相似三角形的判定的预备定理
相似三角形的判定

相似三角形的判定 一、知识要点:要点1:相似三角形(1)如果两个三角形的三个角对应相等、三边对应成比例,那么这两个三角形叫做相似三角形. 两个三角形相似,用符号“∽”表示,符号“∽”读作“相似于”(2)相似三角形的对应角相等、对应边成比例. 两个相似三角形的对应边的比,叫做这两个三角形的相似比(或相似系数),一般用k 表示,当1k =时,这两个相似三角形就成为全等三角形. 全等三角形是相似三角形的特例 要点2:相似三角形的传递性如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 要点3:相似三角形的判定定理(1)相似三角形的预备定理:平行与三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似.(2)相似三角形的判定定理1:如果一个三角形的两角与另一个三角形的两角对应成比例,那么这两个三角形相似。
简述为:两角对应相等,两个三角形相似.(3)相似三角形的判定定理2:如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两个三角形相似.二、例题讲解:例1:基础训练(1)已知△ABC 和△DEF,∠A=︒72,∠B=︒35,∠D=︒72,则当∠C 的对应角∠F= 度时,△ABC∽△DEF.(2)如图,D 是AB 上一点,且∠ACD=∠B,==ACADBC CD ,则32 . (3)如图,△ABC 中,AB⊥BC,DE⊥AC 于E,则 是相似三角形,理由是 .相关练习:1.在△ABC中,D、E分别AB、AC是上的点,若AD=2,BD=1,AE=3,则EC= 时,△ADE 与△ABC相似.2. 已知正方形ABCD,点E在CD上,且CE∶DE=1∶2,EF⊥EA交BC于点F,则EF∶EA= .3. 下列各组图形有可能不相似的是 ( )(A)各有一个角是︒45的两个等腰三角形(B)各有一个角︒60是的两个等腰三角形(C)各有一个角是︒105的两个等腰三角形(D)两个等腰直角三角形例2:如图,长方形EFGH内接于⊿ABC,E、H分别在AB、AC上,F、G在BC上,EH=2HG,AD⊥BC,交EH于点P,BC=10,AD=6,求长方形EFGH的面积。
相似三角形的判定定理

(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.2、相似三角形对应边的比叫做相似比.3、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. 强调:①定理的基本图形有三种情况,如图其符号语言: ∵DE ∥BC ,∴△ABC ∽△ADE ;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到 “见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定 1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.ABCDEF判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
简单说成:两边对应成比例且夹角相等,两三角形相似.例1、△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.例2、如图,点C、D在线段AB上,△PCD是等边三角形。
(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数。
判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。
简单说成:三边对应成比例,两三角形相似.强调:①有平行线时,用预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.例1、已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.例2、如图,AB ⊥BD,CD ⊥BD,P 为BD 上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P 点在BD 上由B 点向D 点运动时,PB 的长满足什么条件,可以使图中的两个三角形相似?请说明理由.例3、已知:AD 是Rt △ABC 中∠A 的平分线,∠C =90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
相似三角形(预备定理)

