小波去噪matlab学习指令

合集下载

Mtalb小波去噪

Mtalb小波去噪

数字图像阈值去噪算法研究与实现摘要图像在获取和传输的过程中经常要受到噪声的污染。

噪声对图像分析有着非常重要的影响,必须在分析前去除。

所以,图像去噪成为图像分析和处理的重要技术。

传统的去噪方法不仅滤出了图像的噪声,同时使图像细节变得模糊。

小波变换是继傅琨叶变换之后的又一时频分析工具。

小波变换由于在时域频域同时具有良好的局部化性质和多分辨率分析的特点,因此不仅能满足各种去噪要求,如低通、高通、随机噪声的去除,而且与传统的去噪方法相比较,有着无可比拟的优点,成为信号分析的一个强有力的工具,被誉为分析信号的数学显微镜。

其应用包括图像预处理、图像压缩与传输、图像分析、特征提取等图像处理的很多阶段。

首先,介绍了本课题的研究目的,并介绍了目前常用的去噪方法及这些方法之间的比较。

其次,在简述了小波变换的发展历史和小波变换的基本理论知识后,对以小波为工具在数字图像处理方面进行了有益的探索。

再次,给出了小波边缘检测理论,接下来针对小波去噪的理论和方法着重进行了介绍,包括小波去噪的原理、方法和阈值去噪处理等方面的内容。

最后,对本文的工作进行了总结。

小波变换由于具有“数学显微镜”的作用,在去噪的同时能保持图像细节,得到原图像的最佳恢复。

在众多的小波去噪方法中,运用最多的是Donoho小波阈值萎缩法,但Donoho给出的阈值有“过扼杀”小波系数的倾向,重建误差较大。

本文提出基于小波变换与中值滤波相结合的方法实现了图像去噪。

该方法在去噪之前,先通过小波边缘检测确定图像边缘特征的小波系数,保留这些位置的小波系数,其不受闽值去噪影响,对其它位置的小波系数进行自适应阈值去噪,去除高斯噪声。

然后对图像进行中值滤波,去除椒盐噪声。

该算法的实验结果表明不仅能滤出图像中高斯噪声和椒盐噪声的混合噪声,而且能较好的保留图像的边缘细节,其滤波效果优于传统的图像去噪方法。

关键词:小波变换,高斯噪声,椒盐噪声,边缘检测,图像去噪ABSTRACTThe image iS often corrupted by noise in its acquisition or transmission.The noise to be removed before analysis has an important effect on image analysiS.Image~denoising is an important technology in image analysis and processingdomain.Traditional denoising methods can filter noise。

