经典的因式分解练习题有答案知识讲解
因式分解练习精选100题附详解

因式分解精选练习100题(附解答)一、提取公因式法 (1) 323812x y xy z +(2) 2()3()a b c b c +-+(3) 22129abc a b -=(4) 3342242235x y x y x y x y +++(5) 2(3)(3)x x +-+(6) 2()3()x y x y +-+=(7) 221()()n n x a b y b a +-+-=(8) ()()()()x m x m y m m x m y -----=(9) ()()m x y n x y x y +++--=(10) 4325286x y z x y -(11) ()()2612m n n m -+-二、公式法 (12) 249a -(13) 22()()x m x n +-+(14) 24129x x ++(15) 2244a ab b -+-(16) 32x xy -=(17) 227183x x ++(18) 229()4()a x y b y x -+-=(19) 322x x x ---(20) 33416m n mn -(21) ()2222214a b a b +--(22) 66x y -(23) 2244mn mnx mx ++(24) a a -3(25) 3312x x -(26) 224914a b ab --+ (27) ()()22x x y y y x -+-三、分组分解法 (28) 221448x y xy --+(29) 22114x xy y -+- (30) 22a a b b +--(31) 222221x xy y x y ++--+(32) 3222a a b ab a ++-(33) 1xy x y --+(34) 22221a b a b --+(35) 251539a m am abm bm -+-(36) 2221a b ab +--(37) 222221a ab b c c -+---(38) 3254222x x x x x --++-(39) ()()x x z y y z +-+(40) 3322()()ax y b by bx a y +++(41) cd b a d c ab )()(2222---(42) 32acx bcx adx bd +++(43) 222221x y z x z y z --+(44) 2226923ax a xy xy ay -+-(45) 325153x x x --+四、十字相乘法(46) 652++x x(47) 256x x -+(48) 256x x +-(49) 256x x --(50) 672+-x x(51) 24142++x x(52) 36152+-a a (53) 22-+x x(54) 1522--y y(55) 24102--x x(56) 542-+x x(57) 101132+-x x(58) 6752-+x x(59) 2732+-x x(60) 221288b ab a --(61) 2223y xy x +-(62) 2286n mn m +-(63) 22672y xy x +-(64) 224715y xy x -+(65) 317102+-x x(66) 101162++-y y(67) 226b ab a --(68) 8622+-ax x a五、双十字相乘法(69) 2910322-++--y x y xy x(70) 22227376z yz xz y xy x -+---(71) 67222-+--+y x y xy x(72) 613622-++-+y x y xy x(73) 36355622-++-+b a b ab a六、拆、添项法因式分解(74) 22268x y x y -++-(75) 224443x x y y --+-(76) 4322321x x x x ++++(77) 841x x ++(78) 343115x x -+(79) 32256x x x +--(80) 32374x x +-(81) 432433x x x x ++++(82) 4224x x y y ++(83) 422425b b a a ++(84) 44+x七、因式定理 (85) 332x x -+(86) 354x x -+(87) 46423-+-x x x(88) 326116x x x +++(89) 23739234--+-x x x x(90) 3246a a a -++(91) 43233116a a a a +---(92) 3245x x +-(93) 4322744x x x x +++-八、换元法因式分解(94) 2222(48)3(48)2x x x x x x ++++++(95) ()()22353x x x x -----(96) ()()221212x x x x ++++-(97) ()()()()135715x x x x +++++(98) ()()()()461413119x x x x x ----+(99) ()()()()166********x x x x --+-+(100)()()223248390xx x x ++++-因式分解精选练习100题解答一、提取公因式法 (1) 323812x y xy z +)32(422yz x xy +=(2) 2()3()a b c b c +-+)32)((-+=a c b(3) 22129abc a b -=)34(3ab c ab -=(4) 3342242235x y x y x y x y +++)153(2222+++=y x xy y x(5) 2(3)(3)x x +-+)2)(3(++=x x(6) 2()3()x y x y +-+=)3)((-++=y x y x(7) 221()()n n x a b y b a +-+-=)()(2by ay x b a n +--=(8) ()()()()x m x m y m m x m y -----=)()(2m y m x --=(9) ()()m x y n x y x y +++--=)1)((-++=n m y x(10) 4325286x y z x y -)34(2224x yz y x -=(11) ()()2612m n n m -+-)2)((6---=n m n m二、公式法 (12) 249a -)32)(32(-+=a a(13) 22()()x m x n +-+))(2(n m n m x -++=(14) 24129x x ++2)32(+=x(15) 2244a ab b -+-2)2(b a --=(16) 32x xy -=))((y x y