matlab小波去噪实现的函数原理
Mtalb小波去噪

数字图像阈值去噪算法研究与实现摘要图像在获取和传输的过程中经常要受到噪声的污染。
噪声对图像分析有着非常重要的影响,必须在分析前去除。
所以,图像去噪成为图像分析和处理的重要技术。
传统的去噪方法不仅滤出了图像的噪声,同时使图像细节变得模糊。
小波变换是继傅琨叶变换之后的又一时频分析工具。
小波变换由于在时域频域同时具有良好的局部化性质和多分辨率分析的特点,因此不仅能满足各种去噪要求,如低通、高通、随机噪声的去除,而且与传统的去噪方法相比较,有着无可比拟的优点,成为信号分析的一个强有力的工具,被誉为分析信号的数学显微镜。
其应用包括图像预处理、图像压缩与传输、图像分析、特征提取等图像处理的很多阶段。
首先,介绍了本课题的研究目的,并介绍了目前常用的去噪方法及这些方法之间的比较。
其次,在简述了小波变换的发展历史和小波变换的基本理论知识后,对以小波为工具在数字图像处理方面进行了有益的探索。
再次,给出了小波边缘检测理论,接下来针对小波去噪的理论和方法着重进行了介绍,包括小波去噪的原理、方法和阈值去噪处理等方面的内容。
最后,对本文的工作进行了总结。
小波变换由于具有“数学显微镜”的作用,在去噪的同时能保持图像细节,得到原图像的最佳恢复。
在众多的小波去噪方法中,运用最多的是Donoho小波阈值萎缩法,但Donoho给出的阈值有“过扼杀”小波系数的倾向,重建误差较大。
本文提出基于小波变换与中值滤波相结合的方法实现了图像去噪。
该方法在去噪之前,先通过小波边缘检测确定图像边缘特征的小波系数,保留这些位置的小波系数,其不受闽值去噪影响,对其它位置的小波系数进行自适应阈值去噪,去除高斯噪声。
然后对图像进行中值滤波,去除椒盐噪声。
该算法的实验结果表明不仅能滤出图像中高斯噪声和椒盐噪声的混合噪声,而且能较好的保留图像的边缘细节,其滤波效果优于传统的图像去噪方法。
关键词:小波变换,高斯噪声,椒盐噪声,边缘检测,图像去噪ABSTRACTThe image iS often corrupted by noise in its acquisition or transmission.The noise to be removed before analysis has an important effect on image analysiS.Image~denoising is an important technology in image analysis and processingdomain.Traditional denoising methods can filter noise。
matlab小波变换信号去噪

matlab小波变换信号去噪Matlab是一款非常强大的数据分析工具,其中小波变换可以应用于信号去噪的领域。
下面将详细介绍基于Matlab小波变换的信号去噪方法。
1、小波变换简介小波变换是时频分析的一种方法,它将信号分解成尺度与时间两个维度,能够保持信号的局部特征,适用于非平稳信号的分析。
小波变换的本质是将信号从时域转换到时频域,得到更加精细的频域信息,可以方便的对信号进行滤波、去噪等处理。
2、小波去噪方法小波去噪是指通过小波分析方法将噪声与信号分离并且去除的过程。
小波去噪的基本步骤是通过小波分解将信号分解成多尺度信号,然后对每一个分解系数进行阈值处理,去除一部分小于阈值的噪声信号,最后将处理后的分解系数合成原始信号。
3、基于Matlab的小波变换信号去噪实现在Matlab中,可以使用wavemenu命令进行小波变换,使用wthresh命令对小波分解系数进行阈值处理,利用waverec命令将阈值处理后的小波分解系数合成原始信号。
下面给出基于Matlab实现小波变换信号去噪的步骤:(1)读取信号,并可视化观测信号波形。
(2)通过wavedec命令将信号进行小波分解得到多个尺度系数,展示出小波分解系数。
(3)通过绘制小波系数分布直方图或者小波系数二维展示图,估计信号的噪声强度。
(4)根据阈值处理法对小波系数进行阈值处理,获得非噪声系数和噪声系数。
(5)通过waverec命令将非噪声系数合成原始信号。
(6)可视化效果,比较去噪前后信号的波形。
针对每个步骤,需要熟悉各个工具箱的使用知识。
在实际应用中,还需要根据特定的数据处理需求进行合理的参数设置。
4、总结小波去噪是一种常见的信号处理方法,在Matlab中也可以方便地实现。
通过实现基于Matlab小波变换的信号去噪,可以更好地应对复杂信号处理的需求,提高数据分析的准确性和精度。
