用于大型地震勘探网的高精度低功耗自检测数据采集系统
大型地震数据采集系统中的实时监视系统设计

21 0 2年
第 7期
7月
核 电子学 与探 测技 术
Nuce rElcr nis& Dee t n Te h oo y l a e to c t ci c n l g o
V0. No 7 132 .
Jl . 2 1 uy 0 2
大 型 地 震 数 据 采 集 系统 中的 实 时监 视 系统 设计
可 以应用 于其他数据采集系统 。
关键 词 : 数据采集系统 ; 系统 ; ; 监视 实时 不同数据传 输路径
中图分类号 : T 7 P2 4+. 2 文献标志码 : A 文章 编号 : 0 5 -94 2 1 )70 1 -6 2 80 3 ( 02 0 -840
海 洋石 油 在 现 代 石油 中 的 比例 越 来 越大 , 地 震 勘 探 方法 是 目前 油气 田勘 探 的主 要 手段 ,
据 和地 震 采 集数 据 , 中状 态 数 据 需要 有 较 强 其
勘探时所使用的勘探设备具有规模大、 多通道 、 高 采样 率 、 分 辨 率 、 时 处 理 等 特 点 ¨ 。在 高 实 J
庞 大 的地 震数 据 获 取 系统 中 , 地 震 数据 采 集 对
的实时性 , 而地震采集数据量较大 , 需要数据传 输速 度较 快 。系统 根据 2种监 视数 据 的不 同要 求, 分别设计相应数据传输 通道来实现数据传 输要求 , 通过合理设计监视数据传输流程 , 进一 步优化相应传输通道 的传输性能 , 提高监视 系
地震 数 据总 量为 6×14 3 8 .2Mb= . 1 4G 。 2 2 18 b
则拖缆 接 口板分离后 的状态 数据 的数据率为 4 .8 2 9 16kp ; 60 × 0= 2 . bs经拖缆接 口板分离 的 地 震 数 据 为有 效 数 据 帧 中地 震 数 据 , 如果 系 统 的采样 率 为 2k , Hz系统 采 集通 道数 为 1 2 , 0 每 9
物探领域中428XL地震数据采集系统的应用研究

物探领域中 428XL地震数据采集系统的应用研究摘要:地震勘探技术在石油等地下能源的开发中起着重要的作用。
利用该技术可以实现地下能源数据信息的采集分析,模拟绘制地下石油等能源分布图,为石油等能源的开采奠定坚实的基础。
面对数据信息采集,我们可能会遇到各种信号干扰,导致采集的数据信息不够准确,影响能源开采的施工设计。
本文主要介绍了428XL地震数据采集系统的技术特点,并以异常测绘为例,分析了其断层特征和解决方案,为进一步开展物探工作发挥参考作用。
关键词:428XL;物探;数据采集;应用研究地震勘探中经常遇到各种内部及外部因素的干扰,造成数据信息捕获的不精确,从而影响对地下石油等资源分布数据的分析结果。
因此我们在利用信号捕捉设备进行信息的搜集时,必须最大程度的降低其他噪声对搜集结果的干扰,以提升勘探的效果,保证对地下石油等能源分布构造有一个全面详细的了解。
1、 428XL系统介绍428XL属于sercel400系列地震数据采集机制,在采集理念,网络技术,稳定性和安全性方面均超过408UL,并已成功应用于现场。
428XL是408UL的突破和改进。
具体特点如下:(1)开放结构仍然是428XL主机的结构,通过服务器结构和灵活的网络,大大提高了中央录音单元的领先能力。
一条线控制接口盒实际实时采集容量为10000通道/2ms,可将10条线控制接口盒与PC集群连接,实际采集容量为100000通道/2ms。
主要适用于小道具,单源,单接收,高精度,全方位,高密度地震采集。
1.主机配置更加灵活,能够很好的适应不同客户群体的需求。
如果主机配置繁琐复杂,交叉机构的功能将大大削弱。
配置较小的便携式主机428XL只需要一个交叉传输系统,GPS接收机,笔记本电脑和大容量NAS硬盘存储设备。
总体质量只有5公斤,这也是该领域最便携的采集设备。