例。
步骤3
03
根据步骤1和步骤2,得出两个三角形相似的结论。
感谢您的观看
THANKS
性质
相似三角形预备定理具有传递性 、反身性和对称性,即如果两个 三角形相似,则它们的对应边和 对应角都成比例。
预备定理的重要性
基础性
相似三角形预备定理是三角形相似判 定定理的基础,对于理解三角形相似 的概念和性质至关重要。
应用广泛
在几何学、三角函数、解析几何等领 域中,相似三角形预备定理都有广泛 的应用。
等,则这两个三角形相 似。
具体来说,如果$angle A = angle A'$、$angle B = angle B'$、$angle C = angle C'$,则三角形ABC与三角形A'B'C'相 似。
边边判定法
如果两个三角形的三组对应边成比例,则这两个三角形相似。
相似三角形(预备定理)
目录
• 相似三角形预备定理的定义 • 相似三角形的判定方法 • 相似三角形的性质 • 相似三角形在几何中的应用 • 相似三角形的实际应用 • 相似三角形预备定理的证明
01
相似三角形预备定理的定义
定义与性质
定义
相似三角形预备定理是指,如果 两个三角形有两边对应成比例, 且夹角相等,则这两个三角形相 似。
离与实际距离之间的关系。
地形表示
在地图上表示地形起伏时,可以使 用相似三角形来表示不同高度之间 的相对关系。
地理位置定位
在地图上确定地理位置时,可以使 用相似三角形来确定两点之间的相 对位置和距离。
在物理学中的应用(光的折射、反射等)
光学仪器设计
在设计和制造光学仪器(如望远镜和显微镜)时,需要使 用相似三角形来计算透镜的形状和位置,以确保光线正确 地折射和聚焦。
相似三角形平行线分线段成比例及预备定理

B
A
C
E
若DE ∥ BC 则
∠A=∠D, ∠B=∠E, ∠ACB=∠DCE,
D AB ACBC. DE DC CE
若△ABC∽ △DEC,
从上面的解答中,你获得了那些信息?
A
D
E
B
CEDຫໍສະໝຸດ ABC平行于三角形一边的直线和其他两边(或两 边的延长线)相交,所构成的三角形与原三角形 相似.
相似三角形的预备定理:
B
D
A
E
C
7.如图,DE∥BC, (1)如果AD=2,DB=3,求DE:BC的值; (2)如果AD=8,DB=12,AC=15,DE=7, 求AE和BC的长.
8.如图,在□ABCD中,EF∥AB,
DE:EA=2:3,EF=4,求CD的长.
9.已知EF∥BC,求证:
BD DC EG GF
A
E
G
27.2相似三角形的判定 之1
预备定理
回顾:
两个条件要 同时具备
相似多边形的判定:
对应角相等,对应边的比相等 的两个多边形为相似多边形.
相似三角形的判定:
对应角相等,三组对应边的比也相等的两个三
角形是相似三角形. 符号语言:
A
B
C B′
A′
在△ABC和△A´B´C´中,
∵ A A , B B , C C
AB B C CA .
C′
AB BC CA
∴△ABC∽△A´B´C´
2、△ABC与△A´B´C´相似比为k, 则△A´B´C´与
△ABC相似比为 1 k
对应角___相__等__, 对应边——成—比——例—的两个三
角形,
叫做相似三角形 A
湘教版九年级数学上册《相似三角形判定 》知识全解

《相似三角形判定》知识全解
课标要求
理解相似三角形几种判定,并能简单地应用.
知识结构
内容解析
(1)相似三角形判定预备定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.
(2)相似三角形判定1:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.
(3)相似三角形判定2:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.
(4)相似三角形判定3:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
重点难点
本节的重点是:三角形相似的判定方法及其应用.
难点:探究两个三角形相似判定方法的过程.
教法导引
(1)注重将新知识与旧知识进行联系与类比.
培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法与全等三角形判定方法的区别与联系,体验事物间特殊与一般的关系.
复习全等三角形判定方法SSS与SAS,类比全等三角形判定方法SSS与SAS,提出两个三角形相似的两个判定.
(2)让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力.
教学活动的本质是一种合作,一种交流.学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,本节课主要采用自主学习,合作探究,引领提升的方式展开教学.依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,加强与全等三角形相关内容的联系,使学生的学习形成正迁移.
学法建议
新的教学理念要求在课堂中注重探究学习,在本课中,其实有许多内容可以进行这方面的尝试.如何进行判定三角形相似呢?可以让学生进行探究和归纳.若能在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高.。
3.4.1相似三角形的判定定理3

