(全国卷Ⅰ)2019年高考数学压轴卷理

合集下载

北京市2019年高考数学压轴卷理(含解析)

北京市2019年高考数学压轴卷理(含解析)

状元考前提醒拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。

答题策略答题策略一共有三点:1. 先易后难、先熟后生。

先做简单的、熟悉的题,再做综合题、难题。

2. 先小后大。

先做容易拿分的小题,再做耗时又复杂的大题。

3. 先局部后整体。

把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。

立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。

中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。

确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。

不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。

试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。

要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。

考试时,每一道题都认真思考,能做几步就做几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。

检查后的涂改方式要讲究发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。

如果对现有的题解不满意想重新写,要先写出正确的,再划去错误的。

有的同学先把原来写的题解涂抹了,写新题解的时间又不够,本来可能得的分数被自己涂掉了。

考试期间遇到这些事,莫慌乱!北京市2019年高考数学压轴卷 理(含解析)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知(1i)i 1i(b b +=-+∈R),则b 的值为() A.1 B.1- C. i D.i - 2.下列函数中,值域为R 的偶函数是( ) A .y=x 2+1B .y=e x ﹣e ﹣xC .y=lg|x|D .2x y =3.若变量y x ,满足约束条件2,1,0x y x y +≤⎧⎪≥⎨⎪≥⎩,则y x z +=2的最大值为( )A .0B .2C .3D .44. 某程序框图如图所示,执行该程序,若输入的a 值为1,则输出的a 值为()输出输入开始结束A.1B.2C.3D.55.某四棱锥的三视图如图所示,则该四棱锥的侧面积是() A .27 B .30 C .32D .366. “4ab =”是直线210x ay +-=与直线220bx y +-=平行的() A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.已知点(22,0)Q 及抛物线24x y =上一动点(,)P x y ,则||y PQ +的最小值是() A .12B .1C .2D . 3 8.设函数()f x 的定义域D ,如果存在正实数m ,使得对任意x D ∈,都有()()f x m f x +>,则称()f x 为D 上的“m 型增函数”,已知函数()f x 是定义在R 上的奇函数,且当0x >时,()f x x a a =--(a R ∈).若()f x 为R 上的“20型增函数”,则实数a 的取值范围是()A .0a >B .5a <C .10a <D .20a <二、填空题(本大题共6个小题,每小题5分,满分30分.把答案填在题中的横线上.) 9.函数2sin(2)16y x π=++的最小正周期是 ,最小值是 .10.已知,且114=+yx ,若恒成立,则实数的取值范围是__________.11. 如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的方程为 .12.51⎪⎭⎫ ⎝⎛-x x 的二项展开式中x 项的系数为_________.(用数字作答)13.若01a b <<<,b x a =,a y b =,log b z a =,则x ,y ,z 有小到大排列为 .14.数列{}n a 满足:*112(1,)n n n a a a n n N -++>>∈,给出下述命题:①若数列{}n a 满足:21a a >,则*1(1,)n n a a n n N ->>∈成立;②存在常数c ,使得*()n a c n N >∈成立;③若*(,,,)p q m n p q m n N +>+∈其中,则p q m n a a a a +>+; ④存在常数d ,使得*1(1)()n a a n d n N >+-∈都成立.上述命题正确的是____.(写出所有正确结论的序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分) 在ABC △中,已知312,cos 413A C π==,13.BC = (Ⅰ)求AB 的长;(Ⅱ)求BC 边上的中线AD 的长. 16.(本小题满分13分)自由购是通过自助结算方式购物的一种形式.某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:20以下 [)20,30 [)30,40 [)40,50 [)50,60 []60,7070以上 使用人数 3 12 17 6 4 2 0 未使用人数314363(1)现随机抽取1名顾客,试估计该顾客年龄在[)30,50且未使用自由购的概率; (2)从被抽取的年龄在[]50,70使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在[)50,60的人数,求随机变量的分布列及数学期望;(3)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.17.