继电保护毕业论文
关于继电保护的论文

关于继电保护的论文1、电力系统继电保护二次安全措施的现状1.1继电保护的带电检修的二次安全措施当继电保护系统在带电的电流互感器二次回路上工作的时候:第一,应该禁止工作人员打开互感器的二次侧开路,同时不能将回路中的永久接地点断开;第二,对于短路电流互感器而言,禁止用导线进行缠绕,这样才能保障短路的可靠性与稳定性;第三,禁止在电流互感器与短路端子之间的回路进行工作,同时也禁止在电流互感器与短路端子之间的导线上进行工作。
总之,当继电保护系统在带电的电流互感器二次回路上工作的时候,应该以避免二次侧开路中产生高电压危险为主要原则,从而保障回路的正常工作。
当继电保护系统在带电的电压互感器二次回路上工作的时候,应该以防止二次侧短路或接地事故的发生:第一,当工作人员取下或者是投入电压端子连接片与线头的时候,工作人员必须进行小心操作,避免误碰相邻端子或接地部分,与此同时,当工作人员在拆开电压线头的时候,应该给拆开的电压线头做好标记,并用绝缘布将电压线头包好。
第二,当工作人员在操作的时候,必须使用相应的绝缘工作,同时应该戴好绝缘手套。
在必要的时候,必须在值班负责人或者调度员允许以后才能在工作之前将继电保护装置关闭。
第三,当工作人员接临时负载的时候,必须在电路中安装专用的’隔离开关与保险器,并要保证保险器的熔丝熔断电流与电压互感器保护熔丝相配合。
1.2继电保护设备停电检查的二次安全措施第一,工作人员必须断开与被检修设备相连接的电流回路,同时也应断开与被检修设备相连接的电压回路;第二,工作人员必须将继电保护系统中被检修设备电流互感器到母线保护之间的电流回路切断;第三,工作人员必须将继电保护中被检修设备与运行断路器之间的跳闸回路切断,如变压器的后备保护跳母线联络断路器、分段断路器以及旁路断路器的跳闸回路等;第四,工作人员必须将继电保护中的被检修设备启动失灵保证跳闸回路切断,主要包括启动远跳对侧断路器的相关回路;第五,工作人员必须将继电保护中的被检修设备启动中央信号、故障录波回路切断。
发电机继电保护的设计毕业论文

中文摘要摘要本论文主要对积石峡水电站进行电气一次及微机保护设计。
积石峡水电站的总装机功率为4×250=1000MW,共四回330KV出线与系统相连。
电气一次部分,首先是根据所给出的原始资料拟定三种电气主接线方案。
然后对这三种方案进行可靠性、灵活性和经济性比较后,保留一种较合理的方案,对这种方案进行短路电流计算;接着是根据短路电流计算结果进行主要电气设备的选型以及校验,包括断路器、隔离开关、母线、互感器等;最后再由经济性比较确定最终的电气主接线方案。
同时设计厂用电方案与画出配电装置的布置图。
发电机继电保护的设计是对4组发电机变压器组与母线进行保护类型的配置,保护的整定计算及校验。
论文还附有7张AutoCAD的图纸加以说明。
包括电气主接线图、厂用电接线图、室外配电装置图、发电机变压器组保护的原理接线图、展开图、母线的保护原理图、展开图。
毕业设计的过程是一次将理论与实际相结合的过程,通过这次比较系统全面的进行设计之后,巩固和增强了电力系统学科主干课程的理解,树立了工程设计的观念,提高了电力系统设计的能力。
关键词:电气主接线,短路电流计算,设备选型,微机保护AbstractABSTRACTThis thesis focuses on the electrical Jishixia a station and the design of microprocessor-based protection. The total power of JI SHI XIA hydro power station is 4×250MW=1000MW,connecting to system with 4 outline.For electric primary system, firstly draw up 3 drafts of main connection lines according to the firsthand information and datum. Then compare the 3 drafts from these aspects such as reliability, flexibility and economy, and keep one more reasonable plans than others. The short circuit current calculation is carried on. And main electric equipments including circuit breakers、disconnectors、bus、insulatoretc are choosed according to the result of short circuit current calculation. Finally the economy of the plan is compared and main electrical connection plan is determined.Protection contains choosing the protection