x x -+=(17) 227183x x ++2)13(3+=x(18) 229()4()a x y b y x -+-=)23)(23)((b a b a y x -+-=(19) 322x x x ---2)1(+-=x x(20) 33416m n mn -)2)(2(4n m n m mn -+=(21) ()2222214a b a b +--)21)(21(2222ab b a ab b a --++-+= [][]1)(1)(22--⋅-+=b a b a)1)(1)(1)(1(--+--+++=b a b a b a b a(22) 66x y -))((3333y x y x -+=))()()((2222y xy x y x y xy x y x ++-+-+=(23) 2244mn mnx mx ++2)2(n x m +=(24) a a -3)1)(1(-+=a a a(25) 3312x x -)21)(21(3x x x -+=(26) 224914a b ab --+2)7(b a --=(27) ()()22x x y y y x -+-)()(2y x y x +-=三、分组分解法 (28) 221448x y xy --+)2(4122y xy x +--= 2)(41y x --=)221)(221(y x y x +--+=(29) 22114x xy y -+- 1)21(2--=y x )121)(121(--+-=y x y x (30) 22a a b b +-- )()(22b a b a -+-=)())((b a b a b a -+-+= )1)((++-=b a b a(31) 222221x xy y x y ++--+1)(2)(2++-+=y x y x 2)1(-+=y x(32) 3222a a b ab a ++-[]1)(2-+=b a a)1)(1(-+++=b a b a a(33) 1xy x y --+)1()1(---=y y x )1)(1(--=y x(34) 22221a b a b --+)1()1(222---=b b a)1)(1(22--=b a)1)(1)(1)(1(-+-+=b b a a(35) 251539a m am abm bm -+-)3(3)3(5-+-=a bm a am )35)(3(b a a m +-=(36) 2221a b ab +--1)(2--=b a)1)(1(--+-=b a b a(37) 222221a ab b c c -+---22)1()(+--=c b a)1)(1(---++-=c b a c b a(38) 3254222x x x x x --++-)2()2()2(42-+---=x x x x x )1)(2(24-+-=x x x(39) ()()x x z y y z +-+yz xz y x -+-=22))((z y x y x ++-=(40) 3322()()ax y b by bx a y +++222233by a y x b x ab axy +++= )()(223223by a x ab y x b axy +++= )()(2222ay x b ab x b ay xy +++= ))((22y a x b ab xy ++=(41) cd b a d c ab )()(2222---)()(2222cd b abd cd a abc ---=)()(bc ad bd ad bc ac ---= ))((ad bc bd ac -+=(42) 32acx bcx adx bd +++)()(2b ax d b ax cx +++= ))((2b ax d cx ++=(43) 222221x y z x z y z --+)1()1(222---=z y z y z x )1)(1(22--=z y z x(44) 2226923ax a xy xy ay -+-)39()26(222ay xy a xy ax +-+=)3(3)3(2y ax ay y ax x +-+= )3)(32(y ax ay x +-=(45) 325153x x x --+)3()3(52---=x x x )3)(15(2--=x x四、十字相乘法 (46) 652++x x)3)(2(++=x x(47) 256x x -+)3)(2(--=x x(48) 256x x +-)1)(6(-+=x x(49) 256x x --)1)(6(+-=x x(50) 672+-x x)1)(6(--=x x(51) 24142++x x)12)(2(++=x x(52) 36152+-a a)12)(3(--=x x(53) 22-+x x)1)(2(-+=x x(54) 1522--y y)3)(5(+-=y y(55) 24102--x x)12)(2(-+=x x(56) 542-+x x)1)(5(-+=x x(57) 101132+-x x)53)(2(--=x xx 2x 3 x -2 x -3 x 6 x -1 x -6x 1 x -6 x -1 x 2x 12 x -3 x -12 x 2x -1 y -5 y 3 x 2 x -12 x 5x -1(58) 6752-+x x)35)(2(-+=x x(59) 2732+-x x)13)(2(--=x x(60) 221288b ab a --)8)(16(b a b a +-=(61) 2223y xy x +-)2)((y x y x --=(62) 2286n mn m +-)4)(2(n m n m --=(63) 22672y xy x +-)32)(2(y x y x --=(64) 224715y xy x -+)45)(3(y x y x +-=(65) 317102+-x x)15)(32(--=x x(66) 101162++-y y)10116(2---=y y)52)(23(-+-=y y(67) 226b ab a --)2)(3(b a b a +-=(68) 8622+-ax x a )4)(2(--=ax ax五、双十字相乘法(69) 2910322-++--y x y xy x)25)(12(+--+=y x y x(70) 22227376z yz xz y xy x -+---x -23x -5x 25x -3 x -23x -1a -16ba 8bx -yx -2y m -2nm -4nx -2y2x -3y 3x -y5x 4y 2x -35x -1 3y 22y -5 a -3ba 2bax -2ax -4 x 2y -1x -5y 2)23)(32(z y x z y x -++-=(71) 67222-+--+y x y xy x)32)(2(-++-=y x y x(72) 613622-++-+y x y xy x)32)(23(+--+=y x y x(73) 36355622-++-+b a b ab a )92)(43(+--+=b a b a六、拆、添项法因式分解 (74) 22268x y x y -++-)96()12(22+--++=y y x x 22)3()1(--+=y x)4)(2(+--+=y x y x(75) 224443x x y y --+-)44()144(22+--+-=y y x x 22)2()12(---=y x)12)(32(+--+=y x y x(76) 4322321x x x x ++++)12()22(2234+++++=x x x x x 224)1()1(2++++=x x x x22)1(++=x x(77) 841x x ++44812x x x -++= 424)1(x x -+=)1)(1(2424x x x x -+++= )1)(12(24224+--++=x x x x x[])1()1(24222+--+=x x x x )1)(1)(1(2422+-+-++=x x x x x x(78) 343115x x -+343015x x x =--+()()()()()()()()2212115212121521253x x x x x x x x x x =+---=-+-=--+(79) 32256x x x +--()()32256x x x x =++--()()()()()()()()2216116132x x x x x x x x x x =++-+=++-=++-(80) 32374x x +-()()322364x x x =++-()()()()()()()()2232222321232x x x x x x x x x x =++-+=++-=++-(81) 432433x x x x ++++ 4232(3)(3)(3)x x x x x =+++++22(3)(1)x x x =+++(82) 4224x x y y ++4224222x x y y x y =++- ()()2222x y xy =+-()()2222x y xy x y xy =+++-2x -3y z3x y -2z x -y 2x 2y -3 x 3y -2x -2y 3a 3b -4a -2b 9(83) 422425b b a a ++22422492510b a b b a a -++= 2222)3()5(ab b a -+=)53)(53(2222b ab a b ab a +-++=(84) 44+x224444x x x -++= 222)2()2(x x -+= )22)(22(22+++-=x x x x七、因式定理 (85) 332x x -+ 易知0)1(=f于是332x x -+()1x A =-,其中A 为整式利用大除法,可求得A .23232222103232222x x x x x x x x x x x x x x +--+⋅-+----+-+∴()()()()()()()232321211212x x x x x x x x x x -+=-+-=--+=-+)()()()()()()221211212x x x x x x x -+-=--+=-+(86) 354x x -+ 易知0)1(=f原式)4)(1(2-+-=x x x(87) 46423-+-x x x 易知0)2(=f原式)22)(2(2+--=x x x (88) 326116x x x +++易知0)1(=-f原式)65)(1(2+++=x x x)3)(2)(1(+++=x x x(89) 23739234--+-x x x x易知0)31(=-f ,0)32(=f原式)1)(23)(13(2+-+=x x x (90) 3246a a a -++ 易知0)1(=-f原式)65)(1(2+-+=a a a)3)(2)(1(--+=a a a(91) 43233116a a a a +--- 易知0)1(=-f ,0)2(=f 原式)34)(2)(1(2++-+=x x x x)3)(2()1(2+-+=x x x(92) 3245x x +- 易知0)1(=f原式)55)(1(2++-=x x x (93) 4322744x x x x +++-八、易知0)1(=-f ,0)21(=f九、原式)4)(12)(1(2+-+=x x x 十、换元法因式分解(94) 2222(48)3(48)2x x x x x x ++++++ 令248x x u ++=原式2232()(2)u xu x u x u x =++=++ 又∵248u x x =++∴原式22(48)(482)x x x x x x =++++++ 22(58)(68)x x x x =++++2(2)(4)(58)x x x x =++++(95) ()()22353x x x x -----11令24x x y --=,则 原式()()113y y =-+-()()22y y =-+()()2262x x x x =----()()()()1223x x x x =+-+- (96) ()()221212x x x x ++++-令21x x y ++=,则原式()112y y =+-212y y =+- ()()34y y =-+()()2225x x x x =+-++()()()2125x x x x =-+++(97) ()()()()135715x x x x +++++原式()()()()173515x x x x =+++++⎡⎤⎡⎤⎣⎦⎣⎦()()228781515x x x x =+++++设287x x y ++=,则原式()815y y =++()()281535y y y y =++=++()()22810812x x x x =++++()()()226810x x x x =++++(98) ()()()()461413119x x x x x ----+原式()()22467112719x x x x x =-+-++设2671x x t -+=原式()()()222422693971t x t x t x x x =++=+=-+ )()()222422693971t x t x t x x x =++=+=-+(99) ()()()()166********x x x x --+-+()()()()()(226142624425241622416x x x x x x x =--+-+=-+- )()()()()()226142624425241622416825x x x x x x x x =--+-+=-+--+设224162x x t -+=原式()()()2221025524163t t t x x =-+=-=-- )()()2221025524163t t t x x =-+=-=--(100)()()223248390x x x x ++++- 原式()()()()12212390x x x x =++++-()()()()12322190x x x x =++++-⎡⎤⎡⎤⎣⎦⎣⎦()()2225325290x x x x =++++-令2253x x y ++=,则原式()190y y =--290y y =--()()910y y =+-()()222512257x x x x =+++-()()()22512271x x x x =+++-。
