通俗讲解史密斯圆图

合集下载

史密斯圆图的原理及应用

史密斯圆图的原理及应用

史密斯圆图的原理及应用一、史密斯圆图的概述史密斯圆图(Smith Chart)是一种常用的电路设计工具,广泛应用于微波电路的设计与分析。

它可以通过坐标变换的方式将复抗匹配器的阻抗表示在一个圆图上,方便工程师快速计算和优化电路。

二、史密斯圆图的原理史密斯圆图的构建基于复平面的坐标转换技术,将复抗匹配器的阻抗表示在一个单位圆上。

具体步骤如下:1.将复抗匹配器的阻抗表示为复平面上的点,以阻抗的实部和虚部作为横纵坐标。

2.将复抗匹配器的阻抗归一化到一个标准的单位圆上,使得阻抗归一化到圆上的点表示为单位圆上的点。

3.在单位圆上绘制一系列等效电阻德曼圆,并标记常用的阻抗值。

这些等效电阻德曼圆的半径是固定的,通过变换得到的阻抗点在不同等效电阻德曼圆上的位置。

4.通过在复平面上作圆的平移和旋转操作,将复抗匹配器的阻抗点转换成单位圆上的点。

5.将复抗匹配器转换后的阻抗点与等效电阻德曼圆上的点连接,得到史密斯圆图。

三、史密斯圆图的应用1. 阻抗匹配•利用史密斯圆图可以方便地进行阻抗匹配的计算和设计。

通过在史密斯圆图上移动阻抗点,可以得到与之匹配的负载阻抗或源阻抗。

工程师可以根据需要,选择合适的匹配器或变换线来实现阻抗的最大传输。

2. 反射系数的计算•史密斯圆图也可以方便地计算反射系数。

通过在史密斯圆图上读取阻抗点对应的反射系数,工程师可以快速了解电路中的反射情况,并根据需要进行相应的优化调整。

3. 变换线设计•史密斯圆图可以帮助工程师设计不同类型的变换线,如电阻性变换线、电容性变换线和电感性变换线。

通过在史密斯圆图上进行阻抗点的变换,可以得到满足特定要求的变换线参数。

4. 频率扫描分析•在频率扫描分析中,史密斯圆图可以帮助工程师分析电路在不同频率下的阻抗变化情况。

通过在史密斯圆图上绘制多个频率下的阻抗点,可以得到电路的频率响应特性。

5. 负载匹配•史密斯圆图也可以应用于负载匹配。

通过在史密斯圆图上绘制负载阻抗曲线和源阻抗曲线,可以找到使得负载与源之间产生最小干扰的最佳匹配点。

Smith圆图概述

Smith圆图概述

一、Smith圆图概述Smith圆图(Smith chart)是用来分析传输线匹配问题的有效方法。

它具有概念明晰、求解直观、精度高等特点,因而被广泛应用于射频工程中分析传输线问题。

高频与微波电路设计中,最基本且重要的课题为阻抗匹配。

透过阻抗匹配的运用与设计,可以使信号有效率的由电源端传送到负载端。

现阶段,阻抗匹配须借重史密斯图的运用才能快速、有效的达成。

随着时间的流转,阻抗匹配的方式也由过去在史密斯图上以手绘计算结果,转而经由计算机化的史密斯图达成,其优点在于:(1)免除复杂计算过程中可能产生的人为错误,(2)透过计算机化史密斯图的运用可以进一步达到宽频带阻抗匹配的目的。

电子SMITH圆图软件能将计算结果以图形和数据并行输出,处理包括复数的矩阵运算。

且拥有良好的用户界面以及函数本身会绘制图形、自动选取坐标刻度等优点。

本设计即是利用vb6.0针对阻抗匹配设计的计算机化史密斯图。

其优点在于图面功能非常清楚,并且运用可视化的安排,使匹配电路直接显示,使设计者可以轻松的了解如何进行阻抗匹配工作也同时可以观察加入各项组件后的输入阻抗变化情形。

二、Smith圆图结构阻抗圆导纳圆阻抗圆导纳圆反射系数圆软件界面电抗圆电阻圆三、Smith圆图基本原理史密斯圆图是由很多圆周交织在一起的一个图。

正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。

史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。

反射系数也可以从数学上定义为单端口散射参数,即s11。

史密斯圆图是通过验证阻抗匹配的负载产生的。

这里我们不直接考虑阻抗,而是用反射系数ΓL,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF频率的问题时ΓL更加有用。

