(完整版)染色问题的计数方法
小学思维数学讲义:乘法原理之染色问题-带详解

乘法原理之染色问题教学目标1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.知识要点一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?DC B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选.根据乘法原理,不同的涂法有32212⨯⨯=种;当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D 也只有1种颜色可选(与A 相同).根据乘法原理,不同的涂法有32116⨯⨯⨯=种.综上,根据加法原理,共有12618+=种不同的涂法.【答案】18【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有326⨯=种方法,D 剩下2种方法,对该图的染色方法一共有43332284⨯⨯+⨯⨯=()种方法.【注意】给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题.【答案】84【例 2】 在右图的每个区域内涂上A 、B 、C 、D 四种颜色之一,使得每个圆里面恰有四种颜色,则一共有__________种不同的染色方法.7654321【考点】乘法原理之染色问题 【难度】4星 【题型】解答【解析】 因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的4个区域一共有43224⨯⨯=种染色方法.如右图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与2、3、4三个区域的颜色相同,所以只能与1号区域的颜色相同,同理5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当1、2、3、4四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.【答案】24【例 3】 如图,地图上有A ,B ,C ,D 四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?例题精讲DCB A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给A 染色,有5种颜色可选.第二步:给B 染色,由于B 不能与A 同色,所以B 有4种颜色可选.第三步:给C 染色,由于C 不能与A 、B 同色,所以C 有3种颜色可选.第四步:给D 染色,由于D 不能与B 、C 同色,但可以与A 同色,所以D 有3种颜色可选.根据分步计数的乘法原理,用5种颜色给地图染色共有5433180⨯⨯⨯=种不同的染色方法.【答案】180【巩固】 如图,一张地图上有五个国家A ,B ,C ,D ,E ,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?ED C BA【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,给A 国上色,可以任选颜色,有四种选择;第二步,给B 国上色,B 国不能使用A 国的颜色,有三种选择;第三步,给C 国上色,C 国与B ,A 两国相邻,所以不能使用A ,B 国的颜色,只有两种选择;第四步,给D 国上色,D 国与B ,C 两国相邻,因此也只有两种选择;第五步,给E 国上色,E 国与C ,D 两国相邻,有两种选择. 共有4322296⨯⨯⨯⨯=种着色方法.【答案】96【例 4】 如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2……,所以一共有:4322222221536⨯⨯⨯⨯⨯⨯⨯⨯=种.【答案】1536【巩固】 用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?ABC【考点】乘法原理之染色问题【难度】2星【题型】解答【解析】涂三块毫无疑问是分成三步.第一步,涂A部分,那么就有三种颜色的选择;第二步,涂B部分,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了一种颜色后,B只有两种颜色可选择了;第三步,涂C部分,C和A、B都相邻,A和B确定了两种不相同的颜色,那么C只有一种颜色可选择了.然后再根据乘法原理.3216⨯⨯=【答案】6【例 5】如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】这一道题实际上就是例题,因为两幅图各个字母所代表的国家的相邻国家是相同的,如果将本题中的地图边界进行直角化就会转化为原题,所以对这幅地图染色同样一共有4322296⨯⨯⨯⨯=种方法.【讨论】如果染色步骤为----C A BD E,那么应该该如何解答?答案:也是4322296⨯⨯⨯⨯=种方法.如果染色步骤为----C AD B E那么应该如何解答?答案:染色的前两步一共有4×3种方法,但染第三步时需要分类讨论,如果D与A颜色相同,那么B有2种染法,E也有2种方法,如果D与A染不同的颜色,那么D有2种染法那么B只有一种染法,E有2种染法,所以一共应该有43(122212)96⨯⨯⨯⨯+⨯⨯=种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授),染色步骤选择的经验方法:每一步骤所染的区块应该尽量和之前所染的区块相邻.【答案】96【巩固】某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】为了便于分析,把地图上的7个县分别编号为A、B、C、D、E、F、G(如左下图).GF DC B AE为了便于观察,在保持相邻关系不变的情况下可以把左图改画成右图.那么,为了完成地图染色这件工作需要多少步呢?由于有7个区域,我们不妨按A 、B 、C 、D 、E 、F 、G 的顺序,用红、黑、绿、蓝、紫五种颜色依次分7步来完成染色任务.