style of the 4 generator, setting calculation as well as the verification and confirm relay style. The dissertation attach to 7 AutoCAD drawings including the main electric connection, outdoor distribution equipment setting, the relay protection of generator ,the decoration of protection scream.The process of the graduation design is a process of combining the theory with practice. The comprehensive and system training is helpful to enhance and consolidate the understanding and application of the branch curriculum of the electric subject, to set up the project idea and to improve the ability of the electrical system design.KEY WORDS: main electrical connection, short circuit current calculation, Equipment selection, Microcomputer protection前言前言水利发电就是利用水能发电的一种方式。
电力系统继电保护毕业论文

电力系统继电保护毕业论文电力系统继电保护毕业论文随着电力系统的不断发展和扩大,继电保护在电力系统中的重要性也日益凸显。
继电保护是电力系统中的安全保障措施,其主要作用是在电力系统出现故障时,迅速切除故障部分,保护电力设备和系统的安全运行。
电力系统继电保护毕业论文旨在研究和探讨电力系统继电保护的相关理论和技术,提出有效的解决方案,以提高电力系统的可靠性和稳定性。
一、继电保护的基本原理继电保护的基本原理是通过测量电力系统中的电流、电压等参数,与预设的保护参数进行比较,当参数超出设定范围时,继电保护设备将发出保护信号,切除故障部分。
二、继电保护的分类继电保护可以根据其作用范围和功能进行分类。
常见的继电保护类型包括过电流保护、差动保护、距离保护、频率保护等。
每种类型的继电保护都有其特定的应用场景和适用范围。
三、继电保护的技术挑战在电力系统继电保护的研究和实践中,面临着一些技术挑战。
首先,电力系统规模越来越大,继电保护需要处理的数据量也越来越大,传统的继电保护设备可能无法满足需求。
其次,电力系统中存在各种复杂的故障模式,继电保护需要能够准确识别和判断不同类型的故障。
此外,电力系统的可靠性要求越来越高,继电保护需要能够快速响应和切除故障,以减少故障对电力系统的影响。
四、继电保护的发展趋势随着信息技术的发展和应用,继电保护也在不断演进和创新。
一方面,继电保护设备逐渐实现数字化和智能化,可以更好地处理大量的数据和信息。
另一方面,继电保护与其他电力系统设备的互联互通也日益紧密,形成了继电保护与通信技术、人工智能等领域的交叉应用。
五、继电保护的案例分析本论文还将通过对一些实际电力系统故障案例的分析,探讨继电保护在故障处理中的应用。
通过对故障原因的分析和继电保护的响应情况,可以评估继电保护的性能和可靠性,并提出改进方案。
六、结论继电保护作为电力系统中的重要组成部分,对于电力系统的安全运行至关重要。
本论文通过对继电保护的基本原理、分类、技术挑战和发展趋势的研究,以及对实际案例的分析,提出了一些解决方案和改进建议。
电力系统继电保护论文

电力系统继电保护论文电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用。
现代电力系统是一个由电能产生、输送、分配和用电环节组成的大系统。
下文是店铺为大家搜集整理的关于电力系统继电保护论文的内容,欢迎大家阅读参考!电力系统继电保护论文篇1浅谈电力系统继电保护摘要:城市电网配电系统由于其覆盖的地域极其辽阔、运行环境极其复杂以。
在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响,为了确保城市电网配电系统的正常运行。
必须正确地设置继电保护装置。
关键词:电力系统10kv供电系统继电保护1 继电保护的基本概念继电保护装置的拒动和误动都会给电力系统造成严重危害。
但提高其不拒动和提高其不误动作的可靠性的措施往往是互相矛盾的。
由于电力系统的结构和负荷性质的不同,拒动和误动所造成的危害往往不同。
例如当系统中有充足的旋转备用容量,输电线路很多,各系统之间和电源与负荷之间联系很紧密时由于继电保护装置的误动作,使发电机变压器或输电线路切除而给电力系统造成的影响可能很小;但如果发电机变压器或输电线路故障时继电保护装置拒动作,将会造成设备的损坏或系统稳定的破坏,损失是巨大的。