(本小题满分13分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,∠BCD=135°,侧面PAB ⊥底面ABCD ,∠BAP=90°,AB=AC=PA=2,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB ;(Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所成的角相等,求的值.18. (本小题满分14分) 已知函数2()e (1)(0)2xmf x x x m =-+≥. (Ⅰ)当0m =时,求函数()f x 的极小值; (Ⅱ)当0m >时,讨论()f x 的单调性;(Ⅲ)若函数()f x 在区间(),1-∞上有且只有一个零点,求m 的取值范围. 19.(本小题满分14分)已知圆:O 221x y +=的切线l 与椭圆:C 2234x y +=相交于A ,B 两点.(1)求椭圆C 的离心率; (2)求证:OA OB ⊥; (3)求OAB ∆面积的最大值. 20.(本小题共13分)已知曲线n C 的方程为:*1()n nx y n N +=∈.(1)分别求出1,2n n ==时,曲线n C 所围成的图形的面积;(2)若()n S n N *∈表示曲线n C 所围成的图形的面积,求证:()n S n N *∈关于n 是递增的;(3)若方程(2,)n n nx y z n n N +=>∈,0xyz ≠,没有正整数解,求证:曲线(2,)n C n n N *>∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.1.【答案】A【解析】试题分析:因为(1+bi )i=i+bi2=-b+i=-1+i ,所以1b -=-,1b =. 2.【答案】C【解析】试题分析:y=x2+1是偶函数,值域为:[1,+∞).y=ex ﹣e ﹣x 是奇函数.y=lg|x|是偶函数,值域为:R .2x y =的值域:[0,+∞).故选:C 3.【答案】D【解析】作出约束条件表示的可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,z 是直线2x y z +=的纵截距,向上平移直线l ,z 增大,当直线l 过点(2,0)B 时,24z x y =+=为最大值.故选D .4.【答案】C【解析】由题知:a=1,i=1,a=2-1=1,i=2,否;a=3,i=3,否;a=6-3=3,i=4,是, 则输出的a 为3. 5.【答案】A.【解析】四棱锥的底面是边长为3的正方形,侧面是两个直角边长为3,4的直角三角形,两个直角边长为3,5的直角三角形,∴该四棱锥的侧面积是272532124321=⨯⨯⨯+⨯⨯⨯,故选A.6.【答案】B【解析】0=a 时,直线012=-+ay x 与直线022=-+y bx 不平行,所以直线012=-+ay x 与直线022=-+y bx 平行的充要条件是1222--≠=a b ,即4=ab 且)4(1≠≠b a ,所以“4=ab ”是直线012=-+ay x 与直线022=-+y bx 平行的必要不充分条件.故选B .7.【答案】C.【解析】由抛物线的定义知:(0,1)F ,∴||1PF y =+,∴22||||1||||1(220)(01)1312y PQ PF PQ FQ +=-+≥-=-+-=-=,即当P ,Q ,F 三点共线时,值最小,故选C.8.【答案】B.【解析】若0a ≤:当0x >时,()||||f x x a a x x =--==,又∵()f x 是定义在R 上的奇函数,∴()f x x =,符合题意;若0a >:当0x >时,, 0()||2, x x af x x a a x a x a -<<⎧=--=⎨-≥⎩,又∵()f x 是定义在R 上的奇函数,∴()f x 大致的函数图象如下图所示,根据题意可知(20)()f x f x +>对于任意x R ∈恒成立,∴问题等价于将()f x 的图象向左平移20个单位后得到的新的函数(20)f x +图象恒在()f x 图象上方,根据图象可知420a <,即05a <<,综上实数a 的取值范围是(,5)-∞,故选B.9.【答案】1-,π. 【解析】ππωπ===222T ,最小值是211-+=-,故填:1-,π. 10.【答案】[]2,3- 【解析】,,恒成立,且,=因为恒成立,.11.【答案】01=+-y x 【解析】直线AB 斜率为111-=---+aa aa ,所以l 斜率为1,设直线方程为b x y +=,由已知直线过点),1(a a -,所以b a a +-=1,即1=b 所以直线方程为01=+-y x12.【答案】5-【解析】展开式通项为53521551()()(1)rr rr r rr T C x C x x --+=-=-,令5312r -=,1r =,所以x 项的系数为115(1)5C -=-.13.【答案】x y z << 【解析】取特殊值,令14a =,12b =,则121142b x a ⎛⎫=== ⎪⎝⎭,141122a y b ⎛⎫==> ⎪⎝⎭,121log log 24b z a ===,则1411222⎛⎫<< ⎪⎝⎭,即x y z << 14.【答案】①④.【解析】试题分析:对①;因为21a a >,所以210a a ->,由已知11n n n n a a a a +-->-,所以11210n n n n a a a a a a +-->->⋅⋅⋅>->,即1n n a a ->,正确对②;假设存在在常数c ,使得n a c>,则有12n n n a a c a ++<<,所以11n n a a -++应有最大值,错,对③,因为p q m n +>+,22p q m n++>,所以假设 p q m na a a a +>+,则应有22p q m na a ++>,即原数列应为递增数列,错,对④,不妨设11a =,1n n a a n+-=,则(1)12n n n a -=+,若存在常数d ,使得1(1)n a a n d>+-,应有112n a a nd n -<=-,显然成立,正确,所以正确命题的序号为①④.15. (本小题满分13分) 解:(Ⅰ)由12cos 13C =,02C π<<,所以5sin 13C =.