC CB ¹,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C Ð,11sin 2CD a DB C B D c Ð===1090DB C <Ð<o ,所以145DB C Ð=o .D 正确.故选:D .8. 沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在 AB 上,CD AB ^.“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =Ð=°时,s =( )A.B.C.D.【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ^,又CD AB ^,所以,,O C D 三点共线,即2OD OA OB ===,又60AOB Ð=°,所以2AB OA OB ===,则OC =2CD =所以22CD s AB OA=+==故选:B .9. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( )A.B.C.D.【答案】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl rS r l r p p ===甲乙,所以122r r =,又12222r r l lp p p+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以2112221313r h V V r h p p ===甲乙故选:C.10. 椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ的斜率之积为14,则C 的离心率为( )A.B.C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】解法1:设而不求设()11,P x y ,则()11,Q x y -则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+,由2211221x y a b +=,得()2221212b a x y a-=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率c e a === A.解法2:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a =所以椭圆C的离心率c e a === A.11. 设函数π()sin 3f x x w æö=+ç÷èø在区间(0,π)恰有三个极值点、两个零点,则w 的取值范围是( )A. 513,36öé÷êëø B. 519,36éö÷êëøC. 138,63æùçúèû D. 1319,66æùçúèû【答案】C 【解析】【分析】由x 的取值范围得到3x pw +的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0>w ,因为()0,x p Î,所以,333x ppp w wp æö+Î+ç÷èø,要使函数在区间()0,p 恰有三个极值点、两个零点,又sin y x =,,33x p p æöÎç÷èø的图象如下所示:则5323p p wp p <+£,解得13863w <£,即138,63w æùÎçúèû.故选:C .12. 已知3111,cos ,4sin 3244a b c ===,则( )A. c b a >> B. b a c>> C. a b c>> D. a c b>>【答案】A 【解析】【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数()()21cos 1,0,2f x x x x ¥=+-Î+,利用导数可得b a >,即可得解.【详解】解法1:构造函数因为当π0,,tan 2x x x æöÎ<ç÷èø故14tan 14c b =>,故1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-Î+¥,()sin 0f x x x ¢=-+>,所以()f x 在(0,)+¥单调递增,故1(0)=04f f æö>ç÷èø,所以131cos 0432->,所以b a >,所以c b a >>,故选A 解法2:不等式放缩因为当π0,,sin 2x x x æöÎ<ç÷èø,取18x =得:2211131cos 12sin 1248832æö=->-=ç÷èø,故b a>1114sin cos 444ϕæö+=+ç÷èø,其中0,2p ϕæöÎç÷èø,且sin ϕϕ==当114sin cos 44+=142p ϕ+=,及124p ϕ=-此时1sin cos 4ϕ==,1cos sin 4ϕ==故1cos 4=11sin 4sin 44<=<,故b c <所以b a >,所以c b a >>,故选A解法3:泰勒展开设0.25x =,则2310.251322a ==-,2410.250.25cos 1424!b =»-+,241sin 10.250.2544sin1143!5!4c ==»-+,计算得c b a >>,故选A.解法4:构造函数因为14tan 4c b =,因为当π0,,sin tan 2x x x x æöÎ<<ç÷èø,所以11tan 44>,即1c b >,所以c b >;设21()cos 1,(0,)2f x x x x =+-Î+¥,()sin 0f x x x ¢=-+>,所以()f x 在(0,)+¥单调递增,则1(0)=04f f æö>ç÷èø,所以131cos 0432->,所以b a >,所以c b a >>,故选:A .解法5:【最优解】不等式放缩因为14tan 4c b =,因为当π0,,sin tan 2x x x x æöÎ<<ç÷èø,所以11tan 44>,即1c b >,所以c b >;因为当π0,,sin 2x x x æöÎ<ç÷èø,取18x =得2211131cos 12sin 1248832æö=->-=ç÷èø,故b a >,所以c b a >>.故选:A .【整体点评】法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法;法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x æöÎ<<ç÷èø放缩,即可得出大小关系,属于最优解.二、填空题:本题共4小题,每小题5分,共20分.13. 设向量a r ,b r 的夹角的余弦值为13,且1a =r ,3b =r ,则()2a b b +⋅=r r r _________.【答案】11【解析】【分析】设a r 与b r 的夹角为q ,依题意可得1cos 3q =,再根据数量积的定义求出a b ⋅r r ,最后根据数量积的运算律计算可得.【详解】解:设a r 与b r 的夹角为q ,因为a r 与b r 的夹角的余弦值为13,即1cos 3q =,又1a =r ,3b =r ,所以1cos 1313a b a b q ⋅=⋅=´´=r r r r ,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=´+=r r r r r r r r .故答案为:11.14. 若双曲线2221(0)x y m m -=>的渐近线与圆22430x y y +-+=相切,则m =_________.【解析】【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m -=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =..15. 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635.16. 已知ABC V 中,点D 在边BC 上,120,2,2ADB AD CD BD Ð=°==.当AC AB取得最小值时,BD =________.1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB后,结合基本不等式即可得解.【详解】方法1:(余弦定理)设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅Ð=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅Ð=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++44³=-,当且仅当311mm+=+即1m=-时,等号成立,所以当ACAB取最小值时,1m=.1.方法二2:(建系法)令BD=t,以D为原点,OC为x轴,建立平面直角坐标系.则C(2t,0),A(1),B(-t,0)()()()2222222134441244324131111tAC t tAB t tt ttt BD-+-+\===-³-++++++++==-当且仅当即时等号成立。
2022年新高考数学压轴题含答案

【方法点拨】
1.函数的零点的实质就是函数图象与x轴交点的横坐标,解决实际问题时,往往需分离函数,将零点个数问题转化为两个函数图象交点个数问题,将零点所在区间问题,转化为交点的横坐标所在区间问题.