利用Matlab进行图像去噪和图像增强

利用Matlab进行图像去噪和图像增强

利用Matlab进行图像去噪和图像增强随着数字图像处理技术的不断发展和成熟,图像去噪和图像增强在各个领域都有广泛的应用。

而在数字图像处理的工具中,Matlab凭借其强大的功能和易于使用的特点,成为了许多研究者和工程师首选的软件之一。

本文将介绍如何利用Matlab进行图像去噪和图像增强的方法和技巧。

一、图像去噪图像去噪是指通过一系列算法和技术,将图像中的噪声信号去除或减弱,提高图像的质量和清晰度。

Matlab提供了多种去噪方法,其中最常用的方法之一是利用小波变换进行去噪。

1. 小波变换去噪小波变换是一种多尺度分析方法,能够对信号进行时频分析,通过将信号分解到不同的尺度上,实现对图像的去噪。

在Matlab中,可以使用"dwt"函数进行小波变换,将图像分解为低频和高频子带,然后通过对高频子带进行阈值处理,将噪声信号滤除。

最后通过逆小波变换将去噪后的图像重构出来。

这种方法能够有效抑制高频噪声,保留图像的细节信息。

2. 均值滤波去噪均值滤波是一种基于平均值的线性滤波方法,通过计算像素周围邻域内像素的平均值,替代原始像素的值来去除噪声。

在Matlab中,可以使用"imfilter"函数进行均值滤波,通过设置适当的滤波模板大小和滤波器系数,实现对图像的去噪。

二、图像增强图像增强是指通过一系列算法和技术,改善图像的质量、增强图像的细节和对比度,使图像更容易被观察和理解。

Matlab提供了多种图像增强方法,以下将介绍其中的两种常用方法。

1. 直方图均衡化直方图均衡化是一种通过对图像像素值的分布进行调整,增强图像对比度的方法。

在Matlab中,可以使用"histeq"函数进行直方图均衡化处理。

该函数能够将图像的像素值分布拉伸到整个灰度级范围内,提高图像的动态范围和对比度。

2. 锐化增强锐化增强是一种通过增强图像边缘和细节来改善图像质量的方法。

在Matlab中,可以使用"imsharpen"函数进行图像的锐化增强处理。

小波图像去噪及matlab分析

小波图像去噪及matlab分析

小波图像去噪及matlab实例图像去噪图像去噪是信号处理的一个经典问题,传统的去噪方法多采用平均或线性方法进行,常用的是维纳滤波,但是去噪效果不太好(维纳滤波在图像复原中的作用)。

小波去噪随着小波理论的日益完善,其以自身良好的时频特性在图像去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。

具体来说,小波能够去噪主要得益于小波变换有如下特点:(1)低熵性。

小波系数的稀疏分布,使图像变换后的熵降低。

意思是对信号(即图像)进行分解后,有更多小波基系数趋于0(噪声),而信号主要部分多集中于某些小波基,采用阈值去噪可以更好的保留原始信号。

(2)多分辨率特性。

由于采用了多分辨方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等(例如0-1突变是傅里叶变化无法合理表示的),可以在不同分辨率下根据信号和噪声的分布来消除噪声。

(3)去相关性。

小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪。

(4)基函数选择灵活。

小波变换可灵活选择基函数,也可根据信号特点和去噪要求选择多带小波和小波包等(小波包对高频信号再次分解,可提高时频分辨率),对不同场合,选择不同小波基函数。

根据基于小波系数处理方式的不同,常见去噪方法可分为三类:(1)基于小波变换模极大值去噪(信号与噪声模极大值在小波变换下会呈现不同变化趋势)(2)基于相邻尺度小波系数相关性去噪(噪声在小波变换的各尺度间无明显相关性,信号则相反)(3)基于小波变换阈值去噪小波阈值去噪是一种简单而实用的方法,应用广泛,因此重点介绍。

阈值函数选择阈值处理函数分为软阈值和硬阈值,设w是小波系数的大小,wλ是施加阈值后小波系数大小,λ为阈值。

(1)硬阈值当小波系数的绝对值小于给定阈值时,令其为0,而大于阈值时,保持其不变,即:(2)软阈值当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即:如下图,分别是原始信号,硬阈值处理结果,软阈值处理结果。

完整版)小波变换图像去噪MATLAB实现

完整版)小波变换图像去噪MATLAB实现

完整版)小波变换图像去噪MATLAB实现本论文旨在研究数字图像的滤波去噪问题,以提高图像质量。

数字图像处理(Digital Image Processing。

DIP)是指用计算机辅助技术对图像信号进行处理的过程。

DIP技术在医疗、艺术、军事、航天等图像处理领域都有着十分广泛的应用。

然而,图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。

如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。

因此,通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。

小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。

小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数Ψ(x)来构造,Ψ(x)称为母小波,或者叫做基本小波。

一组小波基函数,{Ψa,b(x)},可以通过缩放和平移基本小波来生成。

当a=2j和b=ia的情况下,一维小波基函数序列定义为Ψi,j(x)=2-j2Ψ2-jx-1.函数f(x)以小波Ψ(x)为基的连续小波变换定义为函数f(x)和Ψa,b(x)的内积。