B AC 1 ∠C =∠C ′= 90°,且 A AB AC 2 求证:△ ABC∽△ABC.
还可以根据相似三角形 的判定定理2,来证明这两 个直角三角形相似.
练习 1.如图,O为△ABC内一点,D、E、F
分别是OA、OB、OC中点. 求证:△ABC∽△DEF.
= 4 BC 2 =(2 BC )2. 由此得出,BC = 2BC .
BC 1 AB AC . 从而 BC 2 AB AC
因此△ AB C ∽△ABC.
(三边对应成比例的两个三角形相似)
说一说
在例2的证明中,还可以根据哪个判定定理说明 △ ABC ∽ △ABC ?
AD AE DE AB AC BC AD AB A B AE DE AB AC BC A ' B ' A ' C ' BC AB AC BC ∴ AE= A'C', DE= B'C',
A
A'
D B' C' B E
C
∴△A'B'C' ≌ △ADE ∴ △A'B'C' ∽ △ABC
证明: E O
A D F
B
C
D, E , F 分别为OA,OB,OC的中点, 1 1 1 DE = AB , EF BC , DF AC . 2 2 2 DE EF DF 1 . AB BC AC 2 △ABC∽△DEF.
练习
AB AC BC 2.如图, = = , AD AE DE
AB AC 1 ∠C =∠C ′= 90°,且 AB AC 2
3.4.1相似三角形的判定1(预备定理)

∴AE=CE
B
又DE=FE,∠AED=∠CEF
△ADE≌△CFE
E F
C
∵DE∥BC ∴△ADE∽△ABC
∴△CFE∽△ABC
练习1、如图,在Rt△ABC中,∠C=90°.正方形 EFCD的三个顶点E,F,D分别在边AB,BC,AC上. 已知AC=7.5,BC=5,求正方形的边长.
A
解:由题可知:△AED∽△ABC
“A”型 A
“X”型
D
E
D
E
O
B
C
(图1)
几何语言: ∵DE∥BC ∴△ADE∽△ABC
B
(图2)
C
几何语言: ∵DE∥BC
∴△DOE∽△COE
例2 如图,点D为△ABC的边AB的中点,过 点D作DE∥BC,交边AC于点E.延长DE至点F, 使DE=EF.
A
求证:△CEF∽△ABC
思路
∵DE∥BC ∴△ADE∽△ABC
AD ED AC BC
7.5 x x 7.5 5
解得 x=3
E
D
B
C
F
∴正方形的边长为3
如图所示,在△ABC中,点O是AC的中点,点M是AB
上的点,且
AM 1 BM 3
,作AG∥MN.
求 CN 的值.
BN
∵AG∥MN
A M
O
∴△BMN∽△BAG
B
∴△CON∽△CAG
C
N
G
如图所示,在△ABC中,点O是AC的中点,点M是AB
∴∠AOE+∠AOF=∠ACB+∠ACD,
∴∠EOF=∠BCD,
∴∠EAD=∠BAC,
课堂小结:本节课你学到了什么?
《相似三角形的判定预备定理 》