由正弦定理得,sin sin AB BC C A =,即5sin =13sin CAB BC A =⋅=……… 6分(Ⅱ)在ABD △中,3cos cos()cos 42226B C C C π=π--=+=. 由余弦定理得,222+2cos AD AB BD AB BD B =-⋅,所以2AD 21691329+242264=-⨯⨯=.所以AD =. 【答案】(1)17100;(2)详见解析;(3)2200.【解析】(1)在随机抽取的100名顾客中,年龄在[)30,50且未使用自由购的共有31417+=人,所以随机抽取1名顾客,估计该顾客年龄在[)30,50且未使用自由购的概率为17100P =. (2)X 所有的可能取值为1,2,3, ()124236C C 115C P X ===;()214236C C 325C P X ===;()304236C C 135C P X ===. 所以X 的分布列为所以X的数学期望为1311232555EX =⨯+⨯+⨯=.(3)在随机抽取的100名顾客中,使用自由购的共有3121764244+++++=人, 所以该超市当天至少应准备环保购物袋的个数估计为4450002200100⨯=. 17.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)32-【解析】试题分析:(Ⅰ)证明AB⊥AC.EF⊥AC.推出PA⊥底面ABCD ,即可说明PA⊥EF, 然后证明EF⊥平面PAC .(Ⅱ)证明MF∥PA,然后证明MF∥平面PAB ,EF ∥平面PAB .即可证明平面MEF∥平面PAB ,从而证明ME∥平面PAB .(Ⅲ)以AB ,AC ,AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,求出相关点的坐标,平面ABCD 的法向量,平面PBC 的法向量,利用直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,列出方程求解即可试题解析:(Ⅰ)证明:在平行四边形ABCD 中,因为AB=AC ,∠BCD=135°,∠ABC=45°. 所以AB⊥AC.由E ,F 分别为BC ,AD 的中点,得EF∥AB, 所以EF⊥AC.因为侧面PAB⊥底面ABCD ,且∠BAP=90°, 所以PA⊥底面ABCD .又因为EF ⊂底面ABCD ,所以PA⊥EF.又因为PA∩AC=A,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF⊥平面PAC .(Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以MF∥PA,又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以MF∥平面PAB .同理,得EF∥平面PAB . 又因为MF∩EF=F,MF ⊂平面MEF ,EF ⊂平面MEF , 所以平面MEF∥平面PAB .又因为ME ⊂平面MEF , 所以ME∥平面PAB .(Ⅲ)解:因为PA⊥底面ABCD ,AB⊥AC,所以AP ,AB ,AC 两两垂直,故以AB ,AC ,AP分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),P (0,0,2),D (﹣2,2, 0),E (1,1,0),所以(2,0,2)PB =-u u u r ,(2,2,2)PD =--u u u r ,(2,2,0)BC =-u u u r,设([0,1])PM PD λλ=∈,则(2,2,2)PM λλλ=--u u u u r ,所以M (﹣2λ,2λ,2﹣2λ),(12,12,22)ME λλλ=+--u u u r,易得平面ABCD 的法向量m u r=(0,0,1).设平面PBC 的法向量为n r=(x ,y ,z ), 由0n BC ⋅=r u u u r ,0n PB ⋅=r u u u r ,得220220x y x z -+=⎧⎨-=⎩令x=1,得n r =(1,1,1).因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以cos ,cos ,ME m ME n <>=<>u u u r u r u u u r r ,即ME m ME n ME m ME n⋅⋅=⋅⋅u u u r u r u u u r r u u u r u r u u u r r ,所以22λ-=,解得32λ=,或32λ+=(舍).18.(本小题满分14分)解:(Ⅰ)当0m =时:()(1)e x f x x '=+,令()0f x '=解得1x =-, 又因为当(),1x ∈-∞-,()0f x '<,函数()f x 为减函数; 当()1,x ∈-+∞,()0f x '>,函数()f x 为增函数. 所以,()f x 的极小值为1(1)ef -=-. (Ⅱ)()(1)(e )x f x x m '=+-.当0m >时,由()0f x '=,得1x =-或ln x m =. (ⅰ)若1em =,则1()(1)(e )0e xf x x '=+-≥.故()f x 在(),-∞+∞上单调递增;(ⅱ)若1em >,则ln 1m >-.故当()0f x '>时,1ln x x m <->或; 当()0f x '<时,1ln x m -<<.所以()f x 在(),1-∞-,()ln ,m +∞单调递增,在()1,ln m -单调递减. (ⅲ)若10em <<,则ln 1m <-.故当()0f x '>时,ln 1x m x <>-或; 当()0f x '<时,ln 1m x <<-.