在频域上有Ψa,b(x)=ae-jωΨ(aω)。

因此,本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。

当绝对值|a|减小时,小波函数在时域的宽度会减小,但在频域的宽度会增大,同时窗口中心会向|ω|增大的方向移动。

这说明连续小波的局部变化是不同的,高频时分辨率高,低频时分辨率低,这是小波变换相对于___变换的优势之一。

总的来说,小波变换具有更好的时频窗口特性。

噪声是指妨碍人或相关传感器理解或分析图像信息的各种因素。

噪声通常是不可预测的随机信号。

由于噪声在图像输入、采集、处理和输出的各个环节中都会影响,特别是在输入和采集中,噪声会影响整个图像处理过程,因此抑制噪声已成为图像处理中非常重要的一步。

matlab 曲线降噪 小波变换

matlab 曲线降噪 小波变换

【引言】1. 背景介绍:在实际工程和科研中,数据经常受到各种噪声的干扰,因此需要对数据进行降噪处理。

2. 目的和意义:降噪处理可以使得数据更加真实可靠,有利于后续的分析和应用。

【matlab 曲线降噪的方法】3. 小波变换简介:小波变换是一种时频分析的方法,可以将信号分解为不同尺度的成分,对于曲线降噪具有很好的效果。

4. matlab中的小波变换函数:matlab提供了丰富的小波变换函数,包括连续小波变换和离散小波变换,用户可以根据具体需求选择合适的函数进行数据处理。

【matlab 曲线降噪的实现步骤】5. 数据准备:首先需要准备需要处理的数据,可以是实验采集的曲线数据,也可以是从其他渠道获取的曲线信息。

6. 选择小波函数:根据数据的特点和需求,选择合适的小波函数进行变换,常用的小波函数包括Daubechies小波、Haar小波等。

7. 对数据进行小波变换:利用matlab提供的小波变换函数,对数据进行小波分解,得到不同尺度的小波系数。

8. 降噪处理:根据小波系数的大小和分布,可以采用阈值处理、软硬阈值处理等方法对小波系数进行滤波,实现曲线的降噪处理。

9. 重构数据:经过降噪处理后,需要利用小波系数重构原始数据,得到降噪后的曲线信息。

【matlab 曲线降噪的应用实例】10. 实验数据:以某地震波形数据为例,介绍如何利用matlab的小波变换函数进行曲线降噪处理。

11. 数据分析:对比降噪前后的波形数据,分析降噪处理的效果和优势。

12. 结果展示:通过图表展示降噪前后的数据对比,直观地展现曲线降噪的效果。

【matlab 曲线降噪的注意事项】13. 参数选择:在进行小波变换和降噪处理时,需要合理选择小波函数和参数,以及阈值处理的方式和大小。

14. 原理理解:对小波变换的原理和数据特点有一定的理解,有利于选择合适的方法和优化参数。

15. 实时调试:在实际应用中,可以通过反复调试和对比分析来确定最佳的处理方案,实现最佳的降噪效果。

一维信号去噪方法及matlab方法

一维信号去噪方法及matlab方法

一维信号去噪方法及matlab方法
一维信号去噪方法及MATLAB实现步骤如下:
一维信号去噪方法:
1. 小波变换:利用小波变换对信号进行多尺度分析,保留有用信号的小波系数,去除噪声的小波系数,最后重构信号。