matlab小波变换信号去噪

MATLAB小波变换信号去噪引言小波变换是一种多尺度分析方法,广泛应用于信号处理领域。
由于小波变换具有良好的时频局部性质,可以将信号分解为不同频率和时间分辨率的成分,因此被广泛应用于信号去噪领域。
本文将介绍如何使用MATLAB进行小波变换信号去噪的方法。
MATLAB中的小波变换在MATLAB中,可以使用Wavelet Toolbox中的wavedec函数进行小波分解,使用wrcoef函数进行重构。
具体步骤如下:1.导入待处理的信号数据。
2.选择适当的小波基函数和分解层数。
3.使用wavedec函数对信号进行小波分解,得到分解系数。
4.根据阈值方法对分解系数进行去噪处理。
5.使用wrcoef函数对去噪后的分解系数进行重构,得到去噪后的信号。
6.分析去噪效果并进行评估。
下面将逐步详细介绍这些步骤。
选择小波基函数和分解层数小波基函数的选择在小波分析中非常重要,不同的小波基函数适用于不同类型的信号。
常用的小波基函数有Daubechies小波、Haar小波、db2小波等。
根据信号的特点和分析需求,选择合适的小波基函数是非常重要的。
在MATLAB中,可以使用wname函数查看支持的小波基函数。
可以通过比较不同小波基函数的性能指标来选择合适的小波基函数。
常见的性能指标包括频率局部化、时频局部化和误差能量。
选择分解层数时,需要根据信号的特点和噪声的程度来决定。
一般而言,分解层数越高,分解的细节系数越多,信号的时间分辨率越高,但运算量也会增加。
小波分解使用wavedec函数对信号进行小波分解。
函数的输入参数包括待分解的信号、小波基函数名称和分解层数。
函数输出包括近似系数和细节系数。
[C, L] = wavedec(x, level, wname);其中,x是待分解的信号,level是分解层数,wname是小波基函数名称。
C是包含近似系数和细节系数的向量,L是分解的长度信息。
根据分解层数,可以将分解系数划分为不同频带的系数。
小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究2 小波分析基本理论设Ψt ∈L 2 R L 2 R 表示平方可积的实数空间,即能量有限的信号空间 , 其傅立叶变换为Ψt;当Ψt 满足条件4,7:2()Rt dw wCψψ=<∞⎰1时,我们称Ψt 为一个基本小波或母小波,将母小波函数Ψt 经伸缩和平移后,就可以得到一个小波序列:,()()a bt bt aψ-=,,0a b R a ∈≠ 2 其中a 为伸缩因子,b 为平移因子;对于任意的函数ft ∈L 2 R 的连续小波变换为:,(,),()()f a b Rt bW a b f f t dt aψψ-=<>=3 其逆变换为:211()(,)()fR R t b f t W a b dadb C a aψψ+-=⎰⎰ 4 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状;小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低;使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构;3 小波降噪的原理和方法小波降噪原理从信号学的角度看 ,小波去噪是一个信号滤波的问题;尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器;由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示6:小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式:(k)()()S f k e k ε=+* k=…….n-1其中 ,f k 为有用信号,sk 为含噪声信号,ek 为噪声,ε为噪声系数的标准偏差;假设ek 为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 sk 信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的;降噪方法一般来说, 一维信号的降噪过程可以分为 3个步骤进行5,6:1一维信号的小波分解,选择一个小波并确定一个小波分解的层次N,然后对信号进行N 层小波分解计算;2) 小波分解高频系数的阈值量化,对第1层到第N 层的每一层高频系数, 选择一个阈值进行软阈值量化处理.3) 一维小波的重构;根据小波分解的第 N 层的低频系数和经过量化处理后的第1层到第N 层的高频系数,进行一维信号的小波重构;在这 3个步骤中,最核心的就是如何选取阈值并对阈值进行量化,在某种程度上它关系到信号降噪的质量.