2.分离函数的基本策略是:一静一动,一直一曲,动直线、静曲线,要把构造“好函数”作为第一要务.
3.作图时要注意运用导数等相关知识分析函数的单调性、奇偶性、以及关键点线(如渐进线),以保证图像的准确.
【典型题示例】
例1已知函数 若函数 ( )恰有4个零点,则 的取值范围是()
A. B.
C. D.
【答案】D
【分析】由 ,结合已知,将问题转化为 与 有 个不同交点,分 三种情况,数形结合讨论即可得到答案.
【答案】
【解析】由条件 ,
设 ,则 ,其系数和为1
设 ,则 ,故 三点共线
由 的最小值为 ,即点 到 的距离是
故
中,由余弦定理得 ,设 的中点为 ,由极化恒等式得 ,而 .
∴ 的最小值是 .
【巩固练习】
1.如图,在 中,已知点 是 延长线上一点,点 是 的中点,若 ,且 ,则 .
2.如图,在平行四边形 中, , 为 的中点, 为线段 上一点,且满足 ,则实数 ()
例5已知函数 ,若函数 有四个不同的零点,则实数m的取值范围是.
【答案】
【解析】 是偶函数,问题转化为 ,即 ( )有两个零点
易知 ,两边均为曲线,较难求解.
两边取自然对数, ,即
问题即为: 与 有两个交点
先考察直线 与 相切,即只有一点交点的“临界状态”
设切点为 ,则 ,解得 ,此时切点为
代入 ,再求 与 有两个交点时,m的取值范围
2022届高考数学压轴题含答案解析

2022届高考数学压轴题1.已知函数f(x)=xlnx−12(a+1)x2﹣x.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若对任意的x∈[e﹣1,e]都有f(x)≥﹣1,求实数a的取值范围.【解答】解:(1)f(x)=xlnx﹣x2﹣x的导数为f′(x)=1+lnx﹣2x﹣1=lnx﹣2x,可得曲线y=f(x)在点(1,f(1))处的切线斜率为k=f′(1)=﹣2,f(1)=﹣2,则曲线y=f(x)在点(1,f(1))处的切线方程为y+2=﹣2(x﹣1),即为y=﹣2x;(2)对任意的x∈[e﹣1,e]都有f(x)≥﹣1,所以f(1)=−12(a+1)﹣1≥﹣1,所以a≤﹣1.下面证明当a≤﹣1时,对任意的x∈[e﹣1,e]时,都有f(x)≥﹣1.易得f′(x)=lnx﹣(a+1)x,①若a+1≤﹣e,即a≤﹣e﹣1,当x∈[e﹣1,e]时,f′(x)=lnx﹣(a+1)x≥0,所以f(x)在[e﹣1,e]上递增,所以当x∈[e﹣1,e]时,f(x)≥f(e﹣1)=﹣e﹣1−12(a+1)e﹣2﹣e﹣1≥−32e﹣1>﹣1,满足题意,故a≤﹣e﹣1;②若﹣e<a+1≤0,即﹣e﹣1<a≤﹣1,设h(x)=lnx﹣(a+1)x(x∈[e﹣1,e]),则易得h(x)=lnx﹣(a+1)x在(x∈[e﹣1,e]递增,又h(1)=﹣(a+1)≥0,h(e﹣1)=﹣1﹣(a+1)e﹣1<0,所以h(x)=lnx﹣(a+1)x在[e﹣1,1]上存在零点,设为x0,则lnx0﹣(a+1)x0=0,所以f(x)在[e﹣1,x0)递减,在(x0,e]递增,所以当x∈[e﹣1,e]时,f(x)≥f(x0)=x0lnx0−12(a+1)x02﹣x0=12x0lnx0﹣x0,设g(x)=12xlnx﹣x(x∈[e﹣1,1]),则g′(x)=12lnx−12<0,所以g(x)=12xlnx﹣x在(e﹣1,1]递减,所以g(x)≥g(﹣1)=﹣1,所以当﹣e﹣1<a≤﹣1时,f(x)≥﹣1,满足题意.综上可得,a 的取值范围是(﹣∞,﹣1].2.已知抛物线C :x 2=2py (p >0)的焦点是F ,直线l :2kx ﹣2y +1=0恰好经过F ,且与C 相交于不同的两点A ,B ,抛物线C 在A ,B 两点处的切线相交于点P . (Ⅰ)求证:点P 在定直线y =−12上;(Ⅱ)点E (0,t ),当AF →=2FB →时,D 为线段AB 的中点,且满足DE →•DF →=0,求四边形APBE 的面积四边形S 四边形APBE .【解答】解:(Ⅰ)证明:∵直线l :2kx ﹣2y +1=0恰好经过F (0,12), ∴p =1,抛物线方程为x 2=2y .联立{y =kx +12x 2=2y,整理可得x 2﹣2kx ﹣1=0, △=4(k 2+1)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k ,x 1x 2=﹣1,因为y =x 22的导数为y ′=x ,所以抛物线在A (x 1,x 122)处的切线方程为:y =x 1x −x 122, 同理抛物线在B (x 2,x 222)处的切线方程为y =x 2x −x 222. 联立①②可得{x =x 1+x 22=k y =−12,即点P 的坐标为(k ,−12). ∴点P 在定直线y =−12上;(Ⅱ)∵AF →=2FB →,∴x 1=﹣2x 2,又x 1+x 2=2k ,∴x 1=4k ,x 2=﹣2k ,代入x 1x 2=﹣1,解得k =±√24. 由对称性可知,求四边形APBE 的面积只需取k =√24,AB =√1+k 2√(x 1−x 2)2−4x 1x 2=√1+k 2⋅√4k 2+4=2(1+k 2)=94,设AB 的中点为D ,则x D =x 1+x 22=k =√24,y D =kx D +12=58,即可得D (√24,58). ∵E (0,t ),DE →⋅DF →=0,∴216+18×(58−t)=0,解得t =138, 将直线AB 方程√24x −y +12=0化为x −2√2y +√2=0,则点E到AB的距离d1=|0−2√2×138+√2|√1+8=3√24.所以S△ABE=12|AB|•d1=27√232,由(Ⅰ)知两切线的交点P的坐标(k,−1 2),又k=√24,此时P的坐标(√24,−12),则点P到AB的距离d2=|√24−2√2×(−12)+√2|√1+8=3√24,∴S△ABP=12|AB|•d2=27√232.又已知P,E两点在AB的同侧,所以S四边形APBE=S△ABE+S△ABP=27√232+27√232=27√216.。
KS5U2024高考压轴卷——数学(理)(全国甲卷) 含解析