因式分解练习题精选及答案

因式分解练习题精选及答案一、基础练习题1. 将以下代数式进行因式分解:a) 6x^2 + 3xb) 4y^3 - 8y^2c) 9z^2 - 6z + 1解答:a) 因式分解6x^2 + 3x为3x(2x + 1)b) 因式分解4y^3 - 8y^2为4y^2(y - 2)c) 因式分解9z^2 - 6z + 1为(3z - 1)(3z - 1)2. 将以下代数式进行因式分解:a) x^2 - 4b) 9y^2 - 16c) 16z^2 - 25解答:a) 因式分解x^2 - 4为(x + 2)(x - 2)b) 因式分解9y^2 - 16为(3y - 4)(3y + 4)c) 因式分解16z^2 - 25为(4z - 5)(4z + 5)3. 将以下代数式进行因式分解:a) 25x^2 - 10x + 1b) 2y^2 + 4y + 2c) 9z^3 - 12z^2 + 4z解答:a) 因式分解25x^2 - 10x + 1为(5x - 1)(5x - 1)b) 因式分解2y^2 + 4y + 2为2(y^2 + 2y + 1)c) 因式分解9z^3 - 12z^2 + 4z为z(3z - 2)(3z - 2)4. 将以下代数式进行因式分解:a) x^4 - 81b) 16y^2 - 9z^2c) 25z^4 - 16解答:a) 因式分解x^4 - 81为(x^2 - 9)(x^2 + 9)b) 因式分解16y^2 - 9z^2为(4y - 3z)(4y + 3z)c) 因式分解25z^4 - 16为(5z^2 - 4)(5z^2 + 4)二、进阶练习题1. 将3x^3 - 6x^2 - 9x进行因式分解。
解答:先提取公因式,可得3x(x^2 - 2x - 3)再将x^2 - 2x - 3进行因式分解,可得3x(x - 3)(x + 1)2. 将以下代数式进行因式分解:a) 2x^3 + 8x^2 - 32xb) 3y^3 + 27y^2 + 81yc) 4z^3 - 16z^2 + 16z解答:a) 先提取公因式2x,得2x(x^2 + 4x - 16)再将x^2 + 4x - 16进行因式分解,得2x(x + 8)(x - 2)b) 先提取公因式3y,得3y(y^2 + 9y + 27)再将y^2 + 9y + 27进行因式分解,得3y(y + 3)(y + 9)c) 先提取公因式4z,得4z(z^2 - 4z + 4)再将z^2 - 4z + 4进行因式分解,得4z(z - 2)(z - 2)3. 将以下代数式进行因式分解:a) x^3 - 4x^2 + 5x - 2b) y^3 + 3y^2 - 4y - 12c) z^3 - 7z - 6解答:a) 可以先尝试因式分解法、穷举法等,找到其中一个根为2,得到因式(x - 2)。
《因式分解500题》(含答案)

服务内核部-初数教研
\ 3 /
25. 因式分解:−4 3 2 + 6 2 3 − 12 2 2
26. 分解因式:−6 − 142 3 + 123
27. 分解因式:−26 3 2 + 13 2 2 + 52 5 2 4
28. 因式分解:
\ 5 /
43. 分解因式:( − )5 + ( − )5
44. 分解因式:(1 − + 2 ) − 1 + − 2
45. 将下列各式因式分解:
①53 ( − )3 − 104 3 ( − )2 ;
②( − )2 + ( − ) + ( − );
6. 分解因式:32 + 6 2
7. 因式分解:2 2 −
8. 分解因式:32 − 6
9. 分解因式:12 − 3 2
10. 用提公因式法因式分解:22 3 + 6 2
11. 因式分解:2( − ) − ( − )
12. 分解因式:( − ) − ( − )
29. 分解因式:( − 3)2 − (2 − 6);
30. 分解因式:18( − )2 − 12( − )3
31. 因式分解:10( − )2 + 5( − )
32. 计算:( + )2 − ( + )( − )
33. 分解因式:( + 1)( − 1) + ( − 1)
19. 因式分解:−43 + 162 − 26
20. 分解因式:6 2 − 9 + 3
21. 分解因式:−82 − 2 + 6 2
22. 因式分解:−14 − 7 + 49 2
因式分解经典测试题附答案

A. B.
C. D.
【答案】B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.是整式乘法,故A错误;
B.是因式分解,故B正确;
C.左边不是多项式,不是因式分解,故C错误;
D.右边不是整式积的形式,故D错误.
【答案】D
【解析】
试题解析:∵(b﹣c)(a2+b2)=bc2﹣c3,
∴(b﹣c)(a2+b2)﹣c2(b﹣c)=0,
∴(b﹣c)(a2+b2﹣c2)=0,
∴b﹣c=0,a2+b2﹣c2=0,
∴b=c或a2+b2=c2,
∴△ABC是等腰三角形或直角三角形.
故选D.
13.下列各式中从左到右的变形,是因式分解的是()
6.已知a﹣b=2,则a2﹣b2﹣4b的值为()
A.2B.4C.6D.8
【答案】B
【解析】
【分析】
原式变形后,把已知等式代入计算即可求出值.
【详解】
∵a﹣b=2,
∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.
故选:B.
【点睛】
此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.
7.多项式 与 的公因式是()
A. B. C. D.
【答案】B
【解析】
【分析】
直接将原式分别分解因式,进而得出公因式即可.
【详解】
解:∵a2-25=(a+5)(a-5),a2-5a=a(a-5),
∴多项式a2-25与a2-5a的公因式是a-5.