第1步:先染区域A ,有5种颜色可供选择;第2步:再染区域B ,由于B 不能与A 同色,所以区域B 的染色方式有4种;第3步:染区域C ,由于C 不能与B 、A 同色,所以区域C 的染色方式有3种;第4步:染区域D ,由于D 不能与C 、A 同色,所以区域D 的染色方式有3种;第5步:染区域E ,由于E 不能与D 、A 同色,所以区域E 的染色方式有3种;第6步:染区域F ,由于F 不能与E 、A 同色,所以区域F 的染色方式有3种;第7步:染区域G ,由于G 不能与C 、D 同色,所以区域G 的染色方式有3种.根据分步计数的乘法原理,共有54333334860⨯⨯⨯⨯⨯⨯=种不同的染色方法.【答案】4860【例 6】 用3种颜色把一个33⨯的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有 种不同的染色法.【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 根据题意可知,染完后这个33⨯的方格表每一行和每一列都恰有3个颜色.用3种颜色染第一行,有336P =种染法;染完第一行后再染第一列剩下的2个方格,有2种染法;当第一行和第一列都染好后,再根据每一行和每一列都恰有3个颜色对剩下的方格进行染色,可知其余的方格都只有唯一一种染法.所以,根据乘法原理,共有326⨯=种不同的染法.【答案】6【例 7】 如右图,有A 、B 、C 、D 、E 五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?EDC BA 【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 先采用分步:第一步给A 染色,有5种方法;第二步给B 染色,有4种方式;第三步给C 染色,有3种方式;第四步给D 染色,有3种方式;第五步,给E 染色,由于E 不能与A 、B 、D 同色,但可以和C 同色.此时就出现了问题:当D 与B 同色时,E 有3种颜色可染;而当D 与B 异色时,E 有2种颜色可染.所以必须从第四步就开始分类:第一类,D 与B 同色.E 有3种颜色可染,共有5433180⨯⨯⨯=(种)染色方式;第二类,D 与B 异色.D 有2种颜色可染,E 有2种颜色可染,共有54322240⨯⨯⨯⨯=(种)染色方式.根据加法原理,共有180240420+=(种)染色方式.【注意】给图形染色问题中有的可以直接用乘法原理解决,但如果碰到有首尾相接的图形往往需要分类解决.【答案】420【巩固】 如右图,有A ,B ,C ,D 四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?D C B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有4种颜色可选,然后分类:第一类:B ,D 取相同的颜色.有3种颜色可染,此时D 也有3种颜色可选.根据乘法原理,不同的染法有43336⨯⨯=(种);第二类:当B ,D 取不同的颜色时,B 有3种颜色可染,C 有2种颜色可染,此时D 也有2种颜色可染.根据乘法原理,不同的染法有432248⨯⨯⨯=(种).根据加法原理,共有364884+=(种)染色方法.【答案】84【巩固】用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?学奥而思数【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】第一步给“而”上色,有4种选择;然后对“学”染色,“学”有3种颜色可选;当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有32212⨯⨯=种;当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有32116⨯⨯⨯=种.所以,根据加法原理,共有43(222)72⨯⨯⨯+=种不同的涂法.【答案】72【例 8】分别用五种颜色中的某一种对下图的A,B,C,D,E,F六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】先按A,B,D,C,E的次序染色,可供选择的颜色依次有5,4,3,2,3种,注意E与D的颜色搭配有339⨯=(种),其中有3种E和D同色,有6种E和D异色.最后染F,当E与D同色时有3种颜色可选,当E与D异色时有2种颜色可选,所以共有542(3362)840⨯⨯⨯⨯+⨯=种染法.【答案】840【例 9】将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?D CBA【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】如右上图,当A,B,C,D的颜色确定后,大正方形四个角上的○的颜色就确定了,所以只需求A,B,C,D有多少种不同涂法.按先A,再B,D,后C的顺序涂色.按---A B D C的顺序涂颜色:A有3种颜色可选;当B,D取相同的颜色时,有2种颜色可选,此时C也有2种颜色可选,不同的涂法有32212⨯⨯=种;当B,D取不同的颜色时,B有2种颜色可选,D仅剩1种颜色可选,此时C也只有1种颜色可选(与A相同),不同的涂法有32116⨯⨯⨯=(种).所以,根据加法原理,共有12618+=种不同的涂法.【答案】18【例 10】用4种不同的颜色来涂正四面体(如图,每个面都是完全相同的正三角形)的4个面,使不同的面涂有不同的颜色,共有________种不同的涂法.(将正四面体任意旋转后仍然不同的涂色法,才被认为是不同的)【考点】乘法原理之染色问题【难度】4星【题型】填空【关键词】迎春杯,中年级,复赛,第9题【解析】不旋转时共有4×3×2×1=24种染色方式,而一个正四面体有4×3=12种放置方法(4个面中选1个作底面,再从剩余3个面中选1个作正面),所以每种染色方式被重复计算了12次,则不同的染色方法有24÷12=2种。
人教版小学数学经典例题 乘法原理之染色问题(含解析答案)

