北京高三理科解三角形大题专题(带答案)

合集下载

高三数学总复习专题6 解三角形(答案及解析)

高三数学总复习专题6 解三角形(答案及解析)

高三数学总复习专题6 解三角形方法点拨1.对于解三角形中的简单的求边长、求角的题型,要求对正余弦定理熟悉以及对边角的互换灵活使用.2.解三角形的大题不仅需要对边与角的互换可以灵活使用,还要求对三角函数的恒等变换公式熟悉,涉及求面积、周长等的范围或最值问题时,一般考虑余弦定理结合基本不等式或利用正弦定理转化成三角函数求值域的问题. 3.若涉及三角形的中线问题则考虑使用向量进行处理.4.对于涉及角平分线的解三角形题型,一般可以考虑角平分线定理或列两个小三角形的面积等于大三角形的面积的方程进行处理.经典题汇编一、选择题.1.(江西省南昌市2021届高三一模)ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a =45B =︒,75C =°,则b =( )A .2BC .D .2.(四川省达州市2021-2022学年高三一模)ABC 中,1cos 4A =,2AB =,4BC =,则BC 边上的高为( )A B C D 3.(安徽省池州市2021届高三一模)如图所示,在四边形ABCD 中,AC =AD =CD =7,∠ABC =120°,sin ∠BAC 且BD 为∠ABC 的平分线,则BD =( )A .6B .9C .D .84.(青海省海东市2021届高三一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知3a =cos sin A a B =,则ABC 面积的最大值是( )A .2B .4C .8D .165.(安徽省合肥市2020-2021学年高三一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若sin 2sin 2sin cos a A c C b C A +=,则角A 的最大值为( ) A .6πB .4πC .3πD .23π 6.(多选)(广东省佛山市顺德区2022届高三一模)在ABC 中,A 、B 、C 所对的边为a 、b 、c ,设BC 边上的中点为M ,ABC 的面积为S ,其中a =2224b c +=,下列选项正确的是( )A .若3A π=,则S =B .S 的最大值为C .3AM =D .角A 的最小值为3π二、填空题.7.(宁夏中卫市2021届高三一模)如图,已知圆的半径为10,其内接三角形ABC 的内角A ,B 分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC 内的概率为_______.8.(广东省珠海市2021届高三一模)ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足()2cos cos tan tan B C B C +cos tan cos tan B B C C =+,则cos A 的最小值是___________.三、解答题.9.(四川省内江市高中2022届一模)在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,满足2cos cos cos a A b C c B =+.(1)求A 的大小;(2)若a =ABC 的面积为ABC 的周长.10.(江西省赣州市2021届高三3月一模)在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且sin 3c B π⎛⎫+= ⎪⎝⎭. (1)求角C ;(2)设5BC =,7AB =,若延长CB 到D ,使cos 7ADC ∠=,求CD 的长. 11.(四川省成都市2020-2021学年高三一模)在ABC 中,点M 在边AC 上,3CM MA =,tan ABM ∠=tan BMC ∠= (1)求角A 的大小;(2)若BM =,求ABC 的面积.12.(广东省佛山市顺德区2022届高三一模)在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,()sin sin sin A B C B -=-,角A 的角平分线交BC 于点D ,且3b =,5c =.(1)求角A 的大小; (2)求线段AD 的长.13.(福建省福州市2021届高三3月份一模)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos cos a b c B b C +=-. (1)求角C 的大小;(2)设CD 是ABC 的角平分线,求证:111CA CB CD+=. 14.(河南省鹤壁市2021届高三一模)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin sin b C a A b B c C +=+.(1)求A ;(2)设D 是线段BC 的中点,若2c =,AD =a .15.(贵州省盘州市2021届高三一模)在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且cos sin a B A =.(1)求B ; (2)已知23ACB π∠=,2AB =,延长BC 至D ,使得2CD BC =,求AD .16.(河南省郑州市2020-2021学年高三一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知45b c B ==∠=.(1)求边BC 的长﹔(2)在边BC 上取一点D ,使得4cos 5ADB ∠=,求sin DAC ∠的值.17.(湖南省湘潭市2021-2022学年高三上学期一模)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若40sin B c b -=.