KS5U2024高考压轴卷全国甲卷数学试卷(理工农医类)说明:1.本试卷分第1卷和第11卷,共4页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.考试结束后,将答题卡交回.2.本试卷满分150分,120分钟完卷.第1卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.l已知集合A={x l-1釭<s},B ={xE Nly= I o g3(x-2)},则矿B=()A.{-1,2,3,4}B.{3,4}C.{3,4,5}D.{2,3}2欧拉公式矿=cos0+isin0把自然对数的底数e'虚数单位i,cos0和sin0联系在一起,充分体现了数学的和谐美,被誉为“数学中的天桥”,若复数z满足(e;•+ i) · z = I + i,则正确的是()A.z的共辄复数为-i C.z的虏部为IB.z的实部为l D.z的模为13在(l+x)3+(l+x)4+(l+x)5的展开式中,含x2项的系数是() A.16 B.19 C.214已知角a的终边经过点p[A.5-沉B.41而2a'),则2cos—+sin a= ()4 4 2-而-5C. 5+而4 4D.24D.扣-545.执行下面的程序框图,输出的s = (I I25 A —B.—1224c.-D .l6已知向量OA=(l,0),08=(1,1),0力坐标原占,6点P(x ,y)满足约束条件{°三OP O A 三1,则O::;;OP-OB::;;2z=x-2y 的最大值为() A.-2B.2C.一3D. 37.2023年7月28日至8月8日,第31届世界夏季大学生运动会在成都市举行,组委会将5名大学生分配到A,B, C 三个路口进行引导工作,每个路口至少分配一人,每人只能去一个路口若甲、乙要求去同一个路口,则不同的分配方案共有()A. 18种B. 24种C. 36种D.48种8.Cl., 13, y为不同的平面,m,n, I为不同的直线,则m..L0的一个充分条件是A.nJ_a,nJ_/J ,mJ_a c.aJ_y,fJJ_y,mJ_aB.a nr =m ,a .Lr ,fJ.Lr D.a.LfJ,anf]=l,m.Ll9如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y-(单位:小时)与储藏温度x(单位:.C)满足函数关系y = e•x+b (a, b.为常数),若该果蔬在7°C的保鲜时间为288小时,在21·c的保鲜时间为32小时,且该果蔬所需物流时间为4天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过()A.l4'CB.l5'Cc.l3.cD.l6'CJO “阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美如图是以正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”,若该多面体的棱长为J5,则该多而体外接球的表面积为(A. 8兀C.2兀B. 4亢4D.-nx 2v2II.设凡,F 2是双曲线C—--S,=l(a>O,b >O )的左、右焦点,0是坐标原点,点P 是C上异千实轴a 2 b2 端点的任意一点,若I PF; II PF 21-1 OPl 2= 2a 2,则C的离心率为()A.石B.五C.3D.212已知函数f(x)及其导函数f'(x)的定义域均为R,且(x-2)[f'(x)-f(x)]>0,/(4-x)=f(x)e七2入.,则不等式e 3/(I n x )<寸(3)的解集是()A.(0,e 3)B.(l,e 3)C.(e 心)D.(e3,叫第11卷(非选择题共90分)本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.二、填空题:共4小题,每小题5分,共20分.将答案填在答题卡上.13.已知f(x)=x 2+1为偶函数,则a=(3x+2)(x-a)14已知丛ABC 的三边长AB =4cm, BC = 2cm ,A C = 3cm ,则丛ABC 的面积为cm 215.已知两点M(-1,0),N(l,0),若臼线x-y+m=O 上存在唯一点P 满足PM -PN=O ,则实数m 的值为16已知F为抛物线C:x2=4y的焦点,过点F的直线/与抛物线C相交千不同的两点A、B,若抛物线C4的最小值为在A、B两点处的切线相交千点P,则IPFl2+了了三、解答题:解答应写出文字说明、证明过程或演算步骤.17已知S,,为各项均为正数的数列{a,,}的前n项和lZi E (0, 2), a: + 3a,, + 2 = 6S,,(l)求{a,,}的通项公式;(2)设九=,数列{丸}的前,i项和为兀,若对VnEN.,区4T,,恒成立,求实数t的最大值a,,a,i+118某公司为了确定下季度的前期广告投入计划,收渠并整理了近6个月广告投入量x(单位:万元)和收益}{单位:万元)的数据如表(其中有些数据污损不清):月份I23456广告投入侵 2 7 8 lO收益20 30 34 37他们分别用两种模型@y = b x+ a, ® y = ae 1,'进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值.8 6 4残差残差图`2 -- - i --一疗3 _ `、,4-- - 5-- - -6 -- - -。
全国卷Ⅰ2024年高考数学压轴卷理含解析

(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。
全国甲卷(理科)-2022年全国高考数学压轴题解读