2.主机处理单元可根据用户需要选择,可通过工作站,PC或PC集群进行处理。
软件操作平台可以是windows、Linux或Solaris。
CORS系统在工程测量中的运用及精度分析

CORS系统在工程测量中的运用及精度分析【摘要】本文主要介绍了CORS系统在工程测量中的运用及精度分析。
文章从引言部分入手,阐述了CORS系统在工程测量中的重要性。
接着,深入探讨了CORS系统的工作原理,包括GPS信号接收、数据处理等方面。
然后,对CORS系统的精度进行了详细分析,包括其精度水平和影响因素。
还对CORS系统的误差来源进行了剖析,指出了可能的误差来源和相应的解决方法。
给出了提升CORS系统精度的建议和方法。
通过本文的阐述,读者可以全面了解CORS系统在工程测量中的应用和其精度分析,为工程测量实践提供有益参考。
【关键词】CORS系统, 工程测量, 运用, 工作原理, 精度分析, 误差来源分析, 精度提升方法, 引言, 结论1. 引言1.1 引言CORS系统(Continuous Operating Reference Station)是一种用于高精度测量的全球定位系统。
随着工程测量的需求不断增加,CORS系统在工程测量中的应用也越来越广泛。
CORS系统通过将一组连续运行的参考站和接收机网络连接起来,实现了高精度定位和数据传输的功能。
在工程测量中,CORS系统可以提供更准确的位置信息和变形监测数据,为工程设计、建设和监测提供了重要支持。
本文将探讨CORS系统在工程测量中的运用及其精度分析。
我们将介绍CORS系统在工程测量中的具体应用,包括其在土木工程、建筑工程和地质测量中的重要作用。
接着,我们将解析CORS系统的工作原理,深入探讨其如何通过接收和处理多个卫星信号来实现高精度定位。
然后,我们将对CORS系统的精度进行分析,探讨其在不同环境和条件下的测量精度。
我们还将分析CORS系统的误差来源,讨论可能影响其测量准确性的因素,并提出相应的解决方法。
我们将总结CORS系统在工程测量中的应用和精度分析结果,展望其在未来的发展方向。
通过本文的研究,我们希望能更深入地了解CORS系统在工程测量中的重要性和实际应用,为相关领域的专业人士提供有益的参考和指导。
NAS技术在新一代大型地震仪器ES109中的应用

仪
器
PETR 0 LEUM I STRUM ENI N S
R D 级 别 的选择有 三个 主要 因素 :可 用性 ( AI 数
据 冗余) 、性 能 和 成 本 如 果 不 要 求 可 用性 ,选 择
区 ( 目录 )进 行操作 。一般 NF S广 泛应 用在 集群服
务 器 上 ,他 的最 大 特 点是 可 以通 过 网络 让 不 同 的机 器 , 同 的操作 系统可 以彼 此 的共 享文 件 , 以它可 不 所 以看 作 一个简 单 的文件服 务器
NAS ( e r tc e trg )是 网络 连 接存 N t kAt h d Soae wo a
域 网络 上 的 , 需要 像通 常 的存 储 设备 那样 连接 在服 不 务器 上 ,是 网络 中 一个 单 独 的存 储体 系 。NAS 系统 包 括 处 理 器 、文 件 服 务 管 理模 块 和 多 个 硬 盘驱 动 器 ( 于数 据 的存储 ) 用 ,是 基 于 L N ( A 局域 网 ) 的一种 专业 的 网络 文件 存 储 及文 件备 份 设备 ,按 照 T PI C/ P
有两 种办 法 ,使用 sri s d n图形 界面工 具管理 evc - mi ea
开 启 ns f 服务和 命令 启动 ,下 面介绍 一下 通过 命令 启 动 和停 止 ns 务 的方法 。 f服
在命令 行 下运行 :
# e ci i.d nfsat / t/n t / s tr
3 NAS在 E 1 9仪 器 系统 中 的应 用 ] S0