在此情况下提高继电保护装置不拒动的可靠性比提高其不误动的可靠性更为重要。
但在系统中旋转备用容量很少及各系统之间和负荷和电源之间联系比较薄弱的情况下,继电保护装置的误动作使发电机变压器或输电线切除时,将会引起对负荷供电的中断甚至造成系统稳定的破坏,损失是巨大的。
而当某一保护装置拒动时,其后备保护仍可以动作而切除故障,因此在这种情况下提高继电保护装置不误动的可靠性比提高其不拒动的可靠性更为重要。
2 保护装置评价指标2.1继电保护装置属于可修复元件,在分析其可靠性时,应该先正确划分其状态,常见的状态有:①正常运行状态。
这是保护装置的正常状态。
②检修状态。
为使保护装置能够长期稳定运行,应定期对其进行检修,检修时保护装置退出运行。
电力系统继电保护论文

电力系统继电保护论文电力对国家的发展与正常运作起着至关重要的作用,不仅各行各业的生产和发展离不开电力,国民的日常生活同样也离不开电力的支撑。
下文是店铺为大家搜集整理的关于电力系统继电保护论文下载的内容,欢迎大家阅读参考!电力系统继电保护论文下载篇1浅析电力系统继电保护管理【摘要】电力系统中,继电保护装置是负责电力系统安全运行的装置。
通过继电保护装置电力部门可以随时测控系统的运行状态,及时的发现电力传输中的安全问题,对出现的故障及时排查,对问题电路针对性的选择适当的断路器切断电路,保障电力系统的可靠性。
文章结合日常工作经验,通过对继电保护装置的使用和管理等方面的分析,对于如何确保电网的安全和稳定提出合理化的意见和建议,以此展开课题研究。
【关键词】继电保护;故障处理方法;微机化管理;技术监督职能1 引言继电保护装置是保障系统安全运行的重要组件,他可以在系统出现故障的时候,及时的向相关的维护人员发出信号,有关人员根据信号就能及时的处理相关故障,恢复系统的正常运行。
此外,与其他系统相互配合下,继电保护装置还可以自动的消除短暂的简单故障。
因此继电保护装置的管理是电力系统安全运行的重要环节。
2 继电保护的管理2.1 重要性继电保护的管理工作对于信息数据的分析、处理和统计等方面有着重要的作用。
继电保护人员每天的工作就是分析处理电网各个变电站设备反射传输过来的信息,通过分析和判断维护电网各变电站的正常运行,但是,这类数据往往存在着各种重复录入的情况。
诸如,上级和下级供电局,或者是局和各个变电站之间都会出现类似的重复性的数据录入数据状况。
如此一来,继电保护人员就要先从各类数据中删减多余信息,增加了工作量也降低了工作效率。
因此为了减轻继电保护工作人员的负担,对继电保护的管理就成现在电力系统管理的一个新的要求,良好的继电保护信息管理不但可以提高劳动率,也节省了成本。
2.2 管理继电保护系统就是对继电保护反映出的数据以及表格图形等进行综合的分析判断然后整理归档。
继电保护毕业论文

毕业设计(论文)题目:甘肃大峡水电站继电保护及二次回路设计学院:电子信息学院专业班级:电气工程及其自动化06级1班指导教师:邵文权职称:讲师学生姓名:**学号:***********摘要由于大型水电站的母线、发电机和变压器的结构比较复杂,在运行过程中都可能会发生各种各样的故障和异常运行状态,为了确保在保护范围内发生故障,都能有选择性的快速切除故障,需要配置多种继电保护装置,必要时进行多重化配置,从而将水电站中重要设备的危害和损失降到最小,对电力系统的影响最小。
发电厂和变电所母线是电力系统中的中的一个重要组成部件,发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用;而变压器是电力系统十分重要的供电元件再者,发电机、变压器本身就是十分贵重的电气元件,所以,继电保护装置对大型水电站的正常运行起着至关重要的作用。
根据大峡水电站的接线图及相关资料。
本设计共包括六章,分别对母线、发电机、变压器的继电保护进行详细介绍,并给出相关的整定计算,画出部分二次接线图。
本文主要通过分析原始资料中主要设备的参数,首先,需要对电力系统保护原理进行全面系统的复习、查阅相关资料,加深理解;其次,结合相关参数和各种继电保护原理,确定适用于大峡水电站的保护方案,最后,分别对母线处、发电机和变压器进行整定计算和配置,并且根据系统一次设计图给出部分二次设计及其配置图和一般原理图.关键词:水电站、继电保护、发电机、变压器、母线、二次回路AbstractAs a result of large hydroelectric station's bus bar, the generator and transformer's structure is quite complex, possibly will break down various in the movement process and exceptionally the running status, to guarantee that will break down in the extent of protection,can have the selective fast excision breakdown, needs to dispose many kinds of relay protection installments, when the necessity will carry on the multi-densified disposition, thus in the river water power plant the important equipment's harm and the loss will fall to are smallest, will be smallest to electrical power system's influence。