2. 滤波器:设计合适的滤波器,使噪声信号经过滤波器后被滤除,保留有用信号。

常用的滤波器有中值滤波器、低通滤波器、高通滤波器等。

3. 统计方法:利用统计方法对信号进行概率统计,根据信号和噪声的不同统计特性进行去噪。

常用的统计方法有均值滤波、加权均值滤波、中位数滤波等。

4. 频域变换:将信号从时域变换到频域,利用信号和噪声在频域的不同特性进行去噪。

常用的频域变换方法有傅里叶变换、小波变换等。

MATLAB实现步骤:
1. 导入信号:使用MATLAB中的函数读取一维信号数据。

2. 预处理:对信号进行必要的预处理,如平滑处理、去除异常值等。

3. 去噪处理:根据选择的方法对信号进行去噪处理,如小波变换去噪、滤波器去噪、统计方法去噪或频域变换去噪等。

4. 后处理:对去噪后的信号进行必要的后处理,如数据归一化、插值等。

5. 显示结果:使用MATLAB中的绘图函数将原始信号、噪声信号和去噪后的信号进行可视化比较。

6. 保存数据:将去噪后的数据保存到文件中,方便后续分析。

需要注意的是,不同的一维信号去噪方法适用于不同类型的噪声和信号,应根据实际情况选择合适的方法。

同时,MATLAB提供了丰富的函数和工具箱,可以方便地实现各种一维信号去噪处理。

基于MATLAB环境下的小波图像去噪

基于MATLAB环境下的小波图像去噪
me h d , u t f c s ’ d a . ih t ec n tn mp o e n fwa ee h o y a d i o d t -r q e c h rc e ・ t o s b ti e f t n tie W t h o sa t e i 1 i r v me t v ltt e r n sg o i fe u n y c a a tr o t me
ZHANG n u n, ANG n - u Lt a XI Fe g h a
【 bt c】 I g enin as rb ni a poes gT et dt n eo igue h vrg rier A s at mae -o igi a l ipol mis n rcsi . h a ioa dn in sdteaeae na r d s s c sc e gl n r il s ol
( )Xx3 f) ( (d )

1 小波变换
1 1 基本 原理 .
与 时域 函数 对应 , 在频 域上则 有 :
( )=√a 一 (Z ) e O O () 4
在数学上 , 小波定义卫 队给定函数局部化的新 领域 , 波可 由一个 定义 在 有 限 区域 的 函数 ( 小 ) 来构造 , ( 称为母小波( o e w vl ) ) m t r ae t 或者叫 h e 做基本 小波。 一组小波基 函数 , { ( } 可以通 ) , 过缩 放 和平移基 本小 波 ( 来 生成 : )


( )= 2 ( 一 — 2 )
() 2
其 中, 为平移参数 , i 为缩放 因子, 函数 厂 ( ) 以小 波 ( )为 基 的 连 续 小 波 变 换 定 义 为 函 数 厂 ) ( 和 ( )的内积 :

小波阈值去噪matlab程序

小波阈值去噪matlab程序

小波阈值去噪matlab程序小波阈值去噪是一种常用的信号处理方法,可以在Matlab中使用Wavelet Toolbox来实现。

下面是一个简单的小波阈值去噪的Matlab程序示例:matlab.% 生成含有噪声的信号。

t = 0:0.001:1;y = sin(2pi100t) + randn(size(t));% 进行小波阈值去噪。

wname = 'db4'; % 选择小波基函数。

level = 5; % 选择分解的层数。

noisySignal = wdenoise(y, 'DenoisingMethod','UniversalThreshold', 'ThresholdRule', 'Soft', 'Wavelet', wname, 'Level', level);% 绘制结果。

figure.subplot(2,1,1)。

plot(t,y)。

title('含噪声信号')。

subplot(2,1,2)。

plot(t,noisySignal)。

title('去噪后信号')。

在这个示例中,首先生成了一个含有噪声的信号,然后使用`wdenoise`函数进行小波阈值去噪。

在`wdenoise`函数中,我们选择了小波基函数为db4,分解的层数为5,DenoisingMethod为UniversalThreshold,ThresholdRule为Soft。

最后绘制了含噪声信号和去噪后的信号。

需要注意的是,小波阈值去噪的具体参数选择和调整需要根据实际情况进行,上述示例仅供参考。

希望这个简单的示例可以帮助你开始在Matlab中实现小波阈值去噪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。

ddencmp的调用格式有以下三种:(1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X)(2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X)(3)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wv',X)函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。

输入参数X为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。

返回值THR是返回的阈值;SORH是软阈值或硬阈值选择参数;KEEPAPP表示保存低频信号;CRIT是熵名(只在选择小波包时使用)。

函数thselect的调用格式如下:THR=thselect(X,TPTR);THR=thselect(X,TPTR)根据字符串TPTR定义的阈值选择规则来选择信号X的自适应阈值。