1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入 老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n 个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A 种不同的方法,第二步有B 种不同的方法,……,第n 步有N 种不同的方法.那么完成这件事情一共有A ×B ×……×N 种不同的方法.教学目标 知识要点乘法原理之染色问题结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N 个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?D C B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选.根据乘法原理,不同的涂法有32212⨯⨯=种;当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D 也只有1种颜色可选(与A 相同).根据乘法原理,不同的涂法有32116⨯⨯⨯=种.综上,根据加法原理,共有12618+=种不同的涂法.【答案】18【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜例题精讲色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有326⨯=种方法,D 剩下2种方法,对该图的染色方法一共有43332284⨯⨯+⨯⨯=()种方法.【注意】给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题.【答案】84【例 2】 在右图的每个区域内涂上A 、B 、C 、D四种颜色之一,使得每个圆里面恰有四种颜色,则一共有__________种不同的染色方法.7654321【考点】乘法原理之染色问题 【难度】4星 【题型】解答【解析】 因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的4个区域一共有43224⨯⨯=种染色方法.如右图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与2、3、4三个区域的颜色相同,所以只能与1号区域的颜色相同,同理5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当1、2、3、4四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.【答案】24【例 3】 如图,地图上有A ,B ,C ,D 四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?D CB A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给A 染色,有5种颜色可选.第二步:给B 染色,由于B 不能与A 同色,所以B 有4种颜色可选.第三步:给C 染色,由于C 不能与A 、B 同色,所以C 有3种颜色可选.第四步:给D 染色,由于D 不能与B 、C 同色,但可以与A 同色,所以D 有。
小学奥数题目-六年级-计数类-立方体染色

通常,在一个大的立方体表面进行染色,染色之后再进行切割,将大立方体切割成许多小的立方体,这样得到的小立方体中,染色的情况会有许多种,一面染色、两面染色、三面染色……本讲主要讲解解决这类问题的一些方法。
包括染色一面,两面,三面等小立方体个数的计算公式。
例1、将下图中棱长为10厘米正方体表面涂上红色,如果沿着虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?1. 1.长宽高分别为3,4,5的长方体,将其表面涂上红色,然后将其切成60个边长为1的小立方体,这些小立方体中没有被涂上红色的所有表面的面积和是多少?2. 2.长宽高分别为6,8,12的长方体,将其表面涂上红色,然后沿着与边长分别为6和8的侧面平行的面切3次,沿着与边长分别为8和12的侧面平行的面切2次,沿着与边长分别为6和12的侧面平行的面切3次,将其分成若干个小长方体,这些小长方体中没有被涂成红色的所有表面的面积是多少?3. 3.将棱长为8厘米正方体表面涂上红色,如果把它切成64个边长为2厘米的小立方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?例2、有30个边长为1分米的正方体,在地面上摆成右图的形式,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方分米?1. 1.如下图,由44个边长为1厘米的小正方体组成的如图所示的形式,现在把露出的表面涂成红色,被涂成红色的表面积是多少平方厘米?2. 2.有55个边长为1分米的正方体,在地面上摆成右图的形式,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方分米?3. 3.如下图,由35个边长为2厘米的小正方体堆成的形状,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方厘米?视频描述例3、一个长方体木块,长5分米,宽3分米,高4分米,在它六个面上都漆满油漆,然后锯成棱长都是1分米的正方体木块。
问锯成的木块中三面涂有油漆有多少块?两面涂有油漆的有多少块?1. 1.一个长方体木块,长10分米,宽6分米,高8分米,在它六个面上都漆满油漆,然后锯成棱长都是2分米的正方体木块。
染色问题

∴ 不同的染色方法共有 4× ( 153+432+78) =2652 种. 【评析】以上例 1 是通过对“面”的染色问题转化为对“点“的染色,此题的难度较大, 若单从正八面体的各面进行分析,会使得问题变得十分模糊,很容易出错,因此,考 虑到正八面体结构的特殊性,我将问题转化为对正方体的八个顶点的分析,这样做的 目的主要是使问题变得更加清晰明了,由此可以发现,点染色是染色问题中一种很常 用也很实用的方法;
【评析】本题属于典型的区域染色问题,通过对正六边形的六块区域进行不同的染色方 法,利用组合数学的知识很容易就能求解,此题的突破点就在利用图形特殊对称性进行 分析,也正是基于此,所以联想到将问题推广为 N 块圆区域情形,通过寻找彼此递推 关系,进而得出 N 块区域的染色种数,土木难度不是很大,但很能反映一个人的洞察 力和分析问题的能力. 通过此题我们可以也发现区域染色的计数问题实际上也就是组 合数学问题,彼此之间有着紧密的联系,包括上述其他的几种染色问题和我们常见的一 些数学方法都有着紧密的联系.