我们知道反射系数定义为反射波电压与入射波电压之比:图3. 负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。

反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数。

射频工程师必知必会——史密斯圆图

射频工程师必知必会——史密斯圆图

射频工程师必知必会——史密斯圆图这篇文章盘算了很久,迟迟不敢下笔,对于圆图的巧夺天工实在不敢多语。

有人用圆图做阻抗匹配,也有人用圆图做电路调试,甚至还有滤波器的调试。

感谢史密斯大神的圆图,让射频设计变得简单——一切逃不开这个⚪。

今天我们尝试着再去学习一下这个圆,水平有限,还望海涵。

上图所示的就是一个完整版的史密斯圆图,它是一种求解传输线问题的辅助工具,它是在1939年由P.Smith 在贝尔实验室工作时开发的。

也许有人会有疑问,在计算机和计算机辅助设计如此发达的今天,图形在已经用的很少了。

包括我自己也有这样的疑问,我们可以直观的测试得到阻抗曲线,可以利用计算机去模拟优化阻抗匹配。

但是如果我们掌握了史密斯圆图的方法,进入⚪内,也许会有更加直观的见解,开发出关于传输线和阻抗匹配问题的直观想象力。

初看起来,史密斯圆图似乎很可怕,密密麻麻的小字,到底是什么意思?但理解他的关键它基本上就是电压发射系数的极坐标图。

史密斯圆图又称为阻抗圆图,将归一化等电阻圆,归一化的等电抗圆叠画在反射系数复平面上而形成的。

为了使圆图对传输线的特性阻抗具有普遍意义,设计圆图时采用归一化阻抗。

归一化阻抗就是阻抗与所接传输线特性阻抗之比,即:式中的r(z)和x(z)分别为归一化电阻和归一化电抗。

根据前文的介绍,我们知道归一化阻抗与反射系数之间的关系为:利用上式就可以做出反应归一化阻抗和反射系数关系的图。

首先要建立一个坐标系,用反射系数的实部作为横坐标,虚部作为纵坐标。

同时在坐标平面上标明反射系数的模和相角。

然后把归一化电阻和归一化电抗的关系曲线画在该坐标系上,这样就建立了阻抗圆图。

1,建立反射系数复平面反射系数复平面:横坐标:反射系数的实部u,纵坐标: 反射系数的虚部v。

2,等反射系数圆(1)所有点均落在单位圆内。

(2)沿均匀无耗传输线移动时,反射系数的模保持不变,只有相角变化,对应到Γ平面上就是沿着平面上的某一圆旋转。

(a)向信号源方向移动时,z 增大,反射系数相位滞后,对应在Γ平面上沿某圆顺时针方向旋转;(b)向负载方向移动时,z 减小,反射系数的相位超前,对应在Γ 平面上沿某圆向逆时针方向旋转;(c)在圆图上标有旋转时对应的波长数。