在小波变换中,对各层系数所需的阈值一般根据原始信号的信号噪声比来选取,也即通过小波各层分解系数的标准差来求取,在得到信号噪声强度后,可以确定各层的阈值;这里着重讨论了信号在两种不同小波恢复后信号质量的不同和对信号中的信号与噪声进行分离;4.仿真实验本文采用Mtalab 本身程序提供的noissin 信号函数及初设原始信号fx 为例进行Matlab 分析1,3,其中:()sin(0.03)f x t =e = noissin + randnsizee1;首先对noissin 函数上叠加上随机噪声信号得到e,分别对比采用db10小波和sym8小波对信号e 进行5层分解,并且细节系数选用minimaxi 阈值模式和尺度噪声db10以及选用sure阈值模式和尺度噪声sym8;在进行噪声消除后,还对原信号进行进一步分析,将原始信号和噪声信号分离开来,仿真结果如图所示:图1图2图3图1-1为原始信号图形,1-2为叠加随机噪声后的图形,而1-3和1-4为利用db10和sym8小波默认阈值降噪后的信号图形;从图1-3和1-4可以看出利用db10和sym8小波降噪后的信号基本上恢复了原始信号,去噪效果明显;但是滤波后的信号与原始信号也有不同,从图中可以很直观地看到采用阈值消噪后信号特征值较少无法准确还原原始信号这是由于为降噪过程中所用的分析小波和细节系数的阈值不恰当所致,如需要更好的恢复信号,还可以采用其它种类小波对其进行分析,通过选取不同的阈值,分析结果,得到一个合适的阈值;从图2和图3中看出,在经过用db10对信号进行5层分解,然后分别对分解的第5层到第1层的低频系数和高频系数进行重构;可以得出其主要基波函数和高频噪声函数的图形,其中小分波分解的细节信号是有白噪声分解得到的,而正弦信号可以在图2中的近似信号a5得到;因为在这一层的影响已经可以忽略了,所以获得的信号就是初始信号的波形,从而把淹没在噪声中的有用信号有效地分离出来;5 总结小波变换对平稳信号的去噪声,要比传统的滤波去噪声得到的效果好.用小波变换进行信号降噪处理, 既降低了噪声同时又提高了信噪比,这说明小波降噪方法是切实可行的方案, 但是由于小波函数很多,采用不同的小波进行分解, 得到的结果可能相差很大, 而变换前并不能预知哪一种小波降噪效果更好,需反复试验比较才能得到良好的效果,这也是小波变换的困难之处之一;另外信号降噪过程中阀值的选取是十分重要的;本文利用两个小波sym8 ,db 10 以及将信号中的信噪分离开来,更加直观可行,通过分别进行信号降噪处理对所得结果与原始信号进行比较可以得出Sym8小波以及默认阈值处理后的重构信号与原始信号最为接近,与分离的结果相同;小波分析是一种信号的视频分析方法,它具有多分辨率分析的特点 ,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,有效区分信号中的突变部分和噪声;通过MATLAB编制程序进行给定信号的噪声抑制和非平稳信号的噪声消除实验表明:基于小波分析的消噪方法是一种提取有用信号、展示噪声和突变信号的优越方法 ,具有广阔的实用价值;在这个越来月信息化的社会中,基于小波分析的应用前景必将越来越广泛;N=10;t=1:10;f=sint.expt+20sint.expt+5sint.expt;plott,f;f=sint.expt+20sint.expt+5sint.expt;输出数据fid=fopen'E:','wt';>> fprintffid,'%f\n',L;C,L=wavedecf,5,'db10';>> fid=fopen'E:','wt';>> fprintffid,'%f\n',L;>> fprintffid,'%f\n',C;>> C,L=wavedecf,1,'db10';>> fid=fopen'E:','wt';>> fprintffid,'%f\n',C;>> C,L=dwtf,'db10';>> fid=fopen'E:','wt';>> fprintffid,'%f\n',C;>> fprintffid,'%f\n',L;参考文献1徐明远,邵玉斌.MATALAB仿真在通信与电子工程中的应用M.