所以()f x 在(),ln m -∞,()1,-+∞单调递增,在()ln ,1m -单调递减.(Ⅲ)(1)当0m =时,()e xf x x =,令()0f x =,得0x =.因为当0x <时,()0f x <,当0x >时,()0f x >,所以此时()f x 在区间(),1-∞上只有一个零点. (2)当0m >时: (ⅰ)当1em =时,由(Ⅱ)可知()f x 在(),-∞+∞上单调递增,且1(1)0e f -=-<,2(1)e 0ef =->,此时()f x 在区间(),1-∞上有且只有一个零点. (ⅱ)当1em >时,由(Ⅱ)的单调性结合(1)0f -<,又(ln )(1)0f m f <-<, 只需讨论(1)e 2f m =-的符号: 当1ee 2m <<时,(1)0f >,()f x 在区间()1-∞,上有且只有一个零点; 当e2m ≥时,(1)0f ≤,函数()f x 在区间()1-∞,上无零点. (ⅲ)当10em <<时,由(Ⅱ)的单调性结合(1)0f -<,(1)e 20f m =->,2(ln )ln 022m mf m m =--<,此时()f x 在区间(),1-∞上有且只有一个零点. 综上所述,e02m ≤<. 19.(本小题满分14分)【答案】(1)3;(2)详见解析;(3).【解析】试题分析:(1)根据题意以及椭圆中a ,b ,c 满足的关系式即可求解;(2)联立直线方程与椭圆方程,利用韦达定理和平面向量数量积的坐标表示即可得证;(3)建立OABS ∆的函数关系式,将问题转化为求函数最值.试题解析:(1)由题意可知24a =,243b =,∴22283c a b =-=,∴3c e a ==,∴椭圆C的离心率为;(2)若切线l 的斜率不存在,则:1l x =±,在223144x y +=中令1x =得1y =±,不妨设(1,1)A ,(1,1)B -,则110OA OB ⋅=-=u u u r u u u r,∴OA OB ⊥,同理,当:1l x =-时,也有OA OB ⊥,若切线l 的斜率存在,设:l y kx m =+,1=,即221k m +=,由2234y kx m x y =+⎧⎨+=⎩,得222(31)6340k x kmx m +++-=.显然0∆>,设11(,)A x y ,22(,)B x y ,则122631kmx x k +=-+,21223431m x x k -=+,∴2212121212()()()y y kx m kx m k x x km x x m =++=+++, ∴1212OA OB x x y y ⋅=+u u u r u u u r221212(1)()k x x km x x m =++++22222346(1)3131m kmk km m k k -=+-+++2222222(1)(34)6(31)31k m k m k m k +--++=+22244431m k k --=+2224(1)44031k k k +--==+,∴OA OB ⊥,综上所述,总有OA OB ⊥成立;(3)∵直线AB 与圆O 相切,则圆O 半径即为OAB ∆的高,当l 的斜率不存在时,由(2)可知2AB =,则1OAB S ∆=,当l 的斜率存在时,由(2)可知,AB ======∴2242222242424(1)(91)4(9101)44(1)(31)961961k k k k k AB k k k k k ++++===++++++24222164164164419613396k k k k k =+⋅=+≤+=++++(当且仅当k =时,等号成立),∴3AB ≤,此时max (S )3OAB ∆=,综上所述,当且仅当3k =±时,OAB∆面积的最大值为23.20.(本小题共13分)【答案】(1)π;(2)详见解析;(3)详见解析. 【解析】试题分析:(1)画出对应n 的取值的图形,根据图形即可求解; (2)由于曲线nC 具有对称性,只需证明曲线nC 在第一象限的部分与坐标轴所围成的面积递增,再根据式子推导;(3)根据条件中给出的结论利用反证法推导.试题解析:(1)当1,2n =时,由图可知1141122C =⨯⨯⨯=,2C π=;(2)要证(*)n S n N ∈是关于n 递增的,只需证明:*1()n n S S n N +<∈,由于曲线nC 具有对称性,只需证明曲线nC 在第一象限的部分与坐标轴所围成的面积递增,现在考虑曲线nC 与1n C +,因为*||||1()n n x y n N +=∈(1)因为11*||||1()n n x y n N +++=∈,在(1)和(2)中令0x x =,0(0,1)x ∈,当0(0,1)x ∈,存在1y ,2(0,1)y ∈使得011n n x y +=,11011n n x y +++=成立,此时必有21y y >,因为当0(0,1)x ∈时100n n x x +>,所以121n ny y +>,两边同时开n 次方有,1221n ny y y +>>.(指数函数单调性)这就得到了21y y >,从而*()n S n N ∈是关于n 递增的;(3)由于(2,)n n n x y z n n N +=>∈可等价转化为()()1n n x yz z +=,反证:若曲线*(2,)n C n n N >∈上存在一点对应的坐标(,)x y ,x ,y 全是有理数,不妨设q x p =,ty s =,*,,,p q s t N ∈,且,p q 互质,,s t 互质,则由||||1n n x y +=可得,||||1n n q tp s +=,即||||||n n nqs pt ps +=,这时qs ,pt ,ps 就是(2,)n n n x y z n n N +=>∈的一组解,这与方程(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解矛盾, 所以曲线*(2,)n C n n N >∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。