Smith圆图详解

Smith圆图详解

并联电感:沿导纳圆逆时针转,即从A点转到B点。从A点到B点转的长度为0.2-0.5=-0.3。即相当于外加 一个j*-0.3电纳后,即可转到B点。 并联的电感量为L,则其电抗为jwL,归一化为jwL/Z0,其电纳为Z0/jwL,则有: Z0/(jwL)=j*-0.3=>L=Z0/(0.3w)=50/(0.3*2*3.14*2.4*109)=11.06nH 串联电感:沿电阻圆顺时针转,即从B点转到C点。从A点到B点转的长度为0-1.22=-1.22。即相当于外加 一个j*-1电抗后,即可转到C点。 串联的电容量为C,则其电抗为1/jwc,归一化为1/jwcZ0,则有: 1/(jwcZ0)=j*-1.22=>c=1/(1.22wZ0)=1/(1.22*2*3.14*2.4*109*50)=1.08pF
m2 freq= 3.000GHz VSWR1=2.618
2.6180340
m3
S(1,1)
2.6180340
VSWR1
m3 freq= 10.00GHz S(1,1)=0.447 / 26.565 impedance = Z0 * (2.000 + j1.000)
2.6180340
m2
2.6180340
Smith 圆图——ADS验证
m2 freq=2.400GHz dB(S(1,1))=-37.839
-15
-20
-25
dB(S(1,1))
-30
-35
m2
-40
m1 freq=2.400GHz S(1,1)=0.013 / -160.338 impedance = Z0 * (0.976 - j0.008)
转换为dB为: 20Log|Γ|=20Log0.447=-7dB 回波损耗为:RTN LOSS=-20Log|Γ|=7dB 驻波比: SWR=(1+0.447)/(1-0.447)=2.6

通俗讲解史密斯圆图

通俗讲解史密斯圆图

不管这是今天1、是2、为3、干1、是该图“在我史密当中管多么经典的射是什么东东?天解答三个问题是什么? 为什么? 干什么?是什么?表是由菲利普我能够使用计算密斯图表的基本的Γ代表其线射频教程,为什题: 普·史密斯(Phillip 算尺的时候,我本在于以下的算线路的反射系数从容面对“史什么都做成黑白p Smith)于193我对以图表方式算式。

数(reflection coe 史密斯圆图白的呢?让想理39年发明的,当式来表达数学上efficient)”,不再懵逼理解史密斯原图当时他在美国的上的关联很有兴图的同学一脸懵的RCA 公司工作兴趣”。