( )硬 件 2 Itleeo M6 0 z neC l n 0 MH ;硬盘 5 35S T I D; r x .” A A I HD
地质勘探地震勘探仪器在地震勘探与技术创新的实践探索考核试卷

考生姓名:__________答题日期:_____/__/__得分:_________判卷人:_________
一、单项选择题(本题共20小题,每小题1分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.地质勘探中,地震勘探的主要目的是()
A.岩石的密度
B.岩石的弹性模量
C.岩石的粘滞性
D.地球自转速度
()
8.在地震勘探中,地震波遇到不同介质的界面时,会发生()
A.反射
B.折射
C.绕射
D.以上都会
()
9.下列哪种设备不是地震勘探中常用的震源设备?()
A.炸药
B.气枪
C.振动器
D.雷达
()
10.在地震勘探中,关于地震波的描述错误的是()
A.地形条件
B.气候条件
C.电磁干扰
D.经济因素
()
18.下列哪种方法不常用于地震勘探数据的质量控制?()
A.重复测量
B.一致性分析
C.噪声分析
D.统计分析
()
19.在地震勘探中,以下哪个不是地震波传播速度的直接影响因素?()
A.介质的密度
B.介质的弹性模量
C.介质的粘滞性
D.介质的温度
()
20.下列哪种技术不是当前地震勘探仪器技术发展的趋势?()
A.大数据处理技术
B.云计算技术
C.人工智能技术
D.模拟信号处理技术
()
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)
1.地震勘探中,地震波可以分为以下哪些类型?()
高分辨地震勘探野外采集系统简介

强烈钠化的细粒花岗岩 , 本身生成为含锡一稀有多金属 矿 的载矿体 。除锡、 钨矿外 , 尚有方铅矿 、 辉铋矿 、 辉钼 矿等流化物伴生。初查评价为 : 蚀变花 岗岩型含锡一稀 有多 金属 矿 、 中高温 热液 云英 岩 化钨 ( ) 石英 脉 型 矿 锡 一 床 。经选 矿试验 , 可综 合 回收 利用 金 属一 稀 有金 属 矿 产
勘探 。受 大道 距 (0 2 m) 多组 合 、 1~ 0 、 高频 ( 0 、 0 Hz 检 波 器的幅频 响 应 、 长 的束状 观测 系统 、 6 Hz 1 0 ) 狭
炮检 方位 角度 变化 引频 率 降低等 因素 的影 响 , 大地 约 束 了分 辨 率的进 一 步提 高。 高分辨 地震 勘探 极
中图分 类号 : 6 1 4 文献标 识码 : 文章 编号 :O 4 5 1 ( 0 7 0 — 0 8 —0 P 3. B 10— 762 0 )5 00 3
1 高分 辨地震 勘探数 据 采集制 约 因素
煤层 顶 、 板 的力学 性质 , 底 煤层 内裂 隙发 育情况 等要求 。 而现 有仪 器装备 及相 应 数 据 采集 方 法 制 约着 煤 炭 三维 地震 数据 采集分 辨率 的进 一步提 高 , 以完 成矿井 地质 难 所要求 的任 务 。 ( )目前 , 1 煤炭 三维 高分辨 地震 勘 探 多采用 大道 距
参考文献 :
1 5万鹏冲 、 郎蒲寨 幅区域地质调查报告E ] R. 以上 两 种 测 量 方 法 , 结 果 差 异 较 大 , 论 从 异 [ ] 1: 其 不
维普资讯
20 年第 5 07 期
西部探矿工程
8 1