2022年全国统一高考数学试卷(理科)(甲卷)压轴真题解读11.设函数()sin()3f x x πω=+在区间(0,)π恰有三个极值点、两个零点,则ω的取值范围是()A .5[3,13)6B .5[3,19)6C .13(6,8]3D .13(6,196【答案】C【解析】当0ω<时,不能满足在区间(0,)π极值点比零点多,所以0ω>;函数()sin()3f x x πω=+在区间(0,)π恰有三个极值点、两个零点,(33x ππω+∈,3πωπ+,∴5323ππωππ<+,求得13863ω<,故选:C .【解后反思】1.研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.2.方程根的个数可转化为两个函数图象的交点个数.12.已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c>>C .a b c>>D .a c b>>【答案】A【解析】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A【规律总结】1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f (x )与f ′(x )的不等关系时,常构造含f (x )与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.16.已知ABC ∆中,点D 在边BC 上,120ADB ∠=︒,2AD =,2CD BD =.当ACAB取得最小值时,BD =.1【解析】设BD x =,2CD x =,在三角形ACD 中,2244222cos60b x x =+-⋅⋅⋅︒,可得:22444b x x =-+,在三角形ABD 中,22422cos120c x x =+-⋅⋅⋅︒,可得:2224c x x =++,要使得ACAB 最小,即22b c 最小,222244412432411b x x c x x x x -+==-+++++,其中311x x +++,此时224b c-,当且仅当1x +=时,即1x =-时取等号,【易错】忽视基本不等式成立的条件20.设抛物线2:2(0)C y px p =>的焦点为F ,点(,0)D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,||3MF =.(1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为α,β.当αβ-取得最大值时,求直线AB 的方程.【命题意图】考查抛物线方程的求法、直线与抛物线位置关系的应用、运算求解能力,属难题.【解析】(1)当x p =时,222y p =,得M y =,可知||MD =,||2p FD =.则在Rt MFD ∆中,222||||||FD DM FM +=,得22()92p +=,解得2p =.则C :24y x =;(2)要使αβ-取得最大值,则tan()αβ-最大,且知当直线MN 的斜率为负时,αβ-为正才能达到最大,又tan tan tan()1tan tan αβαβαβ--=+,设1(M x ,1)y ,2(N x ,2)y ,3(A x ,3)y ,4(B x ,4)y ,由(1)可知(1,0)F ,(2,0)D ,则1212221212124tan 44MN y y y y k y y x x y y β--====-+-,又N 、D 、B 三点共线,则ND BD k k =,即24240022y y x x --=--,∴242224002244y y y y --=--,得248y y =-,即428y y =-;同理由M 、D 、A 三点共线,得318y y =-.则1234124tan 2()y y y y y y α==+-+.由题意可知,直线MN 0,不妨设:1(0)MN l x my m =+<,由241y xx my ⎧=⎨=+⎩,得2440y my --=,124y y m +=,124y y =-,则41tan 4m m β==,41tan 242m m α-==-⨯,则1112tan()111122m m m m m mαβ---==+⋅+,可得当2m =时,tan()αβ-最大,αβ-最大,此时AB 的直线方程为33344()y y x x y y -=-+,即34344()0x y y y y y -++=,又123412128()888y y y y m y y y y -++=--===-,34128816y y y y --=⋅=-,AB ∴的方程为4160x +-=,即40x +-=.21.已知函数()xe f x lnx x a x=-+-.(1)若()0f x ,求a 的取值范围;(2)证明:若()f x 有两个零点1x ,2x ,则121x x <.【命题意图】考查利用导函数研究函数单调性,即构造函数证明不等式恒成立问题,属较难题.【解析】(1)()f x 的定义域为(0,)+∞,(1)1()(1)()1x x e x e x x f x x x x-+-'=-+=,令()0f x '>,解得1x >,故函数()f x 在(0,1)单调递减,(1,)+∞单调递增,故()min f x f =(1)1e a =+-,要使得()0f x 恒成立,仅需10e a +-,故1a e +,故a 的取值范围是(-∞,1]e +;(2)证明:由已知有函数()f x 要有两个零点,故f (1)10e a =+-<,即1a e >+,不妨设1201x x <<<,要证明121x x <,即证明211x x <,101x << ,∴111x >,即证明:2111x x <<,又因为()f x 在(1,)+∞单调递增,即证明:211()()f x f x <⇔111()()f x f x <,构造函数1()()()h x f x f x=-,01x <<,12221(1)()11()()()xx x xe x e x h x f x f x x x-+--'='+'=,令121()xxk x xe x e x =+--,01x <<,12211()(1)20x x k x x e x e x x'=++++>,()k x k <(1)0=,所以()k x 在(0,1)上递增,又因为10x -<,20x >,故()0h x '>在(0,1)恒成立,故()h x 在(0,1)单调递增,又因为h (1)0=,故()h x h <(1)0=,故111()()f x f x <,即121x x <.得证.【方法总结】利用导数求函数的零点常用方法(1)构造函数g (x ),利用导数研究g (x )的性质,结合g (x )的图象,判断函数零点的个数.(2)利用零点存在定理,先判断函数在某区间有零点,再结合图象与性质确定函数有几个零点.压轴模拟专练1.已知0x 是函数()12sin cos 3f x x x x =-的一个极值点,则20tan x 的值是()A .1B .12C .37D .57【答案】D【解析】()2001112cos2,cos22cos 1366f x x x x =-∴=∴-=',∴207cos 12x =,∴22005sin 1cos 12x x =-=,∴220020sin 5tan cos 7x x x ==。