2.染色方法
将问题中的对象适当进行染色,有利于帮助我们更好地观察、分析对象之间的关系,常 用的染色方法有点染色、线段染色、小方格染色、区域染色等染色 方法;以下我将通过一些具体的例题,对上述几类染色方法进行简 单一一介绍. 例 1: (点染色)用红、黄、蓝、绿四种颜色给如下正八面体的面 A、 B、C、D、E、F、G、H 染色(允许只用其中的几种) ,使相邻面(有 公共棱的面)不同色,求不同的染色方法的种数. 解: 如图,作一正方体,其顶点对应正八面体各面,则当且仅当正 八面体中两面相邻时,对应的正方体两顶点相邻. 这样,原问题就 转化为:求用 4 种不同颜色给正方体的八个顶点染色,相邻点不同 色的染色方法种数. ★ A 的染色方法有 4 种 下面对 B、D、E 的染色分情况讨论. (1)B、D、 E 同色,有 3 种染色方法. 则 C、F、H 至多染 3 色,各有 3 种选择,共有 27 种染色方法. 其中,
小学奥数题目-六年级-计数类-立方体染色

通常,在一个大的立方体表面进行染色,染色之后再进行切割,将大立方体切割成许多小的立方体,这样得到的小立方体中,染色的情况会有许多种,一面染色、两面染色、三面染色……本讲主要讲解解决这类问题的一些方法。
包括染色一面,两面,三面等小立方体个数的计算公式。
例1、将下图中棱长为10厘米正方体表面涂上红色,如果沿着虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?1. 1.长宽高分别为3,4,5的长方体,将其表面涂上红色,然后将其切成60个边长为1的小立方体,这些小立方体中没有被涂上红色的所有表面的面积和是多少?2. 2.长宽高分别为6,8,12的长方体,将其表面涂上红色,然后沿着与边长分别为6和8的侧面平行的面切3次,沿着与边长分别为8和12的侧面平行的面切2次,沿着与边长分别为6和12的侧面平行的面切3次,将其分成若干个小长方体,这些小长方体中没有被涂成红色的所有表面的面积是多少?3. 3.将棱长为8厘米正方体表面涂上红色,如果把它切成64个边长为2厘米的小立方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?例2、有30个边长为1分米的正方体,在地面上摆成右图的形式,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方分米?1. 1.如下图,由44个边长为1厘米的小正方体组成的如图所示的形式,现在把露出的表面涂成红色,被涂成红色的表面积是多少平方厘米?2. 2.有55个边长为1分米的正方体,在地面上摆成右图的形式,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方分米?3. 3.如下图,由35个边长为2厘米的小正方体堆成的形状,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方厘米?视频描述例3、一个长方体木块,长5分米,宽3分米,高4分米,在它六个面上都漆满油漆,然后锯成棱长都是1分米的正方体木块。
问锯成的木块中三面涂有油漆有多少块?两面涂有油漆的有多少块?1. 1.一个长方体木块,长10分米,宽6分米,高8分米,在它六个面上都漆满油漆,然后锯成棱长都是2分米的正方体木块。
(完整版)染色问题的计数方法

染色问题的计数方法河北张家口市第三中学王潇与染色问题有关的试题新颖有趣,其中包含着丰富的数学思想,染色问题,解题方法技巧性强且灵活多变,故这类问题有利于培养学生的创新思维能力,分析问题与观察问题的能力,有利于开发学生的智力。
一、区域染色问题1.根据乘法原理,对各个区域分步染色,这是处理这类问题的基本的方法。
例1要用四种颜色给四川、青藏、西藏、云南四省(区)的地图染色(图1)每一省(区)一种颜色,只要求相邻的省(区)不同色,则不同染色的方法有多少种?分析先给西藏青海云南四川四川染色有4种方法,再给青海染色有3种方法,接着给西藏染色有2种方法,最后给云南染色有2种方法,根据乘法原理,不同的染色方法共有4×3×2×2=48种2.根据共用了多少种颜色分类讨论,分别计算出各种情形的种数,再用加法原理求出不同年拾方法种数。
例2 (2003年全国高考题)如图2,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?分析 依题意至少要12345图2选用3种颜色。
(1) 当选用三种颜色时,区域2与4必须同色,区域3与5必须同色,有34A 种。