因式分解经典题及解析

因式分解经典题及解析因式分解拔高题1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法:x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣①=(x+1)2﹣22﹣﹣﹣﹣﹣﹣②=…解决下列问题:(1)填空:在上述材料中,运用了_________的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;(2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3;(3)请用上述方法因式分解x2﹣4x﹣5.2.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_________.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底_________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.6.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.7.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.8.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.9.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.10.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x ﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.11.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:_________.(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x ﹣3)+4.12.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是_________,由②到③这一步的根据是_________;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是_________;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).13.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.答案1.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.考点:因式分解-运用公式法.专题:阅读型.分析:这是要运用添项法因式分解,首先要看明白例题才可以尝试做以下题目.解答:解:(1)x4+4y4=x4+4x2y2+4y2﹣4x2y2,=(x2+2y2)2﹣4x2y2,=(x2+2y2+2xy)(x2+2y2﹣2xy);(2)x2﹣2ax﹣b2﹣2ab,=x2﹣2ax+a2﹣a2﹣b2﹣2ab,=(x﹣a)2﹣(a+b)2,=(x﹣a+a+b)(x﹣a﹣a﹣b),=(x+b)(x﹣2a﹣b).点本题考查了添项法因式分解,难度比较大.评:2.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x ﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.考点:提公因式法与公式法的综合运用.专题:阅读型.分析:(1)完全平方式是两数的平方和与这两个数积的两倍的和或差;(2)x2﹣4x+4还可以分解,所以是不彻底.(3)按照例题的分解方法进行分解即可.解答:解:(1)运用了C,两数和的完全平方公式;(2)x2﹣4x+4还可以分解,分解不彻底;(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.点评:本题考查了运用公式法分解因式和学生的模仿理解能力,按照提供的方法和样式解答即可,难度中等.3.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.考点:因式分解-十字相乘法等.分析:根据十字相乘法的分解方法和特点可知:a 是﹣6的两个因数的和,则﹣6可分成3×(﹣2),﹣3×2,6×(﹣1),﹣6×1,共4种,所以将x2+ax﹣6分解因式后有4种情况.解答:解:x2+x﹣6=(x+3)(x﹣2);x2﹣x﹣6=(x﹣3)(x+2);x2+5x﹣6=(x+6)(x﹣1);x2﹣5x﹣6=(x﹣6)(x+1).点评:本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,常数﹣6的不同分解是本题的难点.4.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.考点:因式分解的应用.分析:根据题意设出两个连续偶数为2n、2n+2,利用平方差公式进行因式分解,即可证出结论.解答:解:设两个连续偶数为2n,2n+2,则有(2n+2)2﹣(2n)2,=(2n+2+2n)(2n+2﹣2n),=(4n+2)×2,=4(2n+1),因为n为整数,所以4(2n+1)中的2n+1是正奇数,所以4(2n+1)是4的倍数,故两个连续正偶数的平方差一定能被4整除.点评:本题考查了因式分解的应用,解题的关键是正确设出两个连续正偶数,再用平方差公式对列出的式子进行整理,此题较简单.5.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.考点:因式分解的意义.分析:由于x的多项式3x2+x+m分解因式后有一个因式是3x﹣2,所以当x=时多项式的值为0,由此得到关于m的方程,解方程即可求出m的值,再把m的值代入3x2+x+m进行因式分解,即可求出答案.解答:解:∵x的多项式3x2+x+m分解因式后有一个因式是3x﹣2,当x=时多项式的值为0,即3×=0,∴2+m=0,∴m=﹣2;∴3x2+x+m=3x2+x﹣2=(x+1)(3x﹣2);故答案为:m=﹣2,(x+1)(3x﹣2).点评:本题主要考查因式分解的意义,有公因式时,要先考虑提取公因式;注意运用整体代入法求解.6.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.考点:因式分解-运用公式法.专题开放型.:分析:根据完全平方公式以及平方差公式进行分解因式即可.解答:解:k=±10,假设k=10,则有(a2+10a+25)﹣b2=(a+5)2﹣b2=(a+5+b)(a+5﹣b).点评:此题主要考查了运用公式法分解因式,正确掌握完全平方公式和平方差公式是解题关键.7.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.考点:配方法的应用;非负数的性质:偶次方.分析:按照题目提供的方法将二次三项式配方后即可得到答案.解答:解:﹣2x2﹣8x﹣10=﹣2(x2+4x+5)=﹣2(x2+4x+22﹣22+5)=﹣2[(x+2)2+1]=﹣2(x+2)2﹣2因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么﹣2(x+2)2﹣2的值一定为负数,所以,原式的值恒小于0,并且,当x=﹣2时,原式有最大值﹣2.