西安:西安电子科技大学出版社,2010.2张志涌,杨祖樱等编著.MATLAB教程R2006a-R2007aM.北京:北京航空航天出版社,2006. 3张德丰.详解MATLAB数字信号处理M北京:电子工业出版社,2010.4杨建国.小波分析及其工程应用M北京:机械工业出版社,2005.5冯毅,王香华.小波变换降噪处理及其MATLAB实现J.数字采集与处理,2006,,2112:37-39. 6禹海兰,李天云.基于小波理论的噪声信号分析J.东北电力学院学报.3:36-40.7潘泉,张磊,孟晋丽,张洪才著,小波滤波方法及应用M.北京:清华大学出版社,2005.附仿真源码如下:N=1000;t=1:1000;f=sint;load noissin;e1=noissin;init=66;randn'seed',init;e = e1 + randnsizee1;subplot2,2,1;plott,f;xlabel'1 样本序列'; //x轴标记ylabel'原始信号幅值'; //y轴标记grid ;subplot2,2,2;plote ;xlabel'2 测试样本序列' ;ylabel'含有已加噪声的信号幅值' ;grid ;s1=wdene,'minimaxi','s','one',5,'db12'; subplot2,2,3;plots1;xlabel'3 db10降噪后信号' ;ylabel 'db10小波降噪后的信号幅值';grid;s2=wdene,'heursure','s','one',5,'sym8'; subplot2,2,4;plots2;xlabel'4 sym降噪后信号';ylabel'sym8小波降噪后的信号幅值';grid;figure;subplot6,1,1;plote;ylabel'e';C,L=wavedece,5,'db10';for i=1:5a=wrcoef'a',C,L,'db10',6-i;subplot6,1,i+1; plota;ylabel'a',num2str6-i;endfigure;subplot6,1,1;plote;ylabel'e';for i=1:5d=wrcoef'd',C,L,'db10',6-i;subplot6,1,i+1;plotd;ylabel'd',num2str6-i;end。
小波去噪及其MATLAB中的函数

一、小波去噪中信号阈值的估算
信号去噪是信号处理领域的经典问题之一。 传统的去噪方法主要包括线性滤 波方法和非线性滤波方法,如中值滤波和 wiener 滤波等。传统去噪方法的不是 在于使信号变换后的熵增高、 无法刻画信号的非平稳特性并且无法得到信号的相 关性。为了克服上述缺点,人们开始使用小波变换解决信号去噪问题。 小波变换具有下列良好特性: (1) 低熵性:小波系数的稀疏分布,使信号变换后的熵降低; (2) 多分辨率特性:可以非常妤地刻画信号的非平稳特性,如边缘、尖峰、 断点等; (3) 去相关性:可取出信号的相关性,且噪声在小波变换后有白化趋势,所 以比时域更利于去噪; (4) 选基灵活性:由于小波变换可以灵活选择基函数,因此可根据信号特点 和去噪要求选择适合小波。 小波在信号去噪领域已得到越来越广泛的应用。 阈值去噪方法是一种实现简 单、效果较好的小波去噪方法。阈值去噪方法的思想就是对小波分解后的各层系 数中模大于和小于某阈值的系数分别处理, 然后对处理完的小波系数再进行反变 换,重构出经过去噪后的信号。下面从阈值函数和阈值估计两方面对阈值去噪方 法进行介绍。 1.阈值函数 常用的阈值函数主要是硬阈值函数和软阈值函数。 (1)硬阈值函数。表达式为 ( w) wI (| w | T ) ,如图 4.18 所示,其中横坐标 表示信号的原始小波系数,纵坐标表示阈值化后的小波系数。 (2)软阈值函数。 表达式为 ( w) ( w sgn( w)T ) I (| w | T ) , 如图 4.19 所示, 其中横坐标表示信号的原始小波系数,纵坐标表示阈值化后的小波系数。
2 2
/N。
/ N ,则
1 2 2 2 t (Y ) Y ER(t ) n E V , t (Y ) N N 1 2 2 E t (Y ) X X Y 2 t (Y ) X , X Y N 最后可得到风险函数的表达式: ET (t )
小波变换图像去噪方法MATLAB实现

小波变换图像去噪方法MATLAB实现本文的主要工作是:(1)对各种传统的图像去噪方法用MATLAB实现,并进行对比,总结各种方法的优缺点。
(2)阐述小波变换的发展历程、思想、概念和基于小波变换图像去噪的基本方法。