电力系统继电保护论文论文

关于继电保护的讨论内容摘要继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段;当电力系统出现故障时,继电保护系统通过寻找故障前后差异可以迅速地,有选择地,安全可靠地将短路故障设备隔离出电力系统,从而达到电力系统安全稳定运行的目的。
本文从继电保护的现状与发展趋势出发,论述了电力系统继电保护技术的任务对继电保护的四个基本特性;继电保护的基本原理及继电保护装置的继电器特性,以及继电保护是怎样在由二次设备来控制保护一次设备的,并论述了电力系统继电保护的前景展望。
关键词:继电保护;发展前景;短路故障;四性;二次设备;继电器讨论方面第一部分继电保护的历史背景及发展现状第二部分电力系统继电保护的作用与意义第三部分电力系统继电保护的任务和基本要求第四部分电力系统继电保护的原理及组成第五部分电力系统继电保护发展的前景展望第六部分关于电力系统继电保护认识和结论第一部分继电保护的历史背景及发展现状上世纪90年代出现了装于断路器上并直接作用于断路器的一次式的电磁型过电流继电器,本世纪初,随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。
这个时期可认为是继电保护技术发展的开端。
1901年出现了感应型过电流继电器;1908年提出了比较被保护元件两端的电流差动保护原理。
1910年方向性电流保护开始得到应用,在此时期也出现了将电流与电压比较的保护原理,并导致了本世纪29年代初距离保护的出现。
随着电力系统载波通讯的发展,在1927年前后,出现了利用高压输电线上高频载波电流传送和比较输电线两端功率或相位的高频保护装置。
在50年代,微波中继通讯开始应用与电力系统,从而出现了利用微波传送和比较输电线两端故障电气量的微波保护。
早在50年代就出现了利用故障点产生的行波实现快速继电保护的设想。
经过20余年的研究,终于诞生了行波保护装置。
发电机继电保护论文

摘要本系统是一个300MW装机容量的区域火力发电厂,采用240MV A强冷油循环的变压器构成发电机—变压器组,220KV母线有两条母线和系统相连。
本设计主要是针对发电机进行继电保护。
为了保证发电机组安全、经济、稳定运行,对用户不间断供电和防止其遭受严重破坏,本设计采用发电机—变压器单元接线作为电气主接线。
根据大型发电机和发电机变压器组单元接线的特点及对保护的要求,在设计它们的继电保护总体配置时为满足电力系统稳定方面的要求,为了保证正确快速切除故障,对发电机变压器组设置了双重快速保护。
本设计以《继电保护和自动装置安全规程》为依据,对发电机继电保护装置进行全面的阐述。
主要介绍发电机的差动保护,匝间保护,接地保护,失磁保护,过负荷保护,逆功率保护以及相应保护继电器动作情况。
最后还详细说明了继电器的动作条件,灵敏度等一系列相关问题。
论文包括运行方式分析、发电机保护配置,并对其进行了详尽的说明、短路计算、整定计算及绘制电气主接线图,发电机保护配置图,发电机交直流展开图等相关图纸。
关键词电力系统,继电保护,发电机,变压器AbstractThe system is a 300MW power plant in the region, a strong cold fuel cycle 240MV A transformer constitute generators - transformers Group, system linked 220KV bus bar two bus bar and systems linked. The design is a protective response to generators.To ensure that units security, economic, and stability operations to prevent their users uninterrupted power supply and the devastation of the design using generator-transformer units electrical wiring as the main wiring.According large generators and generator transformers Group module wiring for the protection of the characteristics and requirements in the design of their overall allocation of time to