懵逼。

作。

史密斯曾说说过,即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。

当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω。

简单的说:就是类似于数学用表一样,通过查找,知道反射系数的数值。

2、为什么?我们现在也不知道,史密斯先生是怎么想到“史密斯圆图”表示方法的灵感,是怎么来的。

很多同学看史密斯原图,屎记硬背,不得要领,其实没有揣摩,史密斯老先生的创作意图。

我个人揣测:是不是受到黎曼几何的启发,把一个平面的坐标系,给“掰弯”了。

我在表述这个“掰弯”的过程,你就理解,这个图的含义了。

(坐标系可以掰弯、人尽量不要“弯”;如果已经弯了,本人表示祝福)现在,我就掰弯给你看。

世界地图,其实是一个用平面表示球体的过程,这个过程是一个“掰直”。

史密斯原图,巧妙之处,在于用一个圆形表示一个无穷大的平面。

2.1、首先,我们先理解“无穷大”的平面。

首先的首先,我们复习一下理想的电阻、电容、电感的阻抗。

在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。

阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。

Smith 圆图—原理与分析

Smith 圆图—原理与分析

Smith 圆图—原理与分析
Smith 圆图是一种用于分析电路中的匹配网络的工具。

它由美国电气工程师Phillip H. Smith于1950年提出,并被广泛应用于射频电路设计和天线设计领域。

Smith 圆图的原理基于复阻抗的概念。

在Smith 圆图中,电路中的每个点都可
以表示为一个复阻抗,即由实部和虚部组成的复数。

这样,整个电路可以表示为一个复阻抗的集合。

Smith 圆图将复阻抗表示为一个圆形图形,其中圆心表示纯电阻,圆的边界表
示纯电抗。

圆的半径表示电阻的大小,而圆的位置表示电抗的大小和相位。

通过在Smith 圆图上绘制电路中的复阻抗,可以直观地分析电路的匹配情况。

当电路的复阻抗位于Smith 圆图的边界上时,表示电路是纯电抗的,即无功。

当电路的复阻抗位于Smith 圆图的圆心时,表示电路是纯电阻的,即有功。

通过分析Smith 圆图上的复阻抗,可以确定电路的匹配情况。

匹配是指电路中
的负载阻抗与发射源或传输线的特性阻抗相匹配。

在Smith 圆图中,当负载阻抗与特性阻抗相匹配时,负载阻抗位于Smith 圆图的边界上,此时电路的反射系数为零,表示无反射。

Smith 圆图还可以用于计算电路中的反射系数、驻波比、传输线的特性阻抗等
参数。

通过在Smith 圆图上测量复阻抗的位置,可以直接读取这些参数的数值。

总之,Smith 圆图是一种简单直观的工具,可以帮助工程师分析电路中的匹配
情况,并优化电路设计。

它在射频电路设计和天线设计中具有重要的应用价值。

史密斯圆图

史密斯圆图
史密斯圆图(Smith chart)是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。

史密斯图的基本原理在于以下的算式:
反射系数Γ(reflection coefficient)和阻抗z L均为复数,z L是归一化负载值,即z L = ZL/ Z0。

ZL是电路的负载值,Z0是传输线的特性阻抗值,通常使用50Ω。

这是一双线性变换,属于复变函数中的保角变换。

它将z
复平面上实部r=常数和虚部x=常数的两族正交直线变换为Γ
复平面上的正交圆族。

该图表是由菲利普·史密斯(Phillip Smith)于1939年发明的,当时他在美国的RCA公司工作。

史密斯也许不是图表的第一位发明者,一位名为Kurakawa的日本工程师声称早于其一年发明了这种图表。

史密斯曾说过,“在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣。


Smith 圆图
图表中的圆形线代表阻抗的实部,即等电阻圆;中间的横线与向上和向下散出的弧线则代表阻抗的虚部,即等电抗圆。

上半圆是正值,下半圆是负值。

在图边的数字代表反射系数的角度(0-180度)和波长(由零至半个波长)。

有一些图表是以导纳值(admitt ance)来表示,把上面的阻抗圆图旋转180度即可导纳圆图。

自从有了计算机后,此种圆图的使用率随之而下,但仍常用来表示特定的资料。

对于就读电磁学及微波电子学的学生来说,在解决课本问题仍然很实用,因此史密斯图至今仍是重要的教学工具。

在学术论文里,结果也常会以史密斯图来表示。

Smith圆图简介

Smith圆图简介对于射频人员来讲,做的最多的,可能就是匹配。

而做匹配,最常用到的就是Smith圆图。

当年在学校的时候,觉着Smith圆图好难;工作久了,再加上软件的帮助,觉着Smith圆图还是比较好理解的。

要用好Smith圆图,关键是熟悉它的构成。

主要包括等电阻圆,等电导圆,等Q线,等电抗圆,等电纳圆。

通常匹配的话,一般都采用电感和电容,所以用的最多的,是等电阻圆和等电导圆,如图1和图2所示。

图 1 等电阻圆图 2 等电导圆Smith圆图的上半部分代表感抗,下半部分代表容抗。

在等电阻圆上顺时针旋转,相当于串联电感;逆时针旋转,相当于串联电容。

在等电导圆上顺时针旋转,相当于并联电容;逆时针旋转,相当于并联电感(我一般这样记忆,从圆图中心点,沿着等电阻圆往上旋转为顺时针旋转,而一般串联电路用电阻来标称阻值,且圆图上半部分为感抗,所以顺时针旋转时,相当于串联电感;同理,沿着等电导圆往上旋转为逆时针,一般并联电路用电导来表示,且圆图上半部分为感抗,所以沿电导圆逆时针旋转时,相当于并联电感)。