(2) 当用四种颜色时,若区域2与4同色,则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有244A 种。
由加法原理可知满足题意的着色方法共有34A +244A =24+2×24=72种。
3 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同染色方法数。
例3 用红、黄、蓝、白、黑五种颜色涂在“田”字形的四个小方格内(图3),每格涂一种颜色,相邻的两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?1234图3(1)四格涂不同的颜色,方法数为45A ;(2)有且仅有两格涂相同的颜色,即只有一组对角小方格涂相同颜色,涂法种数为21245C A ; (3)两组对角小方格涂相同颜色,涂法种数为25A 。
数学中的染色问题

表丁(乙) 11 2 4 19 8 5 24 7 18 20 2 19 3 6 25 1
数学中的染色问题
❖ 这样,每一次操作中字母的置换就相当于 下面的置换:1 2,2 3,…,25 26,
❖26 1.显然,每次操作不改变这16个数字 和的奇偶性,但是表丙、表丁16个数字和 分别为213,174,它们的奇偶性不同,故表 丙不能变成表丁,即表甲不能变成表乙。
0 1 0 10 1 0 1 01 0 1 0 10 1 0 1 01 0 1 0 10 A
数学中的染色问题
1234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A
数学中的染色问题
❖例2 下面给出表甲表乙 0154
3267 8455 2046
❖…,最后字母Z变成A),问:能否经过若 干次操作,使甲表变成乙表?如果能,请 写出变化过程,如不能,说明理由。
数学中的染色问题
❖表甲 ❖S O B R ❖T Z F P ❖H O C N ❖A D V X
表乙 KBDS HEXG RTBS CFYA
给甲乙表上字母用字母表的序号代替
❖表丙(甲 ) ❖19 15 2 18 ❖20 26 6 16 ❖8 15 3 14 ❖1 4 22 24
数学中的染色问题
❖例题4 试证:任意6个人中,一 定有3个人或者互相认识,或者 互相都不认识。
数学中的染色问题
❖证明:用6个点
A1,A2,A3,A4,A5,A6
❖代表6个人,若人认识就用红线段 相连接,否则用黑线段相连接。
❖
数学中的染色问题
❖
A2
❖
A3
❖ A1
❖
染色问题与染色方法

容斥原理:在一些计数问题中,经常遇到有关集合元素个数的计算。
我们用|A|表示有限集合A的元素个数(新教材中用CardA表示有限集合A的元素个数)。
原理一:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进行:第一步:先求出∣A∣+∣B∣(或者说把A,B的一切元素都“包含”进来,加在一起);第二步:减去∣A∩B∣(即“排除”加了两次的元素)总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣。
原理二:给定三个集合A,B,C。
要计算A∪B∪C中元素的个数,可以分三步进行:第一步求|A|+|B|+|C|;第二步减去|A∩B|,|A∩C|,|B∩C|;第三步加上|A∩B∩C|。
染色:1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1 如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k 色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2 证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3 如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n 一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4 世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6 有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7 能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾.故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8 对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF 都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染色问题的计数方法河北张家口市第三中学王潇与染色问题有关的试题新颖有趣,其中包含着丰富的数学思想,染色问题,解题方法技巧性强且灵活多变,故这类问题有利于培养学生的创新思维能力,分析问题与观察问题的能力,有利于开发学生的智力。