高考全国甲卷:《理科数学》2022年考试真题与答案解析

高考精品文档高考全国甲卷理科数学·2022年考试真题与答案解析同卷地区贵州省、四川省、云南省西藏自治区、广西自治区高考全国甲卷:《理科数学》2022年考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1、若,则( )A 、B 、C 、D 、答案:C解析:z =―1―3izz =(―1+3i )(―1―3i )=1+3=4故选:C 。
2、某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图,则( )。
1z =-1z zz =-1-1--13-+13-113z zz ==--A 、讲座前问卷答题的正确率的中位数小于B 、讲座后问卷答题的正确率的平均数大于C 、讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D 、讲座后问卷答题的正确率的极差大于讲座前正确率的极差答案:B解析:讲座前中位数为,所以错;讲座后问卷答题的正确率只有一个是个,剩下全部大于等于,所以讲座后问卷答题的正确率的平均数大于,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为,讲座前问卷答题的正确率的极差为,所以错.故选:B 。
70%85%70%75%70%2+>A 80%,485%90%85%100%80%20%-=95%60%35%20%-=>D3、设全集,集合,则( )A 、B 、C 、D 、答案:D解析:由题意,,所以,所以.故选:D 。
4、如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A 、8B 、12C 、16D 、20{2,1,0,1,2,3}U =--{}2{1,2},430A B x x x =-=-+=∣()U A B ⋃=ð{1,3}{0,3}{2,1}-{2,0}-{}{}2=4301,3B x x x -+=={}1,1,2,3A B ⋃=-(){}U 2,0A B ⋃=-ð答案:B解析:由三视图还原几何体如下图;则该直四棱柱的体积。
2022年高考甲卷压轴数学真题解析(经典版)

2022年高考甲卷压轴数学真题解析(经典版)
2022届全国高考已经结束很久了,大部分试卷和答案都已经出来了,小编今天带来的是2022年高考甲卷压轴数学真题的全方位解析,感兴趣的同学和老师们来了解一下吧!更多最新资讯,请持续关注。
2022年高考全国甲卷数学(经典版)(全)全方位、不同视角、多种方法解析压轴题
点参法,结论秒杀法:两个角度解析2022年高考全国甲卷理科数学试题第10题
放缩+构造函数+泰勒展开:多角度解析2022年高考全国甲卷理科数学试题第12题
构造函数,指数放缩,对数放缩:从三个不同角度解析2022年高考全国甲卷文科数学试题第12题
解三角形:全方位解析2022年高考全国甲卷理科数学试题第16题
解三角形:全方位解析2022年高考全国甲卷文科数学试题第16题
多角度解析2022年高考全国甲卷理科数学试题第20题——圆锥曲线斜率之商定值相关定理应用
函数公切线问题:从两个不同方向解析2022年高考全国甲卷文科数学试题导数压轴题
多角度解析2022年高考全国甲卷文科数学试题第21题——圆锥曲线斜率之商定值相关定理应用
极值点偏移问题:多方法解析2022年高考全国甲卷理科数学第21题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(全国甲)2022年高考数学压轴卷 理一.选择题(本题共12个小题,每个小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x|2x ﹣8<2﹣3x},B ={x|x 2﹣4x+3<0},则A∪B=( ) A .(1,2)B .(2,3)C .(﹣∞,3)D .(1,3)2.设复数z 满足(1+i )z =4i ,则|z|=( ) A .22 B .2C .2D .223.下列函数中,在区间(0,+∞)上单调递增的是( ) A .y =21xB .y =2﹣xC .y =x 21logD .y =x1 4.刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想,可以说他是中国古代极限思想的杰出代表.运用此思想,当π取3.1416时可得cos89︒的近似值为( ) A. 0.00873B. 0.01745C. 0.02618D. 0.034915.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的体积为( )A.33B.43C. 2D.836.某程序框图如图所示,该程序运行后输出S 的结果是( )A. 32B.16 C. 2512D. 137607.我国数学家张益唐在“孪生素数”研究方面取得突破,孪生素数也称为孪生质数,就是指两个相差2的素数,例如5和7,在大于3且不超过20的素数中,随机选取2个不同的数,恰好是一组孪生素数的概率为() A.356B.328C.17D.158.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为 A. 1B. 2C. 4D. 59.在()()51231x x -+的展开式中,含3x 项的系数为( )A. -80B. -40C. 40D. 12010.