点评:此题考查了配方法与完全平方式的非负性的应用.注意解此题的关键是将原代数式准确配方.8.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.考点:提公因式法与公式法的综合运用.专题:开放型.分析:能用完全平方公式分解的式子的特点是:三项;两项平方项的符号需相同;有一项是两底数积的2倍.解答:解:由题意知,可以理解为:甲:这是一个关于x三次三项式;乙:三次项系数为1,即三次项为x3;丙:这个多项式的各项有公因式x;丁:这个多项式分解因式时要用到完全平方公式法.故多项式可以为x(x﹣1)2=x(x2﹣2x+1)=x3﹣2x2+x.点评:本题考查了提公因式法和公式法分解因式,是开放性题,根据描述按照要求列出这个多项式.答案不唯一.9.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x ﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.考点:因式分解的应用.分此题可以先将两个分解过的式子还原,再根析:据两个同学的错误得出正确的二次三项式,最后进行因式分解即可.解答:解:2(x﹣1)(x﹣9)=2x2﹣20x+18,2(x ﹣2)(x﹣4)=2x2﹣12x+16;由于甲同学因看错了一次项系数,乙同学看错了常数项,则正确的二次三项式为:2x2﹣12x+18;再对其进行因式分解:2x2﹣12x+18=2(x﹣3)2.点评:本题考查了因式分解的应用,题目较为新颖,同学们要细心对待.10.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:(x+3)4.(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x ﹣3)+4.考点:因式分解-十字相乘法等.专题:换元法.分析:(1)根据x2+6x+9=(x+3)2,进而分解因式得出答案即可;(2)仿照例题整理多项式进而分解因式得出答案即可.解答:解:(1)这位同学的因式分解不彻底,原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2=(x+3)4.故答案为:(x+3)4;(2)设x2+4x=y,则原式=(y+1)(y﹣3)+4 =y2﹣2y+1=(y﹣1)2=(x2+4x﹣1)2.点评:此题主要考查了因式分解法的应用,正确分解因式以及注意分解因式要彻底是解题关键.11.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是提公因式法分解因式,由②到③这一步的根据是同底数幂的乘法法则;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是(1+x)2007;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).考点:因式分解-提公因式法.分析:(1)根据题目要求可以编出先提公因式后用平方差的式子,答案不唯一;(2)首先通过分解因式,可发现①中的式子与结果之间的关系,根据所发现的结论可直接得到答案.解答:解:(1)m3﹣mn2=m(m2﹣n2)=m(m﹣n)(m+n),(2)①提公因式法,同底数幂的乘法法则;②根据①中可发现结论:(1+x)2007;③(1+x)n+1.点评:此题主要考查了因式分解法中的提公因式法分解因式,公式法分解因式以及分解因式得根据,考查同学们的观察能力与归纳能力.12.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.因式分解-十字相乘法等.考点:专阅读型.题:分析:发现规律:二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,则x2+px+q=(x+a)(x+b).解答:解:(1)x2+7x+12=(x+3)(x+4);(2)x2﹣7x+12=(x﹣3)(x﹣4);(3)x2+4x﹣12=(x+6)(x﹣2);(4)x2﹣x﹣12=(x﹣4)(x+3).点评:本题考查十字相乘法分解因式,是x2+(p+q)x+pq型式子的因式分解的应用,应识记:x2+(p+q)x+pq=(x+p)(x+q).。
因式分解技巧及练习题附答案解析

C. D.
【答案】B
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.
【详解】
A.属于整式的乘法运算,不合题意;
B.符合因式分解的定义,符合题意;
C.右边不是乘积的形式,不合题意;
D.右边不是几个整式的积的形式,不合题意;
15.下面的多项式中,能因式分解的是()
A. B. C. D.
【答案】B
【解析】
【分析】
完全平方公式的考察,
【详解】
A、C、D都无法进行因式分解
B中, ,可进行因式分解
故选:B
【点睛】
本题考查了公式法因式分解,常见的乘法公式有:平方差公式:
完全平方公式:
16.若多项式 含有因式 和 ,则 的值为()
【详解】
解: ;
故选:A.
【点睛】
本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.
9.下列等式从左到右的变形,属于因式分解的是( )
A.8x2y3=2x2⋅4y3B.(x+1)(x﹣1)=x2﹣1
C.3x﹣3y﹣1=3(x﹣y)﹣1D.x2﹣8x+16=(x﹣4)2
【答案】D
C.x2-4x+3=(x-2)2-1D.a2-b2=(a+b)(a-b)
【答案】D
【解析】
【分析】
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.
【详解】
解:A.不是因式分解,而是整式的运算
B.不是因式分解,等式左边的x是取任意实数,而等式右边的x≠0
初中因式分解经典题型(含详细答案)

初中因式分解经典题型精选第一组:基础题1、a²b+2ab+b2、2a²-4a+23、16-8(m-n)+(m-n)²4、a²(p-q)-p+q5、a(ab+bc+ac)-abc【答案】1、a²b+2ab+b=b(a²+2a+1)=b(a+1)²2、2a²-4a+2=2(a²-2a+1)=2(a-1)²3、16-8(m-n)+(m-n)²然后运用完全平方公式=4²-2*4*(m-n)+(m-n)²=[4-(m-n)] ²=(4-m+n) ²4、a²(p-q)-p+q=a²(p-q)-(p-q)=(p-q)(a²-1)=(p-q)(a+1)(a-1)5、a(ab+bc+ac)-abc=a[(ab+bc+ac)-bc]=a(ab+bc+ac-bc)bc与-bc 抵消=a(ab+ac)提取公因式a=a²(b+c)第二组:提升题6、(x-y-1)²-(y- x-1)²7、a3b-ab38、b4-14b²+19、x4+x²+2ax+1﹣a²10、a5+a+1【答案】6、(x-y-1)²-(y- x-1)²用平方差公式=[(x-y-1)+(y-x-1)][(x-y-1)-(y-x-1)]去括号,合并同类项=(-2)(2x-2y)提取2= -4(x-y)7、a3b-ab3提取公因式ab=ab(a²-b²)用平方差公式=ab(a+b)(a-b)8、b4-14b²+1将-14b²拆分为:+2b²-16b²=b4+2b²-16b²+1将-16b²移到最后=b4+2b²+1-16b²将前三项结合在一起=(b4+2b²+1)-16b²=( b²+1)²-(4b)²用平方差公式=[( b²+1)+4b][( b²+1)-4b] =( b²+4b+1)( b²-4b+1)9、x4+x²+2ax+1﹣a²将+x²拆分为:+2x²- x²=x4+2x²- x² +2ax+1﹣a²将x4、+2x²、+1结合,将-x²、+2ax、﹣a²结合=(x4+2x²+1)+(-x²+2ax﹣a²)提取-1=( x²+1)² -(x²-2ax+a²)=( x²+1)²-( x-a)²用平方差公式=[(x²+1)+(x-a)][(x²+1)-(x-a)]=(x²+x-a+1)(x²-x+a+1)10、a5+a+1在式子中添加:-a²+a²=a5 - a²+ a²+a+1将前两项结合,后面三项结合=(a5-a²)+(a²+a+1)提取公因式a²=a²(a3-1)+(a²+a+1)用立方差公式=a²(a-1)(a²+a+1)+(a²+a+1)提取公因式(a²+a+1)=(a²+a+1)[a²(a-1)+1]=(a²+a+1)(a3-a²+1)第三组:进阶题11、x4-2y4-2x3y+xy312、(ac-bd)²+(bc+ad)²13、x²(y-z)+y²(z-x)+z²(x-y)14、x²-4ax+8ab-4b²15、xy² +4xz -xz²-4x【答案】11、x4-2y4-2x3y+xy3x4与xy3结合,-2y4与-2x3y结合=(x4+xy3)+(-2y4-2x3y)x-2y,=x(x3+y3)-2y(x3+y3)提取公因式(x3+y3)=(x3+y3)(x-2y)=(x+y)(x2-xy+y2)(x-2y)12、(ac-bd)²+(bc+ad)²去括号展开= a²c² - 2abcd + b²d²+b²c² +2abcd + a²d²- 2abcd与+2abcd 抵消=a²c² + b²d² +b²c² + a²d²a²c²与b²c²结合,b²d²与a²d²结合=(a²c²+b²c²)+( b²d²+a²d²)c², d ²,=c²(a²+b²)+d²(a²+b²)提取公因式(a²+b²)=(a²+b²)(c²+d²)13、x²(y-z)+y²(z-x)+z²(x-y)=x²(y-z)+y²z -y²x +z²x -z²yy²z与-z²y结合,z²x 与-y²x=x²(y-z)+(y²z -z²y)+(z²x-y²x)提取公因式zy提取公因式=x²(y-z)+ zy(y-z)+x(z²-y²)提取公因式(y-z),=(y-z)(x²+zy)+x(z+y)(z-y)y-z),后一项 +x则变为 -x =(y-z)[(x²+zy)-x(z+y)]=(y-z)(x²+zy-xz-xy)14、x²-4ax+8ab-4b²²与-4b²结合,-4ax与+8ab结合=(x²-4b²)+(-4ax+8ab)-4a=(x+2b)(x-2b)-4a(x-2b)x-2b),=(x-2b)[(x+2b)-4a]=(x-2b)(x+2b-4a)15、xy² +4xz -xz²-4xx,=x(y²+4z -z²-4)=x[y²+(4z -z²-4)]-1,=x[y²-(z²-4z+4)]用完全平方公式进行分解,=x[y²-(z-2)²]=x[y+(z-2))][y-(z-2)]=x(y+z-2)(y-z+2)第四组:经典题16、a6(a²-b²)+b6(b²-a²)17、4m3-31m+1518、a3+5a²+3a-919、x4(1- y)²+2x²(y²-1)+(1+ y)²20、2x4 -x3-6x²- x+ 2【答案】16、a6(a²-b²)+b6(b²-a²)-1=a6(a²-b²)-b6(a²-b²)提取公因式(a²-b²)=(a²-b²)(a6-b6)=(a²-b²)(a²-b²)(a4+a²b²+b4)=(a²-b²)²(a4+a²b²+b4)=(a+b)²(a-b)²(a4+a²b²+b4)17、4m3-31m+15-31m拆分为:-m-30m=4m3-m-30m+15=(4m3-m)+(-30m+15)m-15=m(4m²-1)-15(2m-1)=m(2m+1)(2m-1)-15(2m-1)(2m-1),=(2m-1)[m(2m+1)-15]=(2m-1)(2m²+m-15)=(2m-1)(2m-5)(m+3)18、a3+5a²+3a-93a拆分为:-6a+9a =a3+5a²-6a+9a-9=(a3+5a²-6a)+(9a-9)a9=a(a²+5a-6)+9(a-1)=a(a+6)(a-1)+9(a-1)提取公因式(a-1)=(a-1)[a(a+6)+9]=(a-1)(a²+6a+9)=(a-1)(a+3)²19、x4(1- y)²+2x²(y²-1)+(1+ y)²-1=x4(1- y)² - 2x²(1-y²)+(1+ y)²=[x²(1-y)]² -2x²(1-y)(1+y)+(1+ y)²=(x²-yx²-1- y)²20、2x4 -x3-6x²- x+ 2-x拆分为:3x-4x =2x4 -x3-6x²+3x-4x+ 2=(2x4 -x3)+(-6x²+3x)+(-4x+ 2)=(2x-1)(x3-3x-2)第五组:精选题21、a3+2a2+3a+222、x4-6x²+123、x3+3x+424、2a2b2+2a2c2+2b2c2+a4+b4+c425、a3-3a-226、2x3+3x2-127、a2+3ab+2b2+2a+b-3【答案】21、a3+2a2+3a+23a拆分为:a+2a =a3+2a2+a+2a+2=(a3+2a2+a)+(2a+2)=a(a2+2a+1)+2(a+1)=a(a+1)2+2(a+1)a+1)=(a+1)[a(a+1)+2]=(a+1)(a2+a+2)22、x4-6x²+1-6x2拆分为:-2x2-4x2 =x4-2x²-4x²+1-4x2移到最后=x4-2x²+1-4x²=(x4-2x²+1)-4x²=(x2-1)2-(2x)2=[(x2-1)+2x][(x2-1)-2x] =(x2+2x-1)(x2-2x-1)23、x3+3x+44拆分为:3+1=x3+3x+3+1x3与1结合,3x与3结合=(x3+1) + (3x+3)3=(x+1)(x2-x+1)+3(x+1)x+1)=(x+1)[(x2-x+1)+3]=(x+1)(x2-x+4)24、2a2b2+2a2c2+2b2c2+a4+b4+c4=(a4+b4+2a2b2)+(2a2c2+2b2c2)+c4 =(a2+b2)2+2c2(a2+b2)+c4=[(a2+b2)+c2]2=(a2+b2+c2)225、a3-3a-2-3a拆分为:-a-2a=a3-a-2a-2=(a3-a)+(-2a-2)=a(a2-1)-2(a+1)=a(a+1)(a-1)-2(a+1)a+1)=(a+1)[a(a-1)-2]=(a+1)(a2-a-2)=(a+1)(a+1)(a-2)=(a+1)2(a-2)26、2x3+3x2-13x2拆分为:2x2+x2 =2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)x+1)=(x+1)[2x2+(x-1)]=(x+1)(2x2+x-1)=(x+1)(2x-1)(x+1)=(x+1)2(2x-1)27、a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =[(a+b)-1][(a+2b)+3] =(a+b-1)(a+2b+3)十字叉乘法故:x2+6x+5=(x+1)(x+5)故:2x2+5x+2=(2x+1)(x+2)故:4x2+5x-3=(2x-1)(2x+3)黄勇权2019-7-14。
因式分解精选例题(附答案)

因式分解 例题解说及练习【例题优选】:(1) 5x 2 y 15x 3 y 2 20x 2 y 3评析:先查各项系数(其余字母临时不看) ,确立 5,15,20 的最大公因数是 5,确立系数是 5 ,再查各项能否都有字母 X ,各项都有时,再确立 X 的最低次幂是几,至此确认提取 X 2,同法确立提 Y ,最后确立提公因式 5X 2Y 。