一、区域染色问题1.根据乘法原理,对各个区域分步染色,这是处理这类问题的基本的方法。
例1要用四种颜色给四川、青藏、西藏、云南四省(区)的地图染色(图1)每一省(区)一种颜色,只要求相邻的省(区)不同色,则不同染色的方法有多少种?分析先给西藏青海云南四川四川染色有4种方法,再给青海染色有3种方法,接着给西藏染色有2种方法,最后给云南染色有2种方法,根据乘法原理,不同的染色方法共有4×3×2×2=48种2.根据共用了多少种颜色分类讨论,分别计算出各种情形的种数,再用加法原理求出不同年拾方法种数。
例2 (2003年全国高考题)如图2,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?分析 依题意至少要12345图2选用3种颜色。
(1) 当选用三种颜色时,区域2与4必须同色,区域3与5必须同色,有34A 种。
(2) 当用四种颜色时,若区域2与4同色,则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有244A 种。
由加法原理可知满足题意的着色方法共有34A +244A =24+2×24=72种。
3 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同染色方法数。
例3 用红、黄、蓝、白、黑五种颜色涂在“田”字形的四个小方格内(图3),每格涂一种颜色,相邻的两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?1234图3(1)四格涂不同的颜色,方法数为45A ;(2)有且仅有两格涂相同的颜色,即只有一组对角小方格涂相同颜色,涂法种数为21245C A ; (3)两组对角小方格涂相同颜色,涂法种数为25A 。
因此,所求的涂法种数为45A +21245C A +25A =260种3. 根据相间区域使用颜色的种类分类讨论例4 如图4,一个六边形的6个区域A 、B 、C 、D 、E 、F ,现给这6个区域着色,要求同一区域染同一种颜色,相邻的两个区域不得使用A BCD E F 图4同一颜色,现有 4种不同的颜色可供选择,则有多少种不同的着色方法。
解: (1)当相间区域A 、C 、E 着同一种颜色时,有4种着色方法,此时,B 、D 、F 各有3种着色方法故有4×3×3×3=108种方法(2)当相间区域A 、C 、E 着两种不同颜色时,有2243C A 种着色方法,此时B 、D 、F 有3×2×2种着色方法,故共有2243C A ×3×2×2=432种着色方法。
(4) 当相间区域A 、C 、E 着三种不同颜色时,有34A 种着色方法,此时B 、D 、F 各有2种着色方法,此时共有34A ×2×2×2=192种方法。
故总计有108+432+192=732种方法二 点染色问题点染色问题,要注意对各点依次染色,主要方法有:(1)根据共用了多少种颜色分类讨论;(2)根据相对顶点是否同色分类讨论。
例5 将一个四棱锥S -ABCD 的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?解法1 满足题设条件的染色至少要用三种颜色(1) 若恰用三种颜色,可先从五种颜色中任选一种染顶点S ,再从余下的四种颜色中任选两种染A 、B 、C 、D四点,,此时只能A 与C ,B 与D 分别同色,故有1245C A =60种方法。
(2) 若恰用四种颜色,可先从五种颜色中任选一种染顶点S ,再从余下的四种颜色中任选两种染A 与B ,由于A 、B 颜色可以交换,故有24A 种染法;再从余下的两种颜色种任选一种染D 或C ,而D 与C 中另一个只需染与其相对顶点同色即可,故有11124522C C C A =240中方法。
(3) 若恰用五种颜色,有55A =120种染法。
综上,满足题意的染色方法数为60+240+120=420种。
解法2 设想染色按S -A -B -C-D 的顺序进行,对S 、A 、B 染色,有5×4×3=60种染色方法。