已知实数x ,y 满足约束条件402400x y x y x y +-≥⎧⎪--≤⎨⎪-≥⎩,则z =l y x -的最小值为( )A .43B .45C .2D .311.已知双曲线5422y x -=1的右焦点为F ,点M 在双曲线上且在第一象限,若线段MF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线MF 的斜率是( ) A .35-B .7115-C .7115 D .3512.已知函数()()()22210,0xax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A. (),e +∞B. ()2e ,+∞C. ()20,eD. ()0,e第II 卷(非选择题)二.填空题(本题共4个小题,每个小题5分,共20分)13.函数f(x)是定义在R 上的奇函数,当10x -<<时,()3xf x =,则()3log 2f =______.14.在新高考改革中,学生可从物理、历史、化学、生物、政治、地理、技术7科中任选3科参加高考,现有甲、乙两名学生先从物理、历史2科中任选1科,再从化学、生物、政治、地理、技术5科中任选2科,则甲、乙两人恰有1门学科相同的选法有 种.15.已知点O (0,0),A (1,2),B (m ,0)(m >0),则cos <OA ,OB >= ,若B 是以OA 为边的矩形的顶点,则m = . 16.数列{a n }是首项10a ≠,公差为d 的等差数列,其前n 和为S n ,存在非零实数t ,对任意*n N ∈有(1)n n nS a n t a =+-⋅恒成立,则t 的值为__________.三、解答题(本题共5个小题,第17-21题没题12分,解答题应写出必要的文字说明或证明过程或演算步骤)17.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2cosC (acosB+bcosA )=c . (1)求C ;(2)若c =7,△ABC 的面积为233,求△ABC 的周长. 18.已知数列{a n }的前n 项和为S n 且S n =2n 2+n ,n∈N *,数列{b n }满足a n =4log 2b n +3,n∈N *. (Ⅰ)求a n 和b n 的通项公式; (Ⅱ)求数列{a n •b n }的前n 项和T n .19.如图,在四棱锥P −ABCD 中,PA⊥底面ABCD ,AB⊥AD,BC∥AD,PA=AB=BC=2,AD=4,E 为棱PD 的中点,PF PC λ=(λ为常数,且01λ<<).(1)若直线BF∥平面ACE ,求实数λ的值; (2)当14λ=时,求二面角C −AE −F 的大小.20.已知椭圆C :22221x y a b +=(0a >,0b >)的长轴为双曲线22184x y -=的实轴,且椭圆C过点P (2,1).(1)求椭圆C 的标准方程;(2)点A ,B 是椭圆C 上异于点P 的两个不同的点,直线PA 与PB 的斜率均存在,分别记为1k ,2k ,且1212k k ⋅=-,当坐标原点O 到直线AB 的距离最大时,求直线AB 的方程.21.已知函数f (x )=22+-+x a x •e x(a≥0).(1)讨论函数f (x )的单调性;(2)当b∈[0,1)时,设函数g (x )=2)1(x x b e x +-(x >0)有最小值h (b ),求h (b )的最大值.选考题:共10分,请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2=θ2sin 314+,曲线C 2的极坐标方程为ρ=1.若正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(1,6π).(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA|2+|PC|2的取值范围. 23.[选修4-5:不等式选讲] 已知函数f (x )=|x ﹣1|.(1)求不等式f (x )+f (2x )≤4的解集M ;(2)记集合M 中的最大元素为m ,若不等式f 2(mx )+f (ax )≤m 在[1,+∞)上有解,求实数a 的取值范围.参考答案1.【答案】 C【解析】解:∵2x﹣8<2﹣3x ,∴x<2,∴A=(﹣∞,2), ∵x 2﹣4x+3<0,∴1<x <3,∴B=(1,3), ∴A∪B=(﹣∞,3). 故选:C . 2.【答案】D【解析】解:由(1+i )z =4i , 得z ===2+2i , 则|z|==2.故选:D . 3. 【答案】A【解析】解:在(0,+∞)上单调递增,和在(0,+∞)上都是减函数. 故选:A . 4.【答案】B【解析】根据cos89sin1︒=,将一个单位圆分成360个扇形,由这360个扇形的面积之和近似为单位圆的面积求解.【详解】因为()cos89cos 901sin1︒=-=,所以将一个单位圆分成360个扇形,则每一个扇形的圆心角为1︒, 所以这360个扇形的面积之和近似为单位圆的面积,即2136011sin112π⨯⨯⨯⨯≈,所以 3.1416sin10.01745180180π≈≈≈, 故选:B5.【答案】B【解析】根据三视图可得如图所示的几何体,根据椎体的体积公式以及三视图中的数据可求该几何体的体积. 【详解】复原后的几何体为如图所示的三棱锥,其底面为等腰三角形, 该三角形的底边长为2,高为2,棱锥的高为2,故体积为114222323⨯⨯⨯⨯=(). 故选:B . 6.【答案】C【解析】由题意,S 、S 初始值分别为1,0.当k 为小于5的正整数时,用1S k+的值代替S ,1k +代替k ,进入下一步运算.由此列出如下表格S 0 1 112+ 11123++ 1111234+++输出S值k 1 2 34 5因此,最后输出的123412S =+++=故选:C . 7.【答案】D【解析】写出大于3且不超过20的素数,分别计算出随机选取2个不同的数的所有情况和恰好是一组孪生素数的情况,再利用古典概型公式代入求解.【详解】大于3且不超过20的素数为:5,7,11,13,17,19,共6个,随机选取2个不同的数,共有65152⨯=个情况,恰好是一组孪生素数的情况为:5和7,11和13,17和19,共3个,所以概率为31155P ==. 