()目前 , 炭系 统 广泛 使 用 的 6 Hz10 高 频 检 波器 就是 一个 真正 意义 上 的采集站 。 3 煤 0 、0 Hz 本 按 1d /c 的趋 势 向低 频 方 向下 降 。因 而只 有 在低 2 bot 检波器其 幅频 响应 是 高通 的 , 即在 低 于 谐 振 频 率 时 , 基 2 3 数 据传 输特 点 . ( ) 由 数 字 检 波 器 A/ 转 换 后 的 数 据 链 经 1 D 0 MHz 网络传 输 。传输 线 内没有 任何模 拟信 号 。 于谐振频 率 的频段 上 , 有 高频补 偿 作用 。极 大地 局 限 1 0 才 () 2 数据传输 (I M) S I 没有 5Hz 0 噪音干扰, 但存在 了接 收频 率 的提高 。 ()在 三 维 地 震 施 工 中 , 于受 到 工 作 道 数 的 限 串音 和漏 电 。 4 由 制, 通常采用非全三维束状观测系统接收形成共面元道 () 3 在电缆数传总线上传输指令 、 状态信息和接收 素养。在狭长的束状范围内, 各个炮 点到远近检波点之 数据 。 . 间, 其炮检方位角变化较 大, 必然出现激发子 波在传播 2 4 数 据采 集特点 过程 中因 中心点 发 散引起 旅行 时 间 的变 化 , 而 产 生 高 从 ()单个 数字 检波 器接 收 , 组合 , 1 不 无采 集站 。 频衰减叠 加道 。高频 衰 减 值 的 大 小 与炮 检 方 位 角 的大 ()大线 (I M) 1 采 集 单 元 ( MG) 2 S 将 2个 I S 数据 传 小成正比。因此束状观测系统限制了分辨率 的提高。 输到 总控 系统 ( R 。 C U) 通过 上述 简要 分析不 难看 出 , 炭 三 维地 震 勘探 数 煤 ()多道 且道距 等 于或 小于 5 的高密 度采集 。二 3 m 据采集中的束状观测系统所引起 的方位角变化 ,0 、 维 ( D 施工 的最 大 能力 为 2 0 道 , 维 ( D) 6Hz 2) 00 三 3 施工 的最 10 高频检 波器其 幅 频响应 , 合 检波 器对 高 频信 号 大能 力为 4 00道 。 0Hz 组 00
常用地震处理解释软件大全

常用地震处理解释软件大全一、地震处理1.ProMax简介LandMark的地震处理软件2.FocusParadigm的地震处理软件系统,配合EPOS3 TE(Third Editon)的版本。
3.CGG地震处理软件系统4.Omega地震处理软件系统。
5.TomoxPro 井间地震处理软件井间地震全套的综合处理分析软件系统,它包括以下主要功能:1)设计与模拟井间地震勘探实验2)计算全波场的井间地震人工合成图3)拾取井间地震波的初至走时4)初至波非线性层析成像5)井间地震波预处理,包括波场分离6)波动方程的全波场偏移7)上行波与下行波的CDP叠加8)偏移后处理与叠后校长量分析与应用该软件系统共包括14个模块,提供大量的质量监控与图形显示功能。
6.Univers VSP 垂直地震处理垂直地震处理VSP7.GreenMountain 绿山Mesa野外施工设计、高精度折射静校正微机版8.Omni Workshop最新的三维地震勘测设计工具集,自动生成的开放式数据库支持设计、执行和分析各个阶段的数据访问。
9.Vista Window 2D/3D10.GeoCT-I 二维野外小折射自动层析成像软件GeoTomo公司开发的二维野外小折射自动层析成像软件系统。
该系统适用于现场处理野外小折射地震资料。
11.克浪KeLang地震采集工程软件、采集论证12.TestifiLand for Windows仪器、源、接收器测试分析软件,它产生代表读到的原始带数据的统计图表。
13.SPS_QC 地震辅助数据生成与质控系统二、地震解释ndMark地震综合解释软件包R2003,工作站版15CDLandMark的大型地震综合解释软件,包括地震资料解释,三维自动层位追踪,合成地震记录制作,三维可视化解释、地质解释与地层对比、迭后处理,数据体相干分析,地震属性提取属性分析、地址建模、断层封堵分析做图。
层面与断层模型,出量计算、测井解释,精细目标分析,井位设计等。
微震监测系统介绍

ESG中国合作伙伴微震系统主机Paladin数据采集仪传感器E S G公司简介ESG,全称Engineering Seismology Group (地震工程集团)。