(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x =.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-; (Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈. 证明:当*N n ∈时, (I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤; (III )1-21122n n n x -≤≤.高考压轴题答案一、2019年上海卷: 解:(1)等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.当120,3a d π==,集合22S ⎧⎪=⎨⎪⎪⎩⎭. (2)12a π=,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴= 当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin ,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.∴④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,S =⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件. 当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件. 当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意. 综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-()0,∞+,且:()3'4f x x =-==, 因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <当0a <()f x 2ln 0x -≥,令1t a=,则t ≥设()22ln g t t x =,t ≥则2()2ln g t t x=-,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭则()(22)2ln g x g x =,记1()ln ,7p x x x =≥,则1()p x x '===∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥,令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=>,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x ≤综上所述,所求的a 的取值范围是⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+, 则011111111222n n n n b a ---=+-=-<,*n N ∈, 可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列, 可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =, 可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,, M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(), ①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意; ④若2d-,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+,11111n n n a b a +++-+, 可得()111120n n n n b b a a d ++-+--=+,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x ++=.设()ln g x x =,则1()4)4g x x'=,所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则 ()?0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<, 所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点. 由()f x kx a =+得k =.设()h x =,则22ln 1()12()x a g x a h x x x +--+'==,其中()ln g x x =-. 由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立 故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+≤…,) 化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+---≤…, 因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11nb q n m n->=+-…) 所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立 当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=-,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m nn n n --+---=-==--… 设()(1)f n q n q =--,因为10q ->,所以()f n 单调递增,又因为q ∈所以11()(1)(1)2(1)2111m m m f m q m q m m m m ⎛⎫ ⎪⎛⎫=----=-- ⎪ ⎪-⎝⎭ ⎪-⎝⎭≤ 设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =-- 因为2ln 22ln 2x ≤,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<-在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。