(3)研究小波分解层数、小波基的选择对图像去噪结果的影响。
(4)用MATLAB编程实现基于小波变换的图像去噪,并计算处理后图像的SNR和MSE。
关键词:图像去噪;小波变换;小波基;分解层数小波阈值去噪的原理从数学角度看小波去噪问题的实质是寻找最佳映射,即寻找从实际信号空间到小波函数空间的最佳映射,从而将原始信号和噪声信号分开,得到原始信号的最佳恢复。
从信号学的角来看,小波去噪实质是一个信号滤波问题,它可以看成是特征提取和低通滤波功能的综合,它既具有传统低通滤波器的功能,还能在去噪后保留信号的特征,其等效框图如下所示:图 3.2 小波去噪等效框小波阈值去噪的步骤如下:(1)根据信号特点和消噪要求选择合适的基小波和分解层数,对含有的噪声信号f(k)作小波变换,得到一组小波系数w j,k 。
图像经过采样后得到一系列的矩阵,然后将图像转换到小波域,此时的图像可以分为一个低通分量LL 和三个高通分量(HL ,LH ,HH),三个高通分量中一个为高通分量部分,剩下两个为次高频部分。
分解过程如下所示:图3.3 图像分解过程f(t)为一维信号,对其进行N 点采样后的离散信号为f(n),N 取0,1,2,...,N-1 ,其小波变换为: Wf (j,k )=2−j 2∑f (n )φ(2−j N−1n=0n −k) (11)其中Wf(j,k)为小波系数,简记为w j,k 。
小波系数可以分为两类:第一类 小波系数仅仅由噪声经过小波变换得到的;第二类 小波系数由信号经过小波变换的来,其中包含有噪声变换的结果。
(2)对w j,k进行阈值处理后得到估计的小波系数ŵj,k,使得‖ŵj,k−u j,k‖尽可能的小。
matlab小波包分解降噪

matlab小波包分解降噪小波包分解是一种信号处理方法,可以用于降噪。
在MATLAB中,我们可以利用小波包分解对信号进行降噪处理。
让我们来了解一下什么是小波包分解。
小波包分解是一种将信号分解成不同频率分量的方法,它通过将信号分解成一系列小波包基函数来实现。
在小波包分解中,我们可以选择不同的小波基函数和不同的分解层数来得到不同精度的分解结果。
在MATLAB中,我们可以使用wavelet包中的函数来进行小波包分解。
首先,我们需要将信号加载到MATLAB中,并选择一个合适的小波基函数。
常用的小波基函数有haar、db、sym等,它们具有不同的性质,可以根据实际需求选择合适的函数。
在加载信号和选择小波基函数之后,我们可以使用wavedec函数对信号进行小波包分解。
该函数的参数包括信号、小波基函数和分解层数。
通过调整分解层数,我们可以得到不同精度的分解结果。
得到小波包分解结果后,我们可以对分解系数进行阈值处理,以实现降噪效果。
阈值处理是指将分解系数中小于某个阈值的值设置为零,从而达到降噪的目的。
常用的阈值处理方法有固定阈值、自适应阈值等,可以根据具体情况选择合适的方法。
在MATLAB中,我们可以使用wthresh函数来实现阈值处理。
该函数的参数包括分解系数、阈值和阈值处理方法。
通过调整阈值和阈值处理方法,我们可以得到不同的降噪效果。
完成阈值处理后,我们可以使用waverec函数对降噪后的信号进行重构,从而得到降噪后的信号。
重构后的信号可以用于后续的分析和处理。
小波包分解是一种有效的降噪方法,在MATLAB中可以很方便地实现。
通过选择合适的小波基函数、调整分解层数和阈值处理方法,我们可以得到满足要求的降噪效果。
在实际应用中,我们可以根据信号的特点和需求选择合适的参数,从而得到最佳的降噪效果。
小波包分解是一种在MATLAB中实现降噪的有效方法。
通过合理选择参数和方法,我们可以得到满足要求的降噪效果。
希望本文能对读者理解和应用小波包分解降噪方法有所帮助。
小波去噪及其在MATLAB中的实现

每次分解都能有效的去除一部分噪声。
其 中 为原始信号 , n分解步数 , /为小波基 函数 。该 函 ut f' 数分解 可得 C和 L两个 向量 , 其组成如图 2 :
c向量
三5 ()
() 5
() 5
L )
摘要 : 实际采样信号不可避免 的会 受到噪声的干扰 , 因此特征提取是故障诊断 中的一个重要环节。小波是一种信号的时间一频 率分
析方法 , 在去除噪声方面有着显著的效果 。文章对此在 MA L B环境 下做 了 TA 详尽 的仿真研 究, 有效的去除 了信号中的噪声 。
关键词 : 征提取 ; 波变换; 特 小 去噪 ; TL B MA A