由于C 点的颜色可能与A 同色或不同色,这影响到D 点颜色的选取方法数,故分类讨论:C 与A 同色时(此时C 对颜色的选取方法唯一),D 与A 、C 、S 不同色,有3种选择;C 与A 不同色时,C 有2种选择的颜色,D 有2种颜色可供选择,从而对C 、D 染色有1×3+2×2=7种染色方法。
由乘法原理,总的染色方法数是60×7=420种评注 图中的连接状况是本质条件,而是否空间图形则无关紧要,试看下面的两个问题,尽管与例5表述方式不同,但具有相同的数学模型,所以都可以转化为例5来解决。
您不妨一试。
(1) 用五种颜色给图中的5个车站的候车牌A 、B 、C 、D 、E 染色,要求相邻两个车站间的候车牌的颜色不同,有多少种不同的染色方法(图6)(2) 如图7所示为一张有5个行政区划的地图,今要用5种颜色给地图着色,要求相邻的区域不同色,共有多少种方案?三、线段染色问题,要注意对各条线段依次讨论,主要方法有:(1) 根据共用了多少种颜色分类讨论;(2) 根据相对的线段是否同色分类讨论。
例6 用红、黄、蓝、白、四种颜色染矩形ABCD 的四条边,每条边只染一种颜色,且使相邻两边染不同的颜色,如果颜色可能反复使用,共有多少种不同的染色方法(图8) 解法1 (1)使用四种颜色有44A 种; (2)使用三种颜色染色,则必须将一组对边染成同色,故有112342C C A 种; (3) 使用两种颜色时,则两组对边必须分别同色,有24A 种。
因此,所求的染色方法数为44A +112342C C A +24A =84种 解法2 染色按AB-BC-CD-DA 的顺序进行,对AB 、BC 染色有4×3=12种染色方法。
由于CD 的颜色可能与AB 同色或不同色,这影响到DA 颜色的选取方法数,故分类讨论:当CD 与AB 同色时,这时CD 对颜色的选取方法唯一,则DA 有3种颜色可供选择;当CD 与AB 不同色时,CD 有2种可供选择的颜色,DA 有2种可供选择的颜色,从而对CD 、DA 染色有1×3+2×2=7种染色方法。
由乘法原理,总的染色方法数为12×7=84种。
利用相同的方法可解决例7例7 中央电视台“正大综艺”节目的现场观众来自4个单位,分别在图9中4个区域内坐定。
有4种不同的颜色服装,每个区域的观众必须穿同种颜色的服装,且相邻两个区域的颜色不同,不相邻区域颜色相同与否不受限制,那么不同的着色方法例8 用六种颜色给正四面体A -BCD 的每条棱染色,要求每条棱只能染一种颜色且共顶点的棱染不同的颜色,问有多少种不同的染色方法(图10)分析 正四面体有三组对棱AB 与CD 、AC 与BD 、AD 与BC 。
满足题设条件的染色至少要用三种颜色。
解 (1)若恰用三种颜色染色,则每组对棱必须染同一颜色,而这三组间的颜色不同,故有36A 种方法。
(2) 若恰用四种颜色染色,则三组对棱中有两组对棱的组内对棱同色,但组与组之间不同色,故有4236A C 种方法。
(3)若恰用五种颜色染色,则三组对棱中有一组对棱染同一种颜色,故有5136A C 种方法。
(4) 若恰用六种颜色染色,则有66A 种不同的方法。
综上,满足题意的总的染色方法数为36A +5136A C +66A =4080种BC四面染色问题例9 (1996年全国高中数学联赛题)从给定的六种不同颜色中选用若干种颜色,将一个正方体的6个面染色,每两个具有公共棱的面染成不同的颜色,则不同的染色方案共有多少种?(注:如果我们对两个相同的正方体染色后,可以通过适当翻转,使得两个正方体的上、下、左、右、前、后6个面对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同)分析显然,至少需要三种颜色,由于有多种不同情况,仍应考虑利用加法原理分类、乘法原理分步进行讨论。
解根据共用了多少种不同的颜色分类讨论。
(1)用了六种颜色,确定某种颜色(例如红色)所染面为下底(根据题注,对此处的两种不同染色方案,这里的“第一面”总是相同的),则上底颜色可有5种选择,在上、下底已染好后,再确定其余4种颜色中的某一种所染面为左侧面,则其余3个面有3!种染色方案,根据乘法原理n1=5×3!=30种(2)用了五种颜色,选定五种颜色有5C=6种方法,必有6两面同色(必为相对面),确定为上、下底面,其颜色可有5种选择,再确定一种颜色为左侧面,此时的方法数取决于右侧面的颜色,有3种选择(前后面可通过翻转交换)n2=5C×65×3=90(3)用了四种颜色,仿上分析可得n3=42C C=9064(4)用了三种颜色,n4=3C=206故总的染色方案有n=n1+n2+n3+n4=230种。