1993 年与以办学历史悠久、科学技术领先而著称的加拿大皇后大学合作,创立企业,致力于矿山微震监测系统的开发和研究。
发展至今企业有煤矿安全、微震等各类专家28 位,有百余位优秀技术工程师遍布全球。
历经17年的发展,ESG 公司研发生产的MMS微震监测系统已发展至第七代产品。
纵观历史,其产品以其设计领先、技术优良、服务周到、分析便捷等优势享誉全球。
其中包含耳熟能详的MP250 Trigger Type(第二代MP250 MMS 微震监测系统)、Hyperion Full Waveform(第五代亥伯龙MMS微震监测系统)和目前代表矿山微震测试系统先进水平的Paladin Seismic Recorder-V2(第七代改进型帕拉丁MMS 微震测试系统)。
目前ESG 公司产品以其良好的信誉、卓越的技术在美国、澳大利亚、亚洲以及欧洲得到广泛认可和应用。
ESG中国合作伙伴耳听为虚眼见为实微震监测仪是聆听地音的耳朵,微震可视化软件则是透视地层变化的眼睛。
ESG微震监测系统,是边坡、隧道、矿山、大坝等岩质或混凝土工程结构稳定性监测与分析的理想工具。
泰安鑫淼科技与ESG全面合作,将致力与为中国用户提供最直接的技术支持(设备提供、安装指导、数据分析)。
系统网络由传感器、Paladin信号采集处理系统、时间同步系统、光纤数据通讯系统和地面数据综合处理分析系统组成。
① 24 位×125MHz 的高精度快速信号采集能力,可同时兼容3~2KHz、15~2KHz 微震传感器和200~5KHz 声发射传感器。
②5G 高速数据缓存空间③ 科研级系统稳定性设计④ 高精度,超高强度传感器设计,可适应各种压力环境⑤ 先进的Hyperion和Paladin系统连接,卓越的分析系统融合ESG中国合作伙伴微震监测系统数据传输网络拓扑图ESG中国合作伙伴微震监测系统介绍【系统概述】微震监测系统(Micro-seismic Monitoring System, MMS),开发于上世纪七十年代初期,伴随着信息技术、计算技术的发展和计算机水平的提高而日趋成熟,主要是利用声学、地震学和地球物理学原理和计算机强大的计算功能来实现微震事件的精确定位和级别大小的确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用于大型地震勘探网的高精度低功耗自检测数据采集系
统
前言
在进行石油和天然气地震勘探时,整个勘探网格通常会建立2,000到30,000个用于采集地壳内岩层反射波的节点。
每个节点都有一个传感器、一套具备自检测功能的完整数据采集系统,以及一套将数据返回中央记录单元的遥感装置。
这种应用的要求非常苛刻,需要高度线性的带宽动态范围在0.1 - 200Hz 的数据采集系统。
由于整个勘探网需要大量的节点,因此每个勘探节点的功耗必须很低,而且还要保证所有勘探节点能够保持同步运作。
每个数据采集节点都由以下元件组成:一个地震检波器或水下听诊器(分别用于陆地勘探和水下勘探)、一个可编程增益放大器、一个品模数转换器、一个多功能抽样滤波器和一个用于校准和自检测的高精度数模转换器。
目前,专家们已经成功设计出一种专门经过优化的低功耗高性能数据采集系统。
该系统的整体性能超过112dB线性(THD),具有在500 SPS 条件下高达123dB的动态范围(SNR)。
数据采集部分的单个节点从5V 模拟电源获得的功耗为105mW。
图1 单个地震数据采集系统节点方框图
在天然气和石油地震勘探中,陆地勘探需要用爆破方式或地震波声源车,
水下勘探则需要使用气炮制造地震波;勘探人员通过采集从地壳岩层反射回来的地震波就能绘制出该地区的地质结构。
80年代早期,地震数据采集系统采用一
种带有自动增益控制的瞬时“浮点”放大器和若干12位到16位连续渐进模数转换器。
然而,这类早期系统的动态范围只有约70dB。
此外,受实时数据所限,系统中的最大通道数量少于480个。
80年代后期,通道数量增加到8000个,从而将行。