E u p n Ma u a t n e h oo y No1 , 0 8 q i me t n f cr gT c n l g . 1 2 0 i
小波去噪及其在 MA L B中的实现 TA
吕 营, 朱成 实 , 李铁 军
( 沈阳化工学 院 机械工程学院 , 辽宁 沈 阳 104 ) 12 1
以有效 去除信号 中的噪声 。
其 中 d为含有 噪声 的信 号 为无噪 声的信号 , i 为独立
同分布 的高斯 白噪声 NO1, (, s为噪声水平 , ) Ⅳ为信号的长度 。 为 了从含 噪信 号中得 到 目标信号 ,可 以利用信号和噪声 在小波变换下的不 同特性对小波分解 的系数进行处理 ,达到
1 小 波变换
信 号和噪声分离 的 目的【 1 】 实际工程应用 中, 。在 有用 的信号通 常表现为低 频信 号或是一些相对平稳 的信号 ,而噪声信号则 通 常表现为高频信号 , 以可以先对含噪信号进行小波分解 , 所
以三层分解为例 , 如图 1 所示 :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数wdencmp
功能:小波去噪,得到去噪后的图像
[XC,CXC,LXC,PERF0,PERFL2] = WDENCMP('gbl',X,'wname',N,THR,SORH,KEEPAPP) 其中XC为去噪后的图像信号
在wdencmp中通过xc = waverec2(cxc,lxc,w) ,重构函数得到信号xc
Waverec2如何工作的呢?
X = W A VEREC2(C,S,'wname') reconstructs the matrix X
based on the multi-level wavelet decomposition structure
[C,S]
利用经过阈值处理过得系数C和它对应的长度S按照分解时选择的小波来重构;Waverec2涉及到的函数x = appcoef2(c,s,varargin{:},0)
Appcoef2函数得到x的方法:x= idwt(a,d,Lo_R,Hi_R,l(imax-p)),综合滤波器重构
Idwt中包含了上采用和卷积函数upsconv1
x = upsconv1(a,Lo_R,lx,dwtEXTM,shift) + upsconv1(d,Hi_R,lx,dwtEXTM,shift);
里面分别调用了采样函数和卷积函数
完成!!
函数wavedec2
功能:返回N层小波分解系数,使用指定滤波器
[C,S] = WA VEDEC2(X,N,'wname') returns the wavelet decomposition of the matrix X at level N,using the wavelet named in string 'wname' ,输出C小波系数,S是对应的系数长度;Wavedec2中通过dwt获得低频系数和小波系数
for i=1:n
[x,h,v,d] = dwt2(x,Lo_D,Hi_D); % decomposition
c = [h(:)' v(:)' d(:)' c]; % store details
s = [size(x);s]; % store size
end
% Last approximation.
c = [x(:)' c];
s = [size(x) ; s];
Dwt2函数如何实现此功能?包含卷积conv2和下采样convdown函数
根据二维mallat变换
输入信号先与滤波器卷积conv2,再下采样得到系数[x,h,v,d] ;
Mallat算法,图像先小波分解。
经上面的低通滤波器后下采样(抽取某些位置的值)得到低频系数,经下面高通滤波器下采样后得到高频系数;
重构过程,上采样(在指定位置填0)后经过综合滤波器相加后得到去噪信号
不同滤波器(db,sym,bior)的分解和重构时得到的低通滤波器和高通滤波器
[F1,F2] = WFILTERS('wname','type') returns the following
filters:
LO_D and HI_D if 'type' = 'd' (Decomposition filters)
LO_R and HI_R if 'type' = 'r' (Reconstruction filters)
LO_D and LO_R if 'type' = 'l' (Low-pass filters)
HI_D and HI_R if 'type' = 'h' (High-pass filters)
客观评价峰值信噪比。