2019 高考数学全国一卷压轴题解析

2019 高考数学全国一卷压轴题解析

如何学好数学 - 2019 高考数学全国一卷压轴题解析
今年高考数学结束后,许多考全国一卷的同学表示“震惊”,简直是不按照常理出牌,压轴题竟然是概率,不仅如此,还结合了数列的知识。

全国卷的压轴题近些年一直是导数题,概率出现在压轴题的确是少之又少。

然而,只要我们熟练掌握了概率的语言,再结合数学三招,解决压轴概率题也是完全没问题。

我们一起来看一看今年一卷的压轴题该怎么做吧!
如何学好高中数学 - 2019 全国一卷高考压轴题题目
如何学好高中数学 - 2019 全国一卷高考压轴题解析
如何学好数学—2019 全国一卷压轴题分析
首先,这次全国一卷的压轴题是概率题目,和近几年不一样。

但随便题目如何变化,解题的思维是一样的!随着高考题目越来越灵活的今天,希望同学们真正重视基础 + 数学思维。

靠题海,题型(模板)来死记硬背考好数学的时代会一去不复返。

新高考全国1卷数学(经典版)(全)多种方法解析压轴题

新高考全国1卷数学(经典版)(全)多种方法解析压轴题

新高考全国1卷数学(经典版)(全)多种方法解析压轴题
构造函数,不等式放缩,泰勒展开:两个方法解析2022年高考新全国1卷数学试题第7题
填空压轴题:全方位解析2022年新高考全国1卷数学试题第8题
多角度解析2022年新高考全国1卷数学试题第11题
特殊化,常规推导:从两个不同方向解析2022年新高考全国1卷数学试题第12题
两圆公切线问题——几何法,代数法:两个角度解析2022年新高考全国1卷数学试题第14题
判别式,分离参数:从两个不同角度解析2022年新高考全国1卷数学试题第15题
几何法,代数法,结论秒杀法:三种方法解析2022年新高考全国1卷数学试题第16题
方法三:使用结论
使用前作《圆锥曲线焦半径与焦点弦相关40多个结论在2015-2021年高考数学试题中的应用》中的推论2.1.2 .
2022年高考新全国1卷数学试题第21题(多种方法解析)——探究圆锥曲线张角模型中三角形面积问题以及相关定理应用
注:也可以使用到角公式求直线的斜率.
多种方法解析2022年高考新全国1卷数学试题第22题。

2019年高考数学(理)终极押题卷(新课标Ⅰ卷)(解析版)

2019年高考数学(理)终极押题卷(新课标Ⅰ卷)(解析版)