18.5.1相似三角形的判定——预备定理【教学目标】知识技能:掌握用相似三角形的定义和预备定理判断两个三角形相似过程方法:在探索相似三角形判定定理过程中,体现解决问题的方法情感态度:在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质.【教学重点】预备定理的证明与应用【教学难点】预备定理的证明【教学过程】一.复习引入活动1回顾相似三角形的定义,定义既是判定也是性质;平行线分线段成比例出示问题:如图,DE//BC, △ADE 与△ABC 有什么关系?说明理由.学生猜想:相似。
能得到△ADE ∽△ABC 吗?教师活动:教师出示并提出问题,组织学生思考.(1)△ADE 与△ABC 满足“对应角相等”吗?为什么?(2)△ADE 与△ABC 满足对应边成比例吗?由“DE ∥BC ”的条件可得到哪些线段的比相等?(3)根据以前学习的知识如何把DE 移到BC 上去?(作辅助线DF ∥AC )学生活动:学生小组讨论:要证△ADE ∽△ABC只需证∠A=∠A ,∠B=∠2,∠C=∠3←——由平行得=AD AE DE AB AC BC ⎫=⎬⎭由DE ∥BC 得相似定义 只需证出:DE AD BC AB=或DE AE BC AC = 由于DE 、BC 不在同一直线上,故可以通过做辅助线平移DE ,将DE 、BC 放在同一直线上证明: 过D 点作DF ∥AC 交BC 于F ∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是□ ∴DE=CF ∵DF ∥AC ∴CF AD BC BD= ∴DE AD BC BD= ∵DE ∥BC ∴=AD AE BD AC∵DE ∥BC∴∠A=∠A ,∠1=∠B ,∠2=∠C ∴△ADE ∽△ABC BC DE AC AE AB AD ==∴B分析完后由学生口述再ppt 出示过程由此可得:平行于三角形一边的直线截其他两边所得的三角形与原三角形相似。
拓展: 思考: 若条件不变,图形如图所示,结论是否仍然成立?依然成立几何画板演示教师活动:板书课题“相似三角形的判定”二、形成新知:活动2 归纳总结:判定三角形相似的(预备)定理: 文字语言:平行于三角形一边的直线,截其他两边所得的三角形与原来三角形相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.1相似三角形的判定(第一课时)学案
学习目标:1理解相似三角形的概念,表示方法及性质,
2 掌握平行线分线段成比例定理及推论和相似三角形判定定理的
“预备定理”
3 会用行线分线段成比例定理及推论和相似三角形的判定定理的
“预备定理”进行有关判断及计算
学习重点:会用行线分线段成比例定理及推论和相似三角形的判定定理的“预备定理”进行有关判断及计算
学习难点:相似三角形的判定定理的“预备定理”推导过程
学习过程:
活动一,自学相似三角形的概念和性质
1仔细研读数学书29页第一段回答下列问题(见学案)
⑴相似三角形的概念:
⑵相似三角形的性质:
3.如图在△ABC 与△DEF 中,
①∵ ∠ =∠ , ∠ =∠ , ∠ =∠
∴△ABC~△
②∵△ABC~△DEF
∴∠ =∠ , ∠ =∠ , ∠ =∠
③若△ABC~△DEF ,若A=30°∠B=30°则∠F= °
④若△ABC~△DEF ,相似比为1:2,则△DEF 和△ABC 的相似比为 。
若BC=2,则EF= ⑤若△ABC~△DEF ,相似比等于1,则△ABC △DEF
活动二探究平行线分线段成比例定理及推论
①如图,任意画两条直线l 1、l 2,再画三条与l1、l2相交的平行线l3、l4 、l5.分别度量l3、l4 、l5 在l1上截得的两条线段AB,BC 和在l2上截得的两条线段DE,EF 的长度, 计算
②任意平移l5,再度量AB,BC ,DE,EF 的长度. 再计算
③归纳:
④平行线分线段成比例定理推论
两个基本图形
EF DE BC AB 与,DF DE AC AB 与,DF EF AC BC 与
活动三探究三角形相似的预备定理
思考:如图,在△ABC 中,DE//BC,DE分别交AB,AC 于点D,E, △ADE与△ABC有什么关系?
预备定理:
基本图形
活动四:应用
基础练习
1下列各图都满足DE∥BC,是否都有△ADE∽△ABC?
2、如图,在△ABC中,DE∥BC且AD=3.DB=2请找出图中所有的相似三角形。
3.如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()
A 1对
B 2对
C 3对
D 4对
例题讲解见投影
提高训练
4如图,△ABC 中,D 、E 分别是AB 、AC 中点.
(1)求证
5如图EG ∥BC,GF ∥CD,AE=3,EB=2,AF=6,则AD=(
)
5,如图在△ABC 中,DE ∥BC 。
求证:AC
AE FC DF =
6 如图:正方形ABCD ,FG ∥BE 。
求证:GF=FB
BC DE AB AD =。