具体如图3所示。

图 3 串并联电容电感如果想设计宽带匹配电路的话(适合于源阻抗和负载阻抗不随频率变化的情况),就需要用到等Q线了,如图4所示。

Q值越低,也就是等Q线越接近圆图横轴,越容易设计出宽带匹配电路。

而且,沿着低等Q线,规划匹配路线,也会使得匹配电路里的值有较大的容差范围,减少调试难度。

图 4 等Q线了解了这些知识,在已知源阻抗和负载阻抗的情况下,在现有Smith圆图软件的帮助下,很容易就能设计出匹配电路。

注意,设计时,要遵循‘往前看,向后退’的原则。

如图5所示。

图 5 往前看,向后退原则。

smith圆图的原理和应用

Smith圆图的原理和应用1. 前言Smith圆图是一种用于分析和解决电路中匹配问题的有效工具。

它由英国电气工程师Philip H. Smith于1939年创造,被广泛应用于射频电路、微波电路和天线设计等领域。

本文将介绍Smith圆图的基本原理和其在电路设计中的应用。

2. Smith圆图的基本原理2.1 反射系数和阻抗的关系Smith圆图是基于反射系数和阻抗之间的关系来进行分析的。

在电路中,反射系数表示反射波与入射波之间的关系,它是一个复数,可以用幅值和相位角来表示。

而阻抗则表示电路的负载特性,是一个实数。

Smith圆图将反射系数和阻抗之间的关系以一种直观而又简洁的方式进行了可视化。

2.2 Smith圆图的表示方式Smith圆图以单位圆为基础,将纯虚轴表示为电阻为无穷大的点,将实轴表示为电抗为零的点。

反射系数的值可以通过在Smith圆图上找到相应的点来表示。

例如,反射系数为0时,点位于单位圆的中心,反射系数为1时,点位于单位圆的边缘。

3. Smith圆图的应用3.1 反射系数的测量Smith圆图可以用于测量电路中的反射系数。

通过将电路与信号源和负载连接,可以使用向电路中注入信号的方式来测量反射系数。

通过测量反射系数的幅值和相位角,并将其在Smith圆图上进行标记,可以得到电路的匹配情况。

3.2 阻抗匹配Smith圆图可以帮助我们进行阻抗匹配,即调整电路的参数,以使得电路的输入和输出阻抗相匹配。

在Smith圆图上,我们可以通过移动点的位置来调整电路的参数,直至反射系数最小化。

通过在Smith圆图上定位匹配的点,可以快速找到合适的参数设置。

3.3 确定失配的原因Smith圆图可以帮助我们确定电路中失配的原因。

当电路的反射系数不为零时,可以使用Smith圆图来定位反射点,并判断失配的原因。

例如,如果反射系数位于实轴上,则说明电路存在电抗失配;如果反射系数位于圆心,则说明电路存在电阻失配。

3.4 天线设计Smith圆图在天线设计中也有广泛的应用。

第3章 Smith圆图


量子力学中的波函数
电磁学中的麦克斯韦方程
光学中的干涉和衍射
量子力学中的薛定谔方程
确定化学键类型: 通过Smith圆图 可以确定分子中 的化学键类型, 如单键、双键和
三键等。
预测化学反应: Smith圆图可 以预测某些化 学反应能否发 生以及反应的 产物。
确定分子在分子中的排
添加文档副标题
目录
01.
02.
03.
04.
05.
06.
Smith圆图是一种用于表示复数平 面上的点的方法
Smith圆图是一种方便的图形化表 示方法,可以直观地展示复数的几 何意义
添加标题
添加标题
添加标题
添加标题
它通过极坐标形式将复数表示为点, 其中实部为极径,虚部为极角
在Smith圆图中,每个点都对应一 个唯一的复数,反之亦然
改进算法:优化 Smith圆图的算法, 提高计算效率和准 确性
拓展应用场景:将 Smith圆图应用于更 多场景,如数据分 析、可视化等领域
推广普及:加强 Smith圆图的推广和 普及工作,提高公众 认知度和应用水平
物理学:Smith圆图 可用于描述量子力学 中的波函数和角动量, 以及在量子计算中实 现量子门操作。
信号处理:Smith圆图 可用于分析信号的频率 和相位响应,以及在通 信系统中实现调制和解 调。
控制系统:Smith圆图 可用于分析和设计控制 系统,帮助工程师更好 地理解和优化系统的性 能。
直观性:Smith圆图以图形的方式表示了复数平面,使得数据的表示更加直观。
方便性:Smith圆图可以方便地表示复数的模和幅角,并且可以通过旋转和缩放等操 作来方便地观察和分析数据。
高效性:Smith圆图可以有效地利用空间,将多个复数数据以紧凑的方式表示在同一 个平面上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不管
这是
今天1、是2、为3、干
1、是该图“在我史密当中管多么经典的射是什么东东?
天解答三个问题是什么? 为什么? 干什么?
是什么?
表是由菲利普我能够使用计算密斯图表的基本
的Γ代表其线射频教程,为什
题: 普·史密斯(Phillip 算尺的时候,我本在于以下的算线路的反射系数从容面对“史什么都做成黑白p Smith)于193我对以图表方式算式。