提取公因式后,再算出括号内各项。
解: 5x 2 y15x 3 y 2 20x 2 y 3=5x 2y(1 3xy4y 2 )(2)3x 2 y 12x 2 yz 9x 3 y 2评析:多项式的第一项系数为负数,应先提出负号,各项系数的最大公因数为 3,且同样字母最低次的项是 X 2Y解:3x 2 y 12 x 2 yz 9x 3 y 2= (9x 3 y 212x = 3(3x 3 y 2 4x22yz 3x 2 y)yz x 2 y)=3x 2 y(3xy 42 1)( 3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a)评析:在本题中, y-x 和 x-y 都能够做为公因式,但应防止负号过多的状况出现,所以应提取 y-x解:原式 =(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a)=(y-x)(c-b-a+2a+b-c+b-2a)=(y-x)(b-a)(4)(4) 把32x 3 y 4 2x 3分解因式评析:这个多项式有公因式 2x 3,应先提取公因式,节余的多项式16y 4-1 具备平方差公式的形式解: 32x 3y42x3=2x 3 (16y 4 1)=2x 3 (4 y 2 1)(4 y 2 1) =2 x3 (2y 1)( 2y 1)( 4y 21)(5)(5) 把 x 7 y 2xy 8 分解因式评析:第一提取公因式xy 2,剩下的多项式x 6-y6能够看作( x 3 ) 2( y 3 ) 2 用平方差公式分解,最后再运用立方和立方差公式分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典的因式分解练习题有答案因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是( )A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c) 2.多项式m(n-2)-m2(2-n)分解因式等于( )A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( )A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是( )A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是( )A.-12 B.±24C.12 D.±126.把多项式an+4-an+1分解得( )A.an(a4-a) B.an-1(a3-1) C.an+1(a-1)(a2-a+1) D.an+1(a-1)(a2+a+1)7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( )A.8 B.7 C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( )A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得( )A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得( )A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12)11.把3x2-2xy-8y2分解因式,得( )A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y)12.把a2+8ab-33b2分解因式,得( )A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得( )A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为( )A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是( )A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12 D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有( )A.1个 B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为( )A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是( )A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为( )A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是( )A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为( )A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果( )A.3x2+6xy-x-2y B.3x2-6xy+x-2yC.x+2y+3x2+6xy D.x+2y-3x2-6xy23.64a8-b2因式分解为( )A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b)C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b)24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为( )A.(5x-y)2 B.(5x+y)2C.(3x-2y)(3x+2y) D.(5x-2y)225.(2y-3x)2-2(3x-2y)+1因式分解为( )A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为( )A.(3a-b)2B.(3b+a)2C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为( )A.c(a+b)2 B.c(a-b)2C.c2(a+b)2D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为( )A.0 B.1 C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是( )A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y)C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y)30.分解因式2a2+4ab+2b2-8c2,正确的是( )A.2(a+b-2c) B.2(a+b+c)(a+b-c)C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c)三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b 11.+5,-2 12.-1,-2(或-2,-1)14.bc+ac,a+b,a-c 15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1).1.(p-q)(m1)(m+-8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+36.提示:a=-18.精品文档∴a=-18.收集于网络,如有侵权请联系管理员删除。