2
33
VP ABC

1 3
3 32 4
4
3
11 3
11, 故选 C
△PF1F2 的最小内角 PF1F2 30 ,根据余弦定理,
PF2 2 F1F2 2 PF1 2 2 F1F2 PF1 cos PF1F2 ,
即 4a2 4c2 16a2 2 2c 4a 3 , 2
【解析】
初始值a第一1,次b 循1,环s : s0,k 0,
第 二2,a次循2,环b : 3,k 2,
s 7,a 5,b 8,k 4,第三次循环: s 20,a 13,b 21,k 6,输出s 20.
故选:B
7. 已知函数 f x 是定义在 R 上的偶函数,且在 0,上单调递增,则( )
A. 3
B. 2 3
C. 11
D. 10
【答案】C 【解析】如图作 PH 垂直于平面 ABC 于 H 点, PA 3, PB 4, PC 5
PA2 PB2 PC2, PA BC 3,,BC2 PB2 又P面C2 PB BC, PH ABC, BC BH ,ABH 300,

=2 ,排除
C,由②图象关于
x

π 3
对称,当
x

π 3
时,函数取得最大值或最小值,排

D,由③在

π 6
,
π 3

上是增函数,
对于
A,
x


6
,
3

, 2 x

6


2
,
2

2019-年高考理科数学全国卷一概率压轴题解析

2019-年高考理科数学全国卷一概率压轴题解析

2019年高考理科数学全国卷一概率压轴题解析【题目叙述】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得´1分;若施以乙药的白鼠治愈且施以甲药的白鼠未沿愈则乙药得1分,甲药得´1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i p i“0,1,¨¨¨,8q表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0“0,p8“1,p i“ap i´1`bp i`cp i`1p i“1,2,¨¨¨,7q,其中a“P p X“´1q,b“P p X“0q,c“P p X“1q.假设α“0.5,β“0.8.(i)证明:t p i`1´p i up i“0,1,2,¨¨¨,7q为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.【题目分析】本题以概率在实践中的应用作为命题背景,重点考察学生对题目的阅读理解能力。

命题人在命题过程中颇费心机:(1)在题目设计上,选取了概率论中一个非常经典的问题——“质点在直线上的随机游动(两端带吸收壁)”,这一问题在许多高等数学概率论的教材中都会涉及到,本身就自带一定的难度,尤其是在题目理解方面,更何况本题还是把这一理论问题实际化;“质点在直线上的随机游动(两端带吸收壁)”这一问题在本题后面也会详细介绍,以飨读者。

2019年北京市高考压轴卷数学(理)试卷及解析

2019年北京市高考压轴卷数学(理)试卷及解析

2019年北京市高考压轴卷数学(理)试卷★祝考试顺利★一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知(1i)i 1i(b b +=-+∈R),则b 的值为()A.1B.1-C. iD.i -2.下列函数中,值域为R 的偶函数是( )A .y=x 2+1B .y=e x ﹣e ﹣xC .y=lg|x|D .2x y =3.若变量y x ,满足约束条件2,1,0x y x y +≤⎧⎪≥⎨⎪≥⎩,则y x z +=2的最大值为( )A .0B .2C .3D .44. 某程序框图如图所示,执行该程序,若输入的a 值为1,则输出的a 值为() 输出输入开始结束A.1B.2C.3D.55.某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A .27B .30C .32D .366. “4ab =”是直线210x ay +-=与直线220bx y +-=平行的()A.充分而不必要条件B.必要而不充分条件[]C.充分必要条件D.既不充分也不必要条件7.已知点Q 及抛物线24x y =上一动点(,)P x y ,则||y PQ +的最小值是()A .12B .1C .2D . 38.设函数()f x 的定义域D ,如果存在正实数m ,使得对任意x D ∈,都有()()f x m f x +>,则称()f x 为D 上的“m 型增函数”,已知函数()f x 是定义在R 上的奇函数,且当0x >时,()f x x a a =--(a R ∈).若()f x 为R 上的“20型增函数”,则实数a 的取值范围是()A .0a >B .5a <C .10a <D .20a <二、填空题(本大题共6个小题,每小题5分,满分30分.把答案填在题中的横线上.)9.函数2s i n (2)16y x π=++的最小正周期是 ,最小值是 .10.已知,且114=+y x ,若恒成立,则实数的取值范围是__________.11. 如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的方程为 .。