自适应阈值的选择规则包括以下四种:*TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。

*TPTR='heursure',使用启发式阈值选择。

*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).*TPTR='minimaxi',用极大极小原理选择阈值。

阈值选择规则基于模型y = f(t) + e,e是高斯白噪声N(0,1)。

函数wbmpen的调用格式如下:THR=wbmpen(C,L,SIGMA,ALPHA);THR=wbmpen(C,L,SIGMA,ALPHA)返回去噪的全局阈值THR。

THR通过给定的一种小波系数选择规则计算得到,小波系数选择规则使用Birge-Massart的处罚算法。

{C,L]是进行去噪的信号或图像的小波分解结构;SIGMA是零均值的高斯白噪声的标准偏差;ALPHA是用于处罚的调整参数,它必须是一个大于1的实数,一般去ALPHA=2。

设t*使crit(t)=-sum(c(k)^2,k<=t) + 2 *SIGMA^2 * t*(ALPHA+log(n/t))的最小值,其中c(k)是按绝对值从大到小排列的小波包系数,n是系数的个数,则THR=|c(t*)|。

wbmpen(C,L,SIGMA,ALPHA,ARG)计算阈值并画出三条曲线。

2 * SIGMA^2 * t*(ALPHA+log(n/t))sum(c(k)^2, k<=t)crit(t)wdcbm的调用格式有以下两种:(1)[THR,NKEEP]=wdcbm(C,L,ALPHA);(2)[THR,NKEEP]=wdcbm(C,L,ALPHA,M);函数wdcbm是使用Birge-Massart算法获取一维小波变换的阈值。

返回值THR是与尺度无关的阈值,NKEEP是系数的个数。

[C,L]是要进行压缩或消噪的信号在j=length(L)-2层的分解结构;LAPHA和M必须是大于1的实数;THR是关于j的向量,THR(i)是第i层的阈值;NKEEP也是关于j的向量,NKEEP(i)是第i层的系数个数。

一般压缩时ALPHA取1.5,去噪时ALPHA取3.2.信号的阈值去噪MATLAB中实现信号的阈值去噪的函数有wden、wdencmp、wthresh、wthcoef、wpthcoef以及wpdencmp。

下面对它们的用法作简单的介绍。

函数wden的调用格式有以下两种:(1)[XD,CXD,LXD]=wden(X,TPTR,SORH,SCAL,N,'wname')(2)[XD,CXD,LXD]=wden(C,L,TPTR,SORH,SCAL,N,'wname') 函数wden用于一维信号的自动消噪。

X为原始信号,[C,L]为信号的小波分解,N为小波分解的层数。

THR为阈值选择规则:*TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。

*TPTR='heursure',使用启发式阈值选择。

*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).*TPTR='minimaxi',用极大极小原理选择阈值。

SORH是软阈值或硬阈值的选择(分别对应's'和'h')。

SCAL指所使用的阈值是否需要重新调整,包含下面三种:*SCAL='one' 不调整;*SCAL='sln' 根据第一层的系数进行噪声层的估计来调整阈值。

*SCAL='mln' 根据不同的噪声估计来调整阈值。

XD为消噪后的信号,[CXD,LXD]为消噪后信号的小波分解结构。

格式(1)返回对信号X经过N层分解后的小波系数进行阈值处理后的消噪信号XD和信号XD的小波分解结构[CXD,LXD]。

格式(2)返回参数与格式(1)相同,但其结构是由直接对信号的小波分解结构[C,L]进行阈值处理得到的。

函数wdencmp的调用格式有以下三种:(1)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('gbl',X,'wname',N,TH TR,SORH,KEEPAPP);(2)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('lvd',X,'wname',N,TH TR,SORH);(3)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('lvd',C,L,'wname',N, THTR,SORH);函数wdencmp用于一维或二维信号的消噪或压缩。

wname是所用的小波函数,gbl(global的缩写)表示每一层都采用同一个阈值进行处理,lvd表示每层采用不同的阈值进行处理,N表示小波分解的层数,THR为阈值向量,对于格式(2)和(3)每层都要求有一个阈值,因此阈值向量THR的长度为N,SORH表示选择软阈值或硬阈值(分别取值为's'和'h'),参数KEEPAPP取值为1时,则低频系数不进行阈值量化,反之,低频系数要进行阈值量化。