故选:D8.【答案】A【解析】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为1d r -=.9.【答案】C【解析】针对()512x -部分,通项为155(2)(2)r r r r rr T C x C x +=-=-,∴()()51231x x -+中3x项为2?33?335512840C x C x x -=,故选:C10.【答案】B【解析】解:由约束条件作出可行域如图,联立,解得A(),z=的几何意义为可行域内的动点与定点P连线的斜率,由图可知,,可知z=的最小值为.故选:B.11.【答案】A【解析】解:如图所示,设线段MF的中点为H,连接OH,设双曲线的右焦点为F,连接MF.双曲线的左焦点为F′,连接MF′,则OH∥MF′.又|OH|=|OF|=c=3,|FH|=|MF|=(2a﹣2c)=a﹣c=1.设∠HFO=α,在△OHF 中,tanα==,∴直线MF 的斜率是﹣.故选:A . 12.【答案】B 分析:【解析】解答:当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B.13.【答案】12-【解析】】因为3log 2(0,1)∈,所以3log 2(1,0)-∈-由()f x 为奇函数得:()()31log 233311log 2log 2log 322f f f ⎛⎫=--=-=-=- ⎪⎝⎭. 故答案为:12-14.【答案】180【解析】】根据题意,按物理、历史2科中有或没有相同学科分2种情况讨论,由加法原理计算可得答案.解:根据题意,分2种情况讨论: ①物理、历史2科中有相同学科.则有C =60种选法; ②物理、历史2科中没有相同学科.则有C=120种选法.所以甲、乙两人恰有1门学科相同的选法有60+120=180种; 故答案为:180.15.【答案】,5解:根据题意,点O (0,0),A (1,2),B (m ,0), 则=(1,2),=(m ,0),则||=,||=m ,•=m ,故cos <,>==, 若B 是以OA 为边的矩形的顶点,而与不垂直,则必有⊥,又由=(m ﹣1,﹣2),则有•=(m ﹣1)+2×(﹣2)=0,解可得m =5,故答案为:,5.16.【答案】1或12【解析】当1n =时,()1n n n S a n t a =+-⋅恒成立,当2n ≥时: 当数列的公差0d =时,()1n n n S a n t a =+-⋅即()1111na a n t a =+-⋅, 据此可得()()1111n a n t a -=-⋅⋅,则1t =,当数列的公差0d ≠时,由题意有:()1n n n S a n t a =+-⋅,()1112n n n S a n t a ---=+-⋅, 两式作差可得:()()1112n n n n n a a a n ta n ta --=-+---,整理可得:()()()1111n n n n t a a t a ---⋅⋅-=-,即:()111n ta n d t-=-⋅-,① 则1n ta n d t=⋅-,② ②-①整理可得:11n n ta a d d t--==-恒成立, 由于0d ≠,故11tt =-,据此可得:12t =, 综上可得:t 的值为1或12. 17.【答案】【解析】解:(1)由已知2cosC (acosB+bcosA )=c , 正弦定理得:2cosC (sinAcosB+cosAsinB )=sinC , 即2cosC•sinC=sinC , ∵0<C <π,sinC≠0, ∴cosC=, ∴C=.(2)由c =,C =,△ABC 的面积为=absin=,∴ab=6,又由余弦定理c 2=b 2+a 2﹣2abcosC ,可得:7=b 2+a 2﹣ab =(a+b )2﹣3ab =(a+b )2﹣18, 可得:(a+b )2=25,解得:a+b =5, ∴△AB C 的周长a+b+c =5+.18.【答案】【解析】解:(Ⅰ)数列{a n }的前n 项和为S n 且S n =2n 2+n ,n∈N *, 则:a n =S n ﹣S n ﹣1(n≥2), =2n 2+n ﹣2(n ﹣1)2﹣(n ﹣1) =4n ﹣1,当n =1时,a 1=3符合通项公式, 所以:a n =4n ﹣1.由于:数列{b n }满足a n =4log 2b n +3,n∈N *.则:4n ﹣1=4log 2b n +3, 所以:,(Ⅱ)由(Ⅰ)得:设c n =,则:T n =c 1+c 2+…+c n =3•20+7•21+…+(4n ﹣1)2n ﹣1①②①﹣②得:﹣(4n ﹣1)2n ﹣1,整理得:.19.【答案】 (1)12λ= (2)2π 【解析】(1)因为PA ⊥底面ABCD ,AB ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥. 由题意可知,AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系O xyz -,则()0,0,0A ,()2,0,0B ,()2,2,0C ,()0,4,0D ,()002P ,,,()0,2,1E , 所以()2,2,0AC =,()0,2,1AE =,()2,0,2BP =-,()2,2,2PC =-, 则()2,2,2PF PC λλλλ==-,所以()22,2,22BF BP PF λλλ=+=--. 设平面ACE 的一个法向量为(),,m x y z =.由00AC m AE m ⎧⋅=⎨⋅=⎩得:220,20.x y y z +=⎧⎨+=⎩不妨令1x =,得()1,1,2m =-.因为BF ∥平面ACE ,所以222440BF m λλλ⋅=--+-=,解得12λ=.(2)由(1)知()0,0,2AP =,()2,2,2PF λλλ=-,()0,2,1AE =,平面ACE 的一个法向量为()1,1,2m =-,所以()1132,2,22,,222AF AP PF λλλ⎛⎫=+=-= ⎪⎝⎭.设平面AEF 的一个法向量为()000,,n x y z =.