2019年全国统一高考数学试卷(理科)真题解析(解析版)

2019年全国统一高考数学试卷(理科)真题解析(解析版)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设z =-3+2i ,则在复平面内z 对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】 【分析】本题考查复数的共轭复数和复数在复平面内的对应点位置,渗透了直观想象和数学运算素养.采取定义法,利用数形结合思想解题.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目,难度偏易.忽视共轭复数的定义致错,复数与共轭复数间的关系为实部同而虚部异,它的实部和虚部分别对应复平面上点的横纵坐标.3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A. -3 B. -2 C. 2 D. 3【答案】C 【解析】 【分析】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.【详解】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A.B.C.D.【答案】D 【解析】 【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查. 【详解】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=所以3.r R α==【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差【答案】A 【解析】 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x <<<,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数234817x x x x x '=<<<()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()22221119q S x x x x x x ⎡⎤=-+-++-⎢⎥⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 显然极差变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.6.若a >b ,则 A. ln(a −b )>0B. 3a <3bC. a 3−b 3>0D. │a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3xy =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │ D. f (x )= sin│x │【答案】A 【解析】 【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间单调递减,排除B ,故选A .【点睛】利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;10.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15B.5C. D.【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B .【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A.B. C. 2 D.【答案】A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A. 9,4⎛⎤-∞ ⎥⎝⎦B. 7,3⎛⎤-∞ ⎥⎝⎦ C. 5,2⎛⎤-∞ ⎥⎝⎦ D. 8,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.14.已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】 【分析】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案. 【详解】因为()f x 是奇函数,且当0x <时,()ax f x e -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3π. 【点睛】本题主要考查函数奇偶性,对数的计算.15.V ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则V ABC 的面积为__________.【答案】【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】 (1). 共26个面. (2). 1. 【解析】 【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决. 【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则A B B E x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(全国卷Ⅰ)2019年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1- CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面向量a ,b,满足(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2017 B .2018 C .2019D .20208.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()1f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()31nx x ⎛++ ⎝的展开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满足条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数z =的最大值为16.如图,在ABC △中,sin2ABC ∠=,点D 在线段AC 上,且2AD DC =,BD ,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满足:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参加全市座谈交流,设X 表示得分在区间(]130,150中参加全市座谈交流的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分)设函数()(ln f x x x =-+. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的普通方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的任意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2019全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1ia +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可排除选项A ,B ; 32m =,1n =时,可排除选项C , 由指数函数的性质可判断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面向量模的计算公式可得:3-a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 第二次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2018,故选B .8.【答案】A【解析】设事件A 为48h 发病,事件B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】观察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()12sin 4π21f x x x x ⎛⎫=+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确;当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确;若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作M P 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()3111256n⎛+⨯= ⎝,据此可得:7n =,73x ⎛+ ⎝展开式的通项公式为:()721732177C C r r rr r r T xx --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()1,2cos x y zθ-⋅===,其中θ为向量)1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π,目标函数z=C .16.【答案】【解析】由sin2ABC ∠=可得:cos 2ABC ∠, 则sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由sin2ABC ∠=可知:452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=,由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=,整理可得:22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =,y 据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯=三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n nn S +=-. 18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =. 【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===; 故X 的分布列为:()20127777E X =⨯+⨯+⨯=. 19.(本小题满分12分)【答案】(1)见解析(2 (1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴ED DB=, 由3AD =,可知BD =DE =AF = 则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C ,∴(0,BF =-,(3,0,EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即30,30,y x ⎧-=⎪⎨-=⎪⎩令z =(4,n =.∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||cos ,13||||32n CA n CA n CA ⋅<>===⋅. ∵二面角F BE D --为锐角,∴二面角F BE D --. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,根据抛物线的定义AC AF=,所以24AB AC p ==,BC =,122ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=-+-,则()2131'ax g x --,令())2131h x ax =--,则()23169'x a ax h x ⎡⎤--==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 注意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,注意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >;(iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -≤⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析. 【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭. (2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=≥1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。

相关文档
最新文档