meet the protective power system stability requirements, in order to ensure the rapid removal of the right breakdown of generator transformers Group set up double quick protection.The design for the "automatic protective devices and safety regulations" as a basis for the whole plant protective devices complete exposition. Main generators relies on the protection go round-protection grounding protection, the protection of displaced magnetic, a load protection, protection against power transformers and gas protection, three around the differential delay transformers vertical protection zero sequence protection, the protection of load protection principles. Frequent failure phenomenon, and the corresponding protection relays moves. Further details of the final relays moves conditions, sensitivity, and a series of related issues.Papers including operational analysis, the protection of generators, and their detailed descriptions, short circuit calculation, the calculation and mapping of the main electrical wiring map 1# crew protection of maps to direct current generators, and other related drawings on mas.Key words power systems, protective, generators, transformers目录摘要 (I)Abstract .............................................................................................................................................................. I I 引言 (1)第一部分说明书 (2)1 继电保护的作用及原理 (2)1.1 继电保护的作用 (2)1.2 继电保护的原理和构成 (2)1.3 继电保护设计原则及构成 (3)2 电气主接线 (4)2.1 电气主接线 (4)2.2 运行方式分析 (5)3 保护配置说明 (6)3.1 发电机保护配置方案 (6)3.2 主变压器的保护配置方案 (8)3.3 发电机变压器组保护配置方案 (10)4 发电机原理说明 (11)4.1 发电机纵差保护 (11)4.2 发电机单继电器横联差动保护 (13)4.3 发电机定子接地 (15)4.4 发电机励磁回路接地保护 (15)4.5 过电压保护 (19)4.6 发电机过负荷保护 (19)4.7 发电机的复合电压起动过电流保护 (21)4.8 发电机逆功率保护 (22)4.9 发电机失磁保护 (23)第二部分计算书 (25)5 短路计算 (25)6 参数计算 (27)6.1 发电机出口短路计算 (27)6.2 后备保护短路计算 (28)7 整定计算 (31)7.1 发电机纵差保护整定计算 (31)7.2 发电机横联差动保护整定计算 (32)7.3 发电机复合电压启动的过电流保护整定计算 (32)7.4 逆功率保护整定计算 (33)7.5 发电机过电压保护整定计算 (34)7.6 失磁保护整定计算 (34)7.7 发电机过负荷保护整定计算 (36)7.8 发电机定子绕组过负荷保护整定 (37)结论 (38)致谢 (39)参考文献 (40)附录 (41)引言本次设计要完成的是300MW发电厂发电机变压器组继电保护及自动装置设计,主要包括电厂运行方式分析、短路电流计算、电厂各设备继电保护及自动装置的配置、整定计算(选择不同的设备进行),绘制图纸等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
继电保护毕业论文1 前言《电力系统继电保护》作为电气工程及其自动化的一门主要课程,在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特进行了此次的继电保护课程设计。