(1)求sin C 的值;(2)是否存在角A ,B (A B <),满足tan tan A B =若存在,求出A ,B 的值;若不存在,请说明理由.18.(广西柳州市2021届高三一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()()22222cos b c b a c abc C --+=.(1)求角A 的大小;(2)若3ABC π∠=,D 为ABC 外一点,2BD =,1CD =,四边形ABDC 的面积是24+,求BDC ∠的大小.19.(江苏省苏州市八校2020-2021学年高三一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知)()sin sin 1cos c os c A C c A C -=-. (1)求B 的值;(2)在①4ABC S =△,②4A π=,③2a c =这三个条件中任选一个,补充在下列问题中,并解决问题.若3b =,_______,求ABC 的周长.20.(湖南师范大学附属中学2021届高三一模)已知ABC 的内角A B C 、、所对的边分别是,,a b c ,在以下三个条件中任选一个:①22(sin sin )sin sin sin B C A B C -=-;②sin4A =;③sin sin 2B Cb a B +=.并解答以下问题: (1)若选___________(填序号),求A ∠的值;(2)在(1)的条件下,若(0)a b m m ==>,当ABC 有且只有一解时,求实数m 的范围及ABC 面积S 的最大值.21.(沭阳如东中学2021届高三一模)已知ABC 中,D 是AC 边的中点,且①3BA =;②BC =BD =60A ∠=︒.(1)求AC 的长;(2)BAC ∠的平分线交BC 于点E ,求AE 的长.上面问题的条件有多余,现请你在①,②,③,④中删去一个,并将剩下的三个作为条件解答这个问题,要求答案存在且唯一.你删去的条件是___________,请写出用剩余条件解答本题的过程.22.(江西省九江市2021届高三一模)ABC 中,,,a b c 分别为角,,A B C 的对边,已知()cos 3sin cos b c A b A a C +=-. (1)求角A ;(2)若ABC 为锐角三角形,求bc 的取值范围.23.(福建省龙岩市2021届高三一模)在①sin 3cos c B b C =,②232cos sin 22cos 2C C C π⎛⎫--= ⎪⎝⎭,③sin ABC S CA CB C =⋅⋅△.三个条件中任选一个,补充在下面的问题中,并解决该问题.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足,2c =. (1)求角C ;(2)求ABC 周长的取值范围.24.(贵州省贵阳市2021届高三一模)如图所示,在平面四边形ABCD (A ,C 在线段BD 异侧)中,6BAD π∠=,2BCD π∠=,3AB =4AD =.(1)求BD 的长;(2)请从下面的三个问题中任选一个作答:(作答时用笔在答题卡上把所选题目对应题号的方框填涂)①求四边形ABCD 的面积的取值范围; ②求四边形ABCD 的周长的取值范围;③求四边形ABCD 的对角线AC 的长的取值范围.25.(江苏省南通市学科基地2021届高三一模)在①2sin sin 2sin cos A B C B -=,②()()()sin sin sin a c A C B a b +-=-,③()1sin sin sin 2ABC S c a A b B c C =+-△这三个条件中任选一个,补充到下面的问题中并作答.问题:在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且___________. (1)求角C ;(2)若2c =,求2a b -的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、选择题. 1-5CCDBA 6.【答案】ABC【解析】对于A ,由余弦定理可得222122cos 24a b c bc A bc ==+-=-,得12bc =,故1sin 2S bc A ==,A 对;对于B ,由基本不等式可得22242b c bc =+≥,即12bc ≤,当且仅当b c ==由余弦定理可得22224126cos 22b c a A bc bc bc+--===,则11sin 22S bc A ====,B 对; 对于C ,AMB AMC π∠+∠=,则()cos cos cos AMB AMC AMC π∠=-∠=-∠,由余弦定理可得2224cos a AM c AMB AM a +-∠=⋅,2224cos a AM b AMC AM a+-∠=⋅, 所以,22222244a a AM c AM b AM a AM a+-+-=-⋅⋅,整理可得2222924b c a AM +=-=, 则3AM =,C 对;对于D ,由余弦定理可得2222212121cos 222b c a A bc bc b c +-==≥=+,当且仅当b c ==因为()0,A π∈且函数cos y x =在()0,π上单调递减,故03A π<≤,D 错,故选ABC . 二、填空题. 7. 【解析】在ABC 内,由正弦定理可得2sin sin BC AC R A B ==,即20sin 60sin 45BC AC==︒︒,解得BC=AC=故sin sin()sin(6045)sin60cos45cos60sin45C A B=+=︒+︒=︒︒+︒︒=,所以11sin3)22ABCS AC BC C=⋅⋅⋅=⨯=,又210100Sππ=⋅=圆,故豆子落在三角形ABC内的概率为)253100ABCSSπ==圆,故答案为34π+.8.