数(reflection coe 史密斯圆图
白的呢?让想理39年发明的,当式来表达数学上efficient)
”,不再懵逼
理解史密斯原图当时他在美国的上的关联很有兴图的同学一脸懵的RCA 公司工作兴趣”。

懵逼。

作。

史密斯曾说说过,
即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。

当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω。

简单的说:就是类似于数学用表一样,通过查找,知道反射系数的数值。

2、为什么?
我们现在也不知道,史密斯先生是怎么想到“史密斯圆图”表示方法的灵感,是怎么来的。

很多同学看史密斯原图,屎记硬背,不得要领,其实没有揣摩,史密斯老先生的创作意图。

我个人揣测:是不是受到黎曼几何的启发,把一个平面的坐标系,给“掰弯”了。

我在表述这个“掰弯”的过程,你就理解,这个图的含义了。

(坐标系可以掰弯、人尽量不要“弯”;如果已经弯了,本人表示祝福)
现在,我就掰弯给你看。

世界地图,其实是一个用平面表示球体的过程,这个过程是一个“掰直”。

史密斯原图,巧妙之处,在于用一个圆形表示一个无穷大的平面。

2.1、首先,我们先理解“无穷大”的平面。

首先的首先,我们复习一下理想的电阻、电容、电感的阻抗。

在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。

阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。

阻抗的单位是欧姆。

R,电阻:在同一电路中,通过某一导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比,这就是欧姆定律。

标准式:。

(理想的电阻就是实数,不涉及复数的概念)。

如果引入数学中复数的概念,就可以将电阻、电感、电容用相同的形式复阻抗来表示。

既:电阻仍然是实数R(复阻抗的实部),电容、电感用虚数表示,分别为:
在上图中,我们看到通过几个矢量的叠加,最终阻抗在复平面中,落在了蓝色的圆点位置。

所以,任意一个阻抗的计算结果,我们都可以放在这个复平面的对应位置。

各种阻抗的情况,组成了这个无穷大的平面。

钱塘江大潮,就是河道的宽度变化引起了反射,这跟电路中阻抗不连续,导致信号反射,可以类比。

反射
准备工作都做好了,下面我们准备“弯了”
在复平面中,有三个点,反射系数都为1,就是横坐标的无穷大,纵坐标的正负无穷大。

历史上的某天,史密斯老先生,如有神助,把黑色线掰弯了,把上图中,三个红色圈标注的点,捏到一起。

弯了,弯了
虽然,无穷大的平面变成了一个圆,但是,红线还是红线,黑线还是黑线。

同时我们在,原来的复平面中增加三根线,它们也随着平面闭合而弯曲。

线上的阻抗特性,我们是从复平面,平移到史密斯原图的,所以特性跟着颜色走,特性不变。

下半圆与上班圆是一样的划分。

因为史密斯圆图是一种基于图形的解法,所得结果的精确度直接依赖于图形的精度。

下面是一个用史密斯圆图表示的RF应用实例:
例:已知特性阻抗为50Ω,负载阻抗如下:
Z1 = 100 + j50ΩZ2 = 75 - j100ΩZ3 = j200ΩZ4 = 150Ω
Z5 = ∞ (an open circuit) Z6 = 0 (a short circuit) Z7 = 50Ω Z8 =184 - j900Ω
我们看不清上图。

如果是“串联”,我们可以在清晰的史密斯原图上,先确定实部(红线上查找,原来复平面的横坐标),再根据虚部的正负,顺着圆弧滑动,找到我们对应的阻抗。

(先忽略下图中的绿色线)
2.4 红色阵营VS绿色阵营
如图,这样并联一个电容,通过绿色的曲线很快就可以查询到对应的归一化阻抗和反射系数。

相关文档
最新文档