电力系统在运行中,可能发生各种故障和不正常运行状态。
最常见同时也是最危险的故障是各种形式的短路,它严重的危机设备的安全和系统的可靠运行。
此外,电力系统还会出现各种不正常的运行状态,最常见的如过负荷等。
在电力系统中,除了采取各项积极措施,尽可能地消除或减少发生故障的可能性以外,一旦发生故障,如果能够做到迅速地、有选择性地切除故障设备,就可以防止事故的扩大,迅速恢复非故障部分的正常运行,使故障设备免于继续遭受破坏。
然而,要在极短的时间发现故障和切除故障设备,只有借助于特别设置的继电保护装置才能实现。
伴随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入了新的活力。
因此,继电保护技术得天独厚,在接近半个世纪里的时间里完成了发展的4个历史阶段:继电保护萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。
继电保护技术未来趋势是计算机化,网络化,智能化,保护、控制、测量和数据通信一体化的发展。
电力系统继电保护的基本作用是:在全系统围,按指定分区实时的检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警等措施,以求最大限度地维持系统的稳定,保持供电的连续性,保障人身的安全,防止或减轻设备的损坏。
2 设计资料分析与参数计算电力系统的运行要求安全可靠、电能质量高、经济性好。
但是,电力系统的组成元件数量多,结构各异,运行情况复杂,覆盖的地域辽阔。
因此,受自然条件、设备及人为因素的影响,可能出现各种故障和不正常运行状态。
故障中最常见,危害最大的是各种型式的短路。
为此,还应设置以各级计算机为中心,用分层控制方式实施的安全监控系统,它能对包括正常运行在的各种运行状态实施控制。
这样才能更进一步地确保电力系统的安全运行。
图2.1.1 电网接线2.1 参数分析及计算2.1.1 原始资料分析本次设计按照设计要求对原始数据进入分析整理可知:⑴各变电站、发电厂的操作直流电源电压220U V =;⑵发电厂最大发电电容为2×50+1×100=200MW ,最小发电容量为50MW正常发电容量为100+1×50=150MW ;⑶线路1X =0.4Ω/km ,0X =31X Ω/km ;⑷变压器均为N Y ,D11,110±2×2.5%10.5KV ,10.5%N Y =;⑸△t=0.5S,负荷侧后备保护dz t =1.5S ,变压器和母线均配置有差动保护,zq K =1.3。
⑹发电厂升压变中性点直接接地,其他变压器不接地。
⑺降压变压器差动保护时限为0″。
过电流保护为1″。
2.1.2 输电线路等值电抗计算选取基准功率:100B S MV A =•,基准电压:115B V V =,基准电流:/1.732100103/1.732115B B B I S V KA ==⨯⨯;基准电抗:3/(1.732)11510/(1.732502)132.25B B B Z V I =⨯=⨯⨯=Ω;电压标幺值:(2) 1.08E E ==⑴线路L1(断路器1和5之间的线路)等值电抗计算正序以及负序电抗:1(1)1(2)11400.416L L X X X L ===⨯=Ω1(2)1(1)1(2)160.121132.25L L L B X X X Z *=*=== 零序电抗: 1(0)0111330.44048L X X L X L ===⨯⨯=Ω1(0)1(0)480.454132.25L L B X X Z *=== ⑵线路L2(断路器6和8之间的线路)等值电抗计算正序以及负序电抗:2(1)2(2)120.4187.2L L X X X L ===⨯=Ω 2(1)2(1)2(2)7.20.054132.25L L L B X X X Z *=*=== 零序电抗: 2(0)0212330.41821.6L X X L X L ===⨯⨯=Ω2(0)2(0)21.60.163132.25L L B X X Z *=== ⑶线路L3(断路器7和9之间的线路)等值电抗计算(与L2相同)⑷线路L4(断路器4和10之间的线路)等值电抗计算正序以及负序电抗:4(1)4(2)140.4208L L X X X L ===⨯=Ω 4(1)4(1)4(2)80.060132.25L L L B X X X Z *=*=== 零序电抗: 4(0)0414330.42024L X X L X L ===⨯⨯=Ω4(0)4(0)240.181132.25L L B X X Z *===⑸线路L5(断路器2和3之间的线路)等值电抗计算正序以及负序电抗:5(1)5(2)150.42510L L X X X L ===⨯=Ω 5(1)5(1)5(2)100.076132.25L L L B X X X Z *=*=== 零序电抗: 5(0)0515330.42530L X X L X L ===⨯⨯=Ω 5(0)5(0)300.227132.25L L B X X Z *=== 2.1.3 变压器等值电抗计算⑴变压器T1、T2标幺值计算12%10.51000.175********K