XC是要进行消噪或压缩的信号,[CXC,LXC]是XC的小波分解结构,PERF0和PERFL2是恢复或压缩L^2的范数百分比。

如果[C,L]是X的小波分解结构,则PERFL2=100*(CXC向量的范数/C向量的范数)^2;如果X是一维信号,小波wname是一个正交小波,则PERFL2=100||XC||^2/||X||^2。

函数wthresh的调用格式如下:Y=wthresh(X,SORH,T)Y=wthresh(X,SORH,T) 返回输入向量或矩阵X经过软阈值(如果SORH='s')或硬阈值(如果SORH='h')处理后的信号。

T是阈值。

Y=wthresh(X,'s',T)返回的是Y=SIG(X)*(|X|-T)+,即把信号的绝对值与阈值进行比较,小于或等于阈值的点变为零,大于阈值的点为该点值与阈值的差值。

Y=wthresh(X,'h',T)返回的是Y=X*1(|X|>T),即把信号的绝对值和阈值进行比较,小于或等于阈值的点变为零,大于阈值的点保持不变。

一般来说,用硬阈值处理后的信号比用软阈值处理后的信号更粗糙。

函数wthcoef的调用格式下面四种:(1)NC=wthcoef('d',C,L,N,P)(2)NC=wthcoef('d',C,L,N)(3)NC=wthcoef('a',C,L)(4)NC=wthcoef('t',C,L,N,T,SORH)函数wthcoef用于一维信号小波系数的阈值处理。

格式(1)返回小波分解结构[C,L]经向量N和P定义的压缩率处理后的新的小波分解向量NC,[NC,L]构成一个新的小波分解结构。

N包含被压缩的细节向量,P是把较小系数置0的百分比信息的向量。

N和P 的长度必须相同,向量N必须满足1<=N(i)<=length(L)-2。

格式(2)返回小波分解结构[C,L]经过向量N中指定的细节系数置0后的小波分解向量NC。

格式(3)返回小波分解结构[C,L]经过近似系数置0后的小波分解向量NC。

格式(4)返回小波分解结构[C,L]经过将向量N作阈值处理后的小波分解向量NC。

如果SORH=’s‘,则为软阈值;如果SORH='h'则为硬阈值。

N包含细节的尺度向量,T是N相对应的阈值向量。

N和T的长度必须相等。

函数wpdencmp的调用格式有以下两种:(1)[XD,TREED,PERF0,PERFL2]=wpdencmp(X,SORH,N,'wname',CRIT, PAR,KEEPAPP)(2)[XD,TREED,PERF0,PERFL2]=wpdencmp(TREE,SORH,CRIT,PAR,K EEPAPP)函数wpdencmp用于使用小波包变换进行信号的压缩或去噪。

格式(1)返回输入信号X(一维或二维)的去噪或压缩后的信号XD。

输出参数TREED是XD的最佳小波包分解树;PERFL2和PERF0是恢复和压缩L2的能量百分比。

PERFL2=100*(X的小波包系数范数/X 的小波包系数)^2;如果X是一维信号,小波wname是一个正交小波,则PERFL2=100*||XD||^2/||X||^2。

SORH的取值为's'或'h',表示的是软阈值或硬阈值。

输入参数N是小波包的分解层数,wname是包含小波名的字符串。

函数使用由字符串CRIT定义的熵和阈值参数PAR实现最佳分解。

如果KEEPAPP=1,则近似信号的小波系数不进行阈值量化;否则,进行阈值量化。

格式(2)与格式(1)的输出参数相同,输入选项也相同,只是它从信号的小波包分解树TREE进行去噪或压缩。

相关文档
最新文档