【答案】12【解析】()sin sin2cos cos tan tan2cos coscos cosB CB C B C B CB C⎛⎫+=+⎪⎝⎭()2sin cos2sin cos2sin2sinB C C B B C A=+=+=,cos tan cos tan sin sinB BC C B C+=+,所以sin sin2sinB C A+=,由正弦定理得2b c a+=,由余弦定理得()22222222313112cos2284442b cb c b cb c a bcAbc bc bc bc+⎛⎫+- ⎪++-⎝⎭===-≥-=,当且仅当b c a==时取等号,此时3Aπ=,故答案为12.三、解答题.9.【答案】(1)3Aπ=;(2)10+【解析】(1)∵2cos cos cosa Ab Cc B=+,∴由正弦定理,得2sin cos sin cos sin cosA ABC C B=+,∴2sin cos sinA A A=,∵0A π<<,∴1cos 2A =,故3A π=.(2)由(1)知,3A π=,∵1sin 2ABCSbc A ==24bc =, ∵由余弦定理知2222cos a b c bc A =+-,∴2228b c bc +-=, 故()2100b c +=,∴10b c +=,故10a b c ++=+ ∴ABC的周长为10+10.【答案】(1)60C =︒;(2)10CD =. 【解析】(1)由正弦定理及条件得,1sin (sin )2C B B A =,即1sin (sin ))cos sin 2C B B B C B C B C +=+=+,整理得tan C =又C 为三角形内角,所以60C =︒.(2)在ABC 中,由余弦定理得225549AC AC +-=,解得8AC =,cos 7ADC ∠=,则sin 7ADC ∠==, ACD △中,1sin sin()sin cos cos sin 72CAD C D C D C D ∠=+=+=+= 由正弦定理得sin sin CD ACCAD ADC =∠∠147=, 所以10CD =. 11.【答案】(1)2π3A =;(2) 【解析】(1)∵tan BMC∠=,∴tan BMA∠=∵()() tan tanπtanA ABM BMA ABM BMA=-∠-∠=-∠+∠,∴tan tantan1tan tanABM BMAAABM BMA+∠+∠=-==-∠⋅∠∵0πA<<,∴2π3A=.(2)∵tan BMA∠=tan ABM∠=∴sin7BMA∠=,sin14ABM∠=.在ABM中,由正弦定理,得sin sinAB BMBMA A=∠,∴sinsinBM BMAABA⋅∠===∴ABM的面积11sin2214ABMS BM AB ABM=⋅⋅⋅∠==△.∵点M在边AC上,3CM MA=,∴ABC的面积4ABC ABMS S==△△12.【答案】(1)3Aπ=;(2)AD=.【解析】(1)在ABC中,()()sin sin sinC A B A Bπ=-+=+⎡⎤⎣⎦,因()sin sin sinA B C B-=-,则有sin cos cos sin sin cos cos sin sinA B A B A B A B B-=+-,即2cos sin sin 0A B B -=, 又sin 0B ≠,即有1cos 2A =, 而()0,A π∈,所以3A π=.(2)在ABC 中,由(1)知3A π=,因为AD 为角A 的角平分线,则有30BAD CAD ∠=∠=︒,由ABCABD ACD SSS=+得:11135sin 605sin 303sin 30222AD AD ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得AD =所以线段AD 的长为8. 13.【答案】(1)23C π=;(2)证明见解析. 【解析】(1)因为cos cos a b c B b C +=-, 由正弦定理得sin sin sin cos sin cos A B C B B C +=-, 因为sin()sin()sin B C A A π+=-=,所以sin()sin sin cos sin cos B C B C B B C ++=-,所以2sin cos sin 0B C B +=, 因为(0,)B π∈,所以sin 0B ≠,所以1cos 2C =-, 又(0,)C π∈,所以23C π=. (2)因为CD 是ABC 的角平分线,且23C π=,所以3ACD BCD π∠=∠=. 在ABC 中,ABC ACD BCD S S S =+△△△, 则由面积公式得1211sinsin sin 232323CA CB CA CD CD CB πππ⋅=⋅+⋅, 即CA CB CA CD CD CB ⋅=⋅+⋅, 两边同时除以CA CB CD ⋅⋅,得111CA CB CD+=.14.【答案】(1)3π;(2).【解析】(1)根据正弦定理,由sin sin sin sin b C a A b B c C +=+可得222bc a b c +=+, 即222bc b c a =+-,由余弦定理可得2221cos 22b c a A bc +-==, 因为A 为三角形内角,所以3A π=.(2)因为D 是线段BC 的中点,2c =,AD = 所以ADB ADC π∠+∠=,则cos cos 0ADB ADC ∠+∠=,所以222222022AD BD AB AD DC AC AD BD AD DC+-+-+=⋅⋅,即22221321344022a ab a a +-+-+=,整理得22244a b =-, 又22222cos 42a bc bc A b b =+-=+-,所以2242244b b b +-=-,解得6b =或8b =-(舍), 因此2224428a b =-=,所以a = 15.【答案】(1)6π;(2)2.【解析】(1)由cos sin a B A =及正弦定理,得sin cos sin A B B A =, 由0A π<<,得sin 0A >,所以cos B B =,即tan B =, 由0B π<<,得6B π=.(2)在ABC 中,由正弦定理,得sin sin AB ACACB B=∠,则2sinsin 62sin sin 3AB B AC ACB ππ∠=== 又2366BAC ACB B πππππ∠=-∠-∠=--=,6B π∠=,所以ABC为等腰三角形,从而3BC AC ==,23CD BC ==. 在ACD △中,233ACD ACB ππ∠π∠π=-=-=,由余弦定理,得2AD ===. 16.【答案】(1)3BC =;(2)25. 【解析】在ABC中,因为b =c =45B ∠=︒, 由余弦定理2222cos b a c ac B =+-,得25222a a =+-⨯, 所以2230a a --=,解得3a =或1a =-(舍), 所以3BC =.(2)在ABC 中,由正弦定理sin sin b cB C=,得sin 45sin C =︒,所以sin 5C =, 在ADC 中,因为()5co 4c s os 180cos A D DB ADB A C -∠=-=∠=-∠, 所以ADC ∠为钝角.而180ADC C CAD ∠+∠+∠=,所以C ∠为锐角,故cos C ==因为4cos 5ADC ∠=-,所以3sin 5ADC ∠===, ())sin sin 180sin(DAC ADC C ADC C ∠=-∠-∠=∠+∠34sin cos cos sin 55ADC C ADC C =∠∠+∠∠=-=17.【答案】(1)4;(2)存在,4A π=,3B π=. 【解析】(1)因为40sin B c b -=,由正弦定理,得40sin sin sin C B B -=, 又因为02B π<<,所以sin 0B ≠,故sin C =(2)假设存在角A ,B (A B <),满足tan tan A B =由sin C =02C π<<,可得tan 2C =, 因为A B C π+=-,所以()tan 2A B +=- 由()tan 2tan tan ta tan 1n A BB A BA ++==--tan ta 1n A B +=由tan tan tan tan 1A B A B ⎧=⎪⎨+=+⎪⎩A B <,解得tan 1A =,tan B = 从而4A π=,3B π=,故存在4A π=,3B π=满足题意.18.【答案】(1)3A π=;(2)56π.【解析】(1)()()22222cos b c b a c abc C --+=,∴()()2222cos 2b c b c a a C bc-+-=,由余弦定理可得()2cos cos b c A a C -=,由正弦定理可得2sin cos sin cos sin cos B A C A A C -=,A B C π++=,∴()2sin cos sin cos cos sin sin sin B A C A C A C A B =+=+=,sin 0B ≠,∴1cos 2A =, 由()0,A π∈,则3A π=.(2)如图,在BCD 中,2BD =,1CD =,由余弦定理得:22212212cos 54cos BC D D =+-⨯⨯=-,3A B π==,∴3C π=,ABC ∆为等边三角形,∴21sin 23ABC S BC D π=⨯⨯=△, 1=sin sin2BDCSBD DC D D ⨯⨯⨯=,∴2sin 2sin 3ABDC S D D D π⎛⎫=+=+-= ⎪⎝⎭四边形, ∴sin()13D π-=, (0,)D π∈,即56D π=.19.【答案】(1)3π;(2)若选择①,ABC 的周长为9.若选择②,ABC 的周长为62+.若选择③,ABC 的周长为3.【解析】(1)因为)()sin sin 1cos c os c A C c A C -=-,利用正弦定理边化角可得)()n sin sin si sin 1cos cos B C A C C A C -=-, 因为(0,)C π∈,所以sin 0C ≠,n sin si 1cos cos B C A A C -=-,即cos cos sin sin 1A C C A B -+=,所以cos()1A C B +=, 又A B C π++=,则A C B π+=-, 所以cos()cos()cos A C B B π+=-=-,cos 1B B -=,即1sin()62B π-=,因为(0,)B π∈,则5(,)666B πππ-∈-,所以66B ππ-=或566B ππ-=(舍),解得3B π=. (2)若选择①,则1sin 2ABCSac B ==,所以9ac =, 又22222()21cos 222a c b a c ac b B ac ac +-+--===,且3b =,所以2()1891182a c +--=,解得6a c +=,所以ABC 的周长639=+=.若选择②:因为sin sin a b A B=,所以3sin sin b Aa B ===又22221cos 22a cb B ac +-===, 因为0c >,解得2c +=, 所以ABC的周长6322=+=. 若选择③:22222491cos 2222a cbc c B ac c c +-+-===⨯⨯, 因为0c >,解得c =2a c == 所以ABC的周长33=.20.【答案】(1)条件选择见解析;60A =;(2)({}2m ∈,max 4S =. 【解析】(1)若选①,由已知化简得222sin sin sin sin sin B C A B C +-=, 由正弦定理得222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==, 因为0180A ︒︒<<,所以60A =︒.若选②,由二倍角公式2cos12sin 24A A =-=,故21cos 2cos 122A A =-=, 因为0180A ︒︒<<,所以60A =︒.若选③,由题设及正弦定理得sin sinsin sin 2B CB A B +=, 因为0180A ︒︒<<,sin 0B ≠,所以sin sin 2B CA +=,由180A B C ++=,可得sin cos 22B C A +=,故cos 2sin cos 222A A A=,因为0902A ︒<<︒,cos 02A ≠,故1sin ,22A =26A π=,因此60A =︒.(2)由已知60A =︒,当ABC 有且只有一解时,sin a b A =或a b ≥,sin 3m π=0m >,故2m =或0m <≤({}2m ∴∈,①当2m =时,ABC 为直角三角形,B 为直角,2,2sin 60b a ==︒=1c =,所以111222S ac ==⋅=;②当0m <≤3,3a A π==,由余弦定理可得2222cos 2a b c bc A bc bc bc =+-≥-=,3bc ∴≤,当且仅当b c =时等号成立,∴三角形面积为11sin 322S bc A =≤⨯=,即ABC 面积的最大值max S =,综上,ABC 面积的最大值max 4S =.21.【答案】删去条件见解析;(1)2;(2)5. 【解析】删①.(1)设,AD CD x BA y ===,在ABD △中,由余弦定理可得227x y xy +-=, 在ABC 中,由余弦定理可得22427x y xy +-=,联立方程解得1,3x y ==,所以3,2BA AC ==. (2)设AE m =,则由ABEACEABCSSS+=,得1113sin 302sin 3032sin 60222m m ⨯︒+⨯︒=⨯⨯︒,解得m =. 删②,则在ABD △中,由余弦定理有2222cos BD AB AD AB AD A =+-⋅⋅, 即2796cos60AD AD =+-⋅︒,解得1AD =或2AD =, 则2AC =或4,有2解,不满足题意. 删③,在ABC 中,由余弦定理可得2222cos BC AB AC AB AC A =+-⋅⋅, 即2796cos60AC AC =+-⋅,解得1AC =或2,有2解,不满足题意. 删④.(1)设AD CD x ==,在ABD △中,由余弦定理有22222cos2BD AD AB ADB BD AD ∠+-===⋅,同理,在BCD △中,cosCDB ∠=,cos cos ADB CDB ∠∠=-,2=,解得1x =,2AC ∴=. (2)设AE m =,则由ABEACEABCSSS+=,得1113sin 302sin 3032sin 60222m m ⨯︒+⨯︒=⨯⨯︒,解得5m =. 22.【答案】(1)3π;(2)1,22⎛⎫ ⎪⎝⎭. 【解析】(1)由正弦定理得(sin sin )cos sin sin cos B C A B A A C +=-,所以sin cos sin cos cos sin sin B A C A C A B A ++=,即sin cos sin()sin B A A C B A ++=,因为sin()sin A C B +=,所以sin cos sin sin B A B B A +=, 因为sin 0B >,所以cos 1A A +=, 所以1sin()62A π-=,因为(66A ππ-∈-,5)6π,所以66A ππ-=,所以3A π=. (2)1sin sin sin()122sin sin sin 2C Cb B A Cc C C C +====+, 因为ABC 为锐角三角形,所以02C π<<,232B C ππ=-<, 所以62C ππ<<,所以tan C >,所以112222tan C <+<,即b c 的取值范围是1,22⎛⎫⎪⎝⎭. 23.【答案】(1)条件性选择见解析,3C π=;(2)(4,6].【解析】(1)选①,sin cos c B C =,由正弦定理得sin sin cos C B B C =,因为sin 0B >,所以sin C C =,即tan C = 由C 为三角形内角得,3C π=.选②,232cos sin(2)2cos 2C C C π--=, 22cos cos 22cos C C C +=,整理得1cos 2C =, 由C 为三角形内角得3C π=.选③,sin cos sin ABC S CA CB C ba C C =⋅⋅=△,由三角形面积公式得1cos sin sin 2ab C C ab C =,故1cos 2C =, 由C 为三角形内角得,3C π=.(2)因为2c =,由余弦定理得2222cos c a b ab C =+-,故24()3a b ab =+-, 所以22()4343()2a b a b ab ++=+≤+⨯,当且仅当a b =时取等号,解得4a b +≤,因为2a b c +>=,故24a b <+≤, ABC 周长a b c ++的取值范围(4,6].24.【答案】(1)2;(2)答案见解析.【解析】(1)在ABD 中,6BAD π∠=,AB =4AD =,2222cos 4BD AD AB AD AB BAD ∴=+-⋅⋅∠=,2BD ∴=.(2)由(1)知222AB BD AD +=,2ABD π∴∠=, 令CBD θ∠=,由2BCD π∠=,0,2πθ⎛⎫∴∈ ⎪⎝⎭, 则2cos BC θ=,2sin CD θ=.若选①:112sin 2cos 2sin 222ABCD ABD BCD S S S θθθ∆∆=+=⨯⋅+⨯=+0,2πθ⎛⎫∈ ⎪⎝⎭,∴由0sin 21θ<≤,可知四边形ABCD 的面积的取值范围是(+. 若选②:2sin 2cos 444ABCD C AB BC CD DA πθθθ⎛⎫=+++=++=++ ⎪⎝⎭,0,2πθ⎛⎫∈ ⎪⎝⎭,sin 124πθ⎛⎫∴<+≤ ⎪⎝⎭,64ABCD C ∴+<≤,∴四边形ABCD 的周长的取值范围是(64⎤⎦+. 若选③:2222cos AC AB BC AB BC ABC =+-⋅⋅∠2124cos 22cos cos 2πθθθ⎛⎫=+-⨯⋅+ ⎪⎝⎭2cos 4cos 1222cos 214θθθθθ=⋅++=++2214θθ⎫=++⎪⎪⎭,令sinϕ=cos ϕ=,0,2πϕ⎛⎫∈ ⎪⎝⎭, 则()2214AC θϕ=++, 又0,2πθ⎛⎫∈ ⎪⎝⎭,2ϕθϕπϕ∴<+<+,()sin 2113θϕ∴-<+≤,21214AC ∴<≤,1AC ∴<≤,∴四边形ABCD 的对角线AC 的长的取值范围是(1⎤⎦. 25.【答案】条件选择见解析;(1)3C π=;(2)()2,4-.【解析】(1)选择条件①: 解法一:因为2sin sin 2sin cos A B C B -=,所以()2sin sin 2sin cos B C B C B +-=,即2sin cos sin B C B =. 因为sin 0B ≠,所以1cos 2C =.又()0,C π∈,所以3C π=.解法二:因为2sin sin 2sin cos A B C B -=,所以222222a c b a b c ac+--=⋅, 即222c a b ab =+-,所以2221cos 222a b c ab C ab ab +-===. 又()0,C π∈,所以3C π=.选择条件②: 因为()()()sin sin sin a c A C B a b +-=-,所以()()()a c a c b a b +-=-,即222c a b ab =+-,所以2221cos 222a b c ab C ab ab +-===, 又()0,C π∈,所以3C π=.选择条件③: 因为()1sin sin sin 2ABC S c a A b B c C =+-△,所以()i 1sin s n s s 12i in 2n C A B C ab c a b c =+-,从而222ab a b c =+-,所以2221cos 222a b c ab C ab ab +-===, 又()0,C π∈,所以3C π=.(2)因为2c =,所以2sin 3sin 3c C π==,从而2sin sin 33333a b A B A A π⎛⎫-=-=-+ ⎪⎝⎭2cos 4sin 6A A A π⎛⎫=-=- ⎪⎝⎭, 因为203A π<<,所以662A πππ-<-<, 从而1sin 126A π⎛⎫-<-< ⎪⎝⎭,所以2a b -的取值范围为()2,4-.。

2023届高考数学大题专项(三角函数与解三角形)练习(附答案)

2023届高考数学大题专项(三角函数与解三角形)练习(附答案)
DF=AC.
(1)若 D 为 BC 的中点,且△CDF 的面积等于△ABC 的面积,求∠ABC;
(2)若∠ABC=45°,且 BD=3CD,求 cos∠CFB.
参考答案
1.解 (1)f(0)=2cos20+sin 0=2.
(2)方案一:选条件①.f(x)的一个周期为 π.
f(x)=2cos2x+sin 2x=(cos 2x+1)+sin 2x=√2
6.(山东潍坊一模,17)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知向量 m=(c-a,sin B),n=(b-a,sin
A+sin C),且 m∥n.
(1)求 C;
(2)若√6c+3b=3a,求 sin A.
7.(山东模考卷,18)在△ABC 中,∠A=90°,点 D 在 BC 边上.在平面 ABC 内,过点 D 作 DF⊥BC,且
-B =4√3sin B
cos
2
sin
2
3
B+ sin B =6sin Bcos B+2√3sin2B=2√3sin 2B当 2B-
π
6
π

π
π
+√3.因为 0<B< ,所以- <2B6
3
6
6

.
6
π
π
,即 B= 时,△ABC 面积取得最大值 3√3.
2
3
4.解 (1)在△ABC 中,因为 a=3,c=√2,B=45°,由余弦定理 b2=a2+c2-2accos B,得 b2=9+2
由正弦定理得,c2=a+b2.
因为 a=4,所以 b2=c2-4.

2021年北京市高考数学专题复习:解三角形(含答案解析)

2021年北京市高考数学专题复习:解三角形(含答案解析)
(1)求tanB;
(2)若a+c=3 ,b=2,求△ABC的面积S.
15.在△ABC中,a,b,c分别是角A,B,C的对边,已知 , ,且 .
(1)求sinB的值;
(2)若b=2,△ABC的面积为 ,求△ABC的周长.
16.在△ABC中,内角A、B、C所对的边分别是a、b、c,且sinA﹣sinC sinB,sinB sinC.
(1)求cosA的值;
(2)求cos(2A )的值.
17.已知△ABC的内角A,B,C的对边分别为a,b,c,且ainB=bcos(A ).
(Ⅰ)求角A;
(Ⅱ)若b=2,c a,求△ABC的面积.
18.在△ABC中,角A、B、C的对边分别为a,b,c,已知(2a﹣c)cosB=bcosC.
(1)求角B;
(2)若BD=2DC,sin∠BAD sin∠CAD,求△ABC的面积.
8.△ABC的内角A,B,C的对边分别为a,b,c,已知6sinBsinC=1﹣cos2C,AD为∠BAC的角平分线.
(Ⅰ)求 的值;
(Ⅱ)若 ,求AD的长.
9.在△ABC中,角A,B,C的对边分别为a,b,c.已知 asinC=ccosA,A∈(0, ).
(1)求C;
(2)若c ,△4BC的面积为 ,求△ABC的周长.
13.在△ABC中,角A,B,C所对的边分别为a,b,c.已知acosC=( b﹣c)cosA.
(1)求A;
(2)若a=2 ,b=2 ,求△ABC的面积.
14.在△ABC中,角A,B,பைடு நூலகம்所对的边分别是a,b,c,且2a csinB+2bcosC.
在△ABC中,角A,B,C的对边分别为a,b,c,已知,a=3 .

北京市十年高考数学真题(2013-2022)与优质模拟题汇编专题05三角函数与解三角形(解析版)

北京市十年高考数学真题(2013-2022)与优质模拟题汇编专题05三角函数与解三角形(解析版)

大数据之十年高考真题(2013-2022)与优质模拟题(北京卷)专题05三角函数与解三角形1.【2022年北京卷05】已知函数f(x)=cos 2x −sin 2x ,则( ) A .f(x)在(−π2,−π6)上单调递减B .f(x)在(−π4,π12)上单调递增C .f(x)在(0,π3)上单调递减D .f(x)在(π4,7π12)上单调递增【答案】C 【解析】因为f (x )=cos 2x −sin 2x =cos2x .对于A 选项,当−π2<x <−π6时,−π<2x <−π3,则f (x )在(−π2,−π6)上单调递增,A 错; 对于B 选项,当−π4<x <π12时,−π2<2x <π6,则f (x )在(−π4,π12)上不单调,B 错; 对于C 选项,当0<x <π3时,0<2x <2π3,则f (x )在(0,π3)上单调递减,C 对; 对于D 选项,当π4<x <7π12时,π2<2x <7π6,则f (x )在(π4,7π12)上不单调,D 错. 故选:C.2.【2021年北京7】函数f(x)=cosx −cos2x ,试判断函数的奇偶性及最大值( ) A .奇函数,最大值为2 B .偶函数,最大值为2 C .奇函数,最大值为98D .偶函数,最大值为98【答案】D由题意,f(−x)=cos(−x)−cos(−2x)=cosx −cos2x =f(x),所以该函数为偶函数, 又f(x)=cosx −cos2x =−2cos 2x +cosx +1=−2(cosx −14)2+98, 所以当cosx =14时,f(x)取最大值98. 故选:D.3.【2020年北京卷10】2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).真题汇总A.3n(sin30°n +tan30°n)B.6n(sin30°n+tan30°n)C.3n(sin60°n +tan60°n)D.6n(sin60°n+tan60°n)【答案】A 【解析】单位圆内接正6n边形的每条边所对应的圆周角为360°n×6=60°n,每条边长为2sin30°n,所以,单位圆的内接正6n边形的周长为12nsin30°n,单位圆的外切正6n边形的每条边长为2tan30°n ,其周长为12ntan30°n,∴2π=12nsin 30°n+12ntan30°n2=6n(sin30°n+tan30°n),则π=3n(sin30°n +tan30°n).故选:A.4.【2018年北京理科07】在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1B.2C.3D.4【答案】解:由题意d=√1+m2=|√m2+1sin(θ+α)−2|√m+1,tanα=1m=y x,∴当sin(θ+α)=﹣1时,d max=12√m+1≤3.∴d的最大值为3.故选:C.5.【2016年北京理科07】将函数y=sin(2x−π3)图象上的点P(π4,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=12,s的最小值为π6B.t=√32,s的最小值为π6C.t=12,s的最小值为π3D.t=√32,s的最小值为π3【答案】解:将x=π4代入得:t=sinπ6=12,将函数y=sin(2x−π3)图象上的点P向左平移s个单位,得到P ′(π4−s ,12)点,若P ′位于函数y =sin2x 的图象上, 则sin (π2−2s )=cos2s =12,则2s =±π3+2k π,k ∈Z , 则s =±π6+k π,k ∈Z ,由s >0得:当k =0时,s 的最小值为π6,故选:A .6.【2022年北京卷13】若函数f(x)=Asinx −√3cosx 的一个零点为π3,则A =________;f(π12)=________. 【答案】 1 −√2 【解析】∵f(π3)=√32A −√32=0,∴A =1∴f(x)=sinx −√3cosx =2sin(x −π3)f(π12)=2sin(π12−π3)=−2sin π4=−√2故答案为:1,−√27.【2020年北京卷12】若函数f(x)=sin(x +φ)+cosx 的最大值为2,则常数φ的一个取值为________. 【答案】π2(2kπ+π2,k ∈Z 均可)【解析】因为f (x )=cosφsinx +(sinφ+1)cosx =√cos 2φ+(sinφ+1)2sin (x +θ), 所以√cos 2φ+(sinφ+1)2=2,解得sinφ=1,故可取φ=π2.故答案为:π2(2kπ+π2,k ∈Z 均可).8.【2019年北京理科09】函数f (x )=sin 22x 的最小正周期是 . 【答案】解:∵f (x )=sin 2(2x ),∴f (x )=−12cos(4x)+12, ∴f (x )的周期T =π2, 故答案为:π2.9.【2018年北京理科11】设函数f (x )=cos (ωx −π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为 .【答案】解:函数f (x )=cos (ωx −π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,可得:ω⋅π4−π6=2kπ,k ∈Z ,解得ω=8k +23,k ∈Z ,ω>0 则ω的最小值为:23. 故答案为:23.10.【2017年北京理科12】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,若sin α=13,则cos (α﹣β)= .【答案】解:方法一:∵角α与角β均以Ox 为始边,它们的终边关于y 轴对称, ∴sin α=sin β=13,cos α=﹣cos β,∴cos (α﹣β)=cos αcos β+sin αsin β=﹣cos 2α+sin 2α=2sin 2α﹣1=29−1=−79方法二:∵sin α=13, 当α在第一象限时,cos α=2√23, ∵α,β角的终边关于y 轴对称,∴β在第二象限时,sin β=sin α=13,cos β=﹣cos α=−2√23, ∴cos (α﹣β)=cos αcos β+sin αsin β=−2√23×2√23+13×13=−79 :∵sin α=13,当α在第二象限时,cos α=−2√23, ∵α,β角的终边关于y 轴对称,∴β在第一象限时,sin β=sin α=13,cos β=﹣cos α=2√23,∴cos (α﹣β)=cos αcos β+sin αsin β=−2√23×2√23+13×13=−79综上所述cos (α﹣β)=−79, 故答案为:−7911.【2015年北京理科12】在△ABC 中,a =4,b =5,c =6,则sin2A sinC= .【答案】解:∵△ABC 中,a =4,b =5,c =6,∴cos C =16+25−362×4×5=18,cos A =25+36−162×5×6=34∴sin C =3√78,sin A =√74, ∴sin2A sinC=2×√74×343√78=1.故答案为:1.12.【2014年北京理科14】设函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0)若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f (2π3)=﹣f (π6),则f (x )的最小正周期为 .【答案】解:由f (π2)=f (2π3),可知函数f (x )的一条对称轴为x =π2+2π32=7π12, 则x =π2离最近对称轴距离为7π12−π2=π12.又f (π2)=﹣f (π6),则f (x )有对称中心(π3,0), 由于f (x )在区间[π6,π2]上具有单调性,则π2−π6≤12T ⇒T ≥2π3,从而7π12−π3=T4⇒T =π.故答案为:π.13.【2022年北京卷16】在△ABC 中,sin2C =√3sinC . (1)求∠C ;(2)若b =6,且△ABC 的面积为6√3,求△ABC 的周长. 【答案】(1)π6 (2)6+6√3 【解析】(1)解:因为C ∈(0,π),则sinC >0,由已知可得√3sinC =2sinCcosC ,可得cosC =√32,因此,C =π6.(2)解:由三角形的面积公式可得S △ABC =12absinC =32a =6√3,解得a =4√3.由余弦定理可得c 2=a 2+b 2−2abcosC =48+36−2×4√3×6×√32=12,∴c =2√3,所以,△ABC 的周长为a +b +c =6√3+6.14.【2021年北京16】已知在△ABC 中,c =2bcosB ,C =2π3.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使△ABC存在且唯一确定,并求出BC边上的中线的长度.①c=√2b;②周长为4+2√3;③面积为SΔABC=3√34;【答案】(1)π6;(2)答案不唯一,具体见解析.(1)∵c=2bcosB,则由正弦定理可得sinC=2sinBcosB,∴sin2B=sin2π3=√32,∵C=2π3,∴B∈(0,π3),2B∈(0,2π3),∴2B=π3,解得B=π6;(2)若选择①:由正弦定理结合(1)可得cb =sinCsinB=√3212=√3,与c=√2b矛盾,故这样的△ABC不存在;若选择②:由(1)可得A=π6,设△ABC的外接圆半径为R,则由正弦定理可得a=b=2Rsinπ6=R,c=2Rsin2π3=√3R,则周长a+b+c=2R+√3R=4+2√3,解得R=2,则a=2,c=2√3,由余弦定理可得BC边上的中线的长度为:√(2√3)2+12−2×2√3×1×cosπ6=√7;若选择③:由(1)可得A=π6,即a=b,则S△ABC=12absinC=12a2×√32=3√34,解得a=√3,则由余弦定理可得BC边上的中线的长度为:√b2+(a2)2−2×b×a2×cos2π3=√3+34+√3×√32=√212.15.【2020年北京卷17】在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a的值:(Ⅱ)sinC和△ABC的面积.条件①:c=7,cosA=−17;条件②:cosA=18,cosB=916.注:如果选择条件①和条件②分别解答,按第一个解答计分. 【答案】选择条件①(Ⅰ)8(Ⅱ)sinC =√32, S =6√3;选择条件②(Ⅰ)6(Ⅱ)sinC =√74, S =15√74.【解析】选择条件①(Ⅰ)∵c =7,cosA =−17,a +b =11∵a 2=b 2+c 2−2bccosA ∴a 2=(11−a)2+72−2(11−a)⋅7⋅(−17)∴a =8(Ⅱ)∵cosA =−17,A ∈(0,π)∴sinA =√1−cos 2A =4√37 由正弦定理得:asinA =csinC ∴4√37=7sinC ∴sinC =√32S =12basinC =12(11−8)×8×√32=6√3选择条件②(Ⅰ)∵cosA =18,cosB =916,A,B ∈(0,π)