由0,0,AE n AF n ⎧⋅=⎨⋅=⎩得0000020,1130.222y z x y z +=⎧⎪⎨++=⎪⎩令01y =,得()5,1,2n =-, 所以cos ,0m nm n m n ⋅==.所以m n ⊥,所以二面角C AE F --的大小为2π.20.【答案】(1)22182x y +=(2)6350x y --=【解析】(1)由题意可得22242,411,a a b⎧=⎪⎨+=⎪⎩解方程组可求出2,a b ,从而可求出椭圆方程, (2)①当直线AB 的斜率存在时,设其方程为y kx t =+,()11,A x y ,()22,B x y ,将直线方程代入椭圆方程中消去y ,利用根与系数的关系,然后由1212k k ⋅=-列方程可求出213k t +=-,则直线AB 的方程为213k y kx +=-,从而可得其过定点,②当直线AB 的斜率不存在时,设()00,A x y ,则()00,B x y -,由1212k k ⋅=-可求出,A B 两点的坐标,从而可求出直线AB 过的定点,进而可求出直线方程 【详解】(1)由题意,知222411,a a b⎧=⎪⎨+=⎪⎩解得22a b ⎧=⎪⎨=⎪⎩, 所以椭圆C 的标准方程为22182x y +=.(2)①当直线AB 的斜率存在时,设其方程为y kx t =+,()11,A x y ,()22,B x y .联立2248,,x y y kx t ⎧+=⎨=+⎩得()222418480k x ktx t +++-=.由韦达定理,得12221228,4148,41kt x x k t x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩所以122221222,418.41t y y k t k y y k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为()()()()()22221212121222212121211411241122224416164421424y y y y t k y y t t k t kk k x x x x x x t kt k t k t k -++------+--⋅=⋅====---++++-+++-12=-,所以3210t k ++=,即213k t +=-,所以直线AB 的方程为213k y kx +=-,即(32)(31)0x k y --+=,由320310x y -=⎧⎨+=⎩,得2313x y ⎧=⎪⎪⎨⎪=-⎪⎩故直线AB 恒过点21,33M ⎛⎫-⎪⎝⎭. ②当直线AB 的斜率不存在时,设()00,A x y ,则()00,B x y -,所以()()20000122000011121224222y y y x k k x x x x ----+⋅=⋅===-----,解得023x =,所以此时直线AB 也过点21,33M ⎛⎫-⎪⎝⎭.因为点21,33M ⎛⎫- ⎪⎝⎭在椭圆C 的内部, 所以当直线AB 垂直于OM 时,坐标原点O 到直线AB 的距离最大, 此时直线AB 的方程为6350x y --=.21.【答案】【解析】解:(1)函数f (x )的定义域为(﹣∞,﹣2)∪(﹣2,+∞), 且f′(x )=e x[+]=e x•,令x 2+ax+a =0,则△=a 2﹣4a , ①当0≤a≤4时,△≤0,x 2+ax+a≥0,即f′(x )≥0且不恒为零,故f (x )的单调递增区间为(﹣∞,﹣2)和(﹣2,+∞), ②当a >4时,△>0,方程x 2+ax+a =0的两根为x 1=,x 2=,由于x 1﹣(﹣2)=<0,x 2﹣(﹣2)=>0,(或令φ(x )=x 2+ax+a ,φ(﹣2)=4﹣a <0) 故x 1<﹣2<x 2,因此当x∈(﹣∞,x 1)时,f′(x )>0,f (x )单调递增, 当x∈(x 1,﹣2)时,f′(x )<0,f (x )单调递减, 当x∈(﹣2,x 2)时,f′(x )<0,f (x )单调递减, 当x ∈(x 2,+∞)时,f′(x )>0,f (x )单调递增,综上,当0≤a≤4时,f (x )的单调递增区间为(﹣∞,﹣2)和(﹣2,+∞); 当a >4时,f (x )在(﹣∞,)单调递增,在(,﹣2)单调递减,在(﹣2,)单调递减,在(,+∞)单调递增.(2)由g′(x )==,设k(x)=e x+b(x>0),由(1)知,a=0时,f(x)=e x在(0,+∞)单调递增,故k(x)在区间(0,+∞)单调递增,由于k(2)=b≥0,k(0)=﹣1+b<0,故在(0,2]上存在唯一x0,使k(x0)=0,﹣b=,又当x∈(0,x0)时,k(x)<0,即g′(x)<0,g(x)单调递减,当x∈(x0,+∞)时,k(x)>0,即g′(x)>0,g(x)单调递增,故x∈(0,+∞)时,h(b)=g(x0)===,x0∈(0,2],又设m(x)=,x∈(0,2],故m′(x)==>0,所以m(x)在(0,2]上单调递增,故m(x)≤m(2)=,即h(b)的最大值为.22.【答案】【解析】解:(1)点A的极坐标为(1,),根据转换为直角坐标为(),点B的极坐标为(1,),根据转换为直角坐标为(),点C的极坐标为(),根据转换为直角坐标为(),点D的极坐标为(1,),根据转换为直角坐标为(),(2)曲线C1的极坐标方程为ρ2=,根据转换为直角坐标方程为,设P(2cosθ,sinθ),则|PA|2+|PC|2=.23.【答案】【解析】解:(1)由题意可知,f(x)+f(2x)=|x﹣1|+|2x﹣1|≤4,当x≥1时,原不等式可化为3x﹣2≤4,解答x≤2,所以1≤x≤2;当<x<1时,原不等式可化为1﹣x+2x1≤4,解得x≤4,所以<x<1;当x≤时,原不等式可化为1﹣x+1﹣2x≤4,解得x≥﹣,所以﹣≤x≤.综上,不等式的解集M={x|﹣≤x≤2}.(2)由题意,m=2,在不等式等价为|2x﹣1|2+|ax﹣1|≤2,因为x≥1,所以|ax﹣1|≤2﹣(4x2﹣4x+1)=﹣4x2+4x+1,所以4x2﹣4x﹣1≤ax﹣1≤﹣4x2+4x+1,要使不等式在[1,+∞)上有解,则(4x﹣4)min≤a≤,所以0≤a≤2,即实数a的取值范围是[0,2].。