B T T K U S X X S ⨯⨯*=*===⨯⨯⑵变压器T3标幺值计算310.51000.0875100120T X ⨯*==⨯⑶变压器T4标幺值计算 410.51000.33310031.5T X ⨯*==⨯⑷变压器T5标幺值计算 310.51000.52510020T X ⨯*==⨯2.1.4 发电机等值电抗计算⑴发电机G1、G2电抗标幺值计算12d 100"0.130.221/cos 50/0.85B G G a S X X X P ϕ*=*==⨯=⑵发电机G3电抗标幺值计算30.291000.204120/0.85G X ⨯*== 2.2 系统运行方式和变压器中性点接地方式的确定电力系统的中性点是指:三相电力系统中星形连接的变压器或发电机中性点。
目前我国的电力系统采用中性点运行方式主要有三种,中性点不接地,经过消弧线圈和直接接地,前两种称不接地电流系统;后一种又称为大接地电流系统。
如何选择发电机或变压器中性点的运行方式,是一种比较复杂的综合性的技术经济问题,不论采用哪一种运行方式,都涉及到供电可靠性,过电压绝缘配合,继电保护和自动装置的正确动作,系统的布置,电讯及无线电干扰,接地故障时对生命的危险以及系统稳定等一系列问题。
本课程设计网络是110KV 。
电力网中性点的接地方式,决定了变压器中性点的接地方式。
主变压器的110KV 侧采用中性点直接接地方式:⑴凡是中低压有电源的升压站和降压站至少有一台变压器直接接地;⑵终端变电所的变压器中性点一般接地;⑶变压器中性点接地点的数量应使用电网短路点的综合零序电抗;⑷变电所只有一台变压器,则中性点应直接接地,当变压器检修时,可做特殊运行方式处理;⑸选择接地点时应保证任何故障形式都不应使电网解列成为中性点不接地系统,双母线界限有两台及以上变压器时,可考虑两台主变压器中性点接地。
根据上述原则本次设计的变压器中性点的接地方式可为:⑴发电厂1有两台变压器,可只将其中一台中性点直接接地,也可将两台都直接接地,为提高可靠性将本次设计选择将两台变压器都直接接地;发电厂2只有一台变压器应中性的直接接地。
⑵两变电站都只有一台变压器,应中性点直接接地。
3 线路保护配置3.1 线路保护的一般原则⑴装设母线保护的几种情况:1)3~10KV分段母线及并列运行的双母线,一般可由发电机和变压器后备保护实现对母线的保护,下列情况应装设母线保护:①需快速油选择性地切除一段或一组母线上的故障,以保证发电厂及电力网安全运行和重要负荷的可靠供电时;②当线路断路器不允许切除线路电抗器前的短路时。
2)35~66KV电网中,主要变电所的35~66KV双母线或分段母线,需快速而有选择地切除一段或一组母线上故障,以保系统规定运行和可靠供电时,应装设母线保护。
3)110KV母线中,下列情况应装设母线保护:①110KV双母线装设专用母线保护;②110KV单母线、重要发电厂或110KV以上重要变电所的110KV单母线,需要快切除母线上故障时,应装设母线保护。
4)220~500KV母线,对双母线接线,应装设能快速有选择切除故障的母线保护,对一个半断路器接线,每组母线装设两套母线保护。
⑵目前国110KV以上母线保护装置的原理有以下几种:1)完全电流差动。
由母线部或外部故障时流入母线电流之差或和电流为判据,采用速饱和变流器防止区外故障一次电流中的直流分量导致TA饱和引起母差误动。
2)母联电流相位比较式母线保护。
比较母线差动电流和流过母联断路器的电流相位不同为判据。
3)电流差动利用带比率制动特性的电流继电器构成,解决了TA饱和引起母差保护在区外故障时误动问题。
4)中阻抗快速母差保护。
以电流瞬时值测定和比较为基础,其差动和启动元件在TA饱和前动作,动作速度快,有利于系统稳定。
5)以电压公频变化量幅值和低电压元件为启动元件,差流元件保持的母差保护。
微机型母线保护一般均具有低电压或复合电压闭锁,启动断路器失灵保护、母线充电保护及TA断线闭锁装置等功能。
3.2 接地故障采取的措施电力系统中采用的中性点接地方式,通常有中性点直接接地、中性点经消弧线圈接地和中性点不接地三种。
一般110KV以上电压等级的电网均采用中性点直接接地方式,称为大接地电流系统。
110KV以下电压等级的电网采用中性点不接地或经消弧线圈接地方式,称为小接地电流系统大接地电流系统中发生单相接地短路时,故障相流过的短路电流较大,对设备造成的危害较大,继电保护必须通过断路器切除故障。
根据我国电力系统几十年的故障情况统计,在大接地电流系统中,接地故障的次数为所有故障的90%左右。
因此,采用专门的零序电流保护以保护接地故障,具有显著的优越性。
小接地电流系统中发生单相接地时,因不能形成短路电流的通道,不会产生大的电流,设备允许继续运行。
因此,不要求继电保护快速动作切除故障。
但是,由于单相接地后,完好相对地电压升高,往往造成设备绝缘击穿故障扩大。
因此,继电保护必须及时发现单相接地故障,发出信号,使运行人员采取措施消除故障。
小电流接地系统单相接地(以下简称单相接地)是配电系统最常见的故障,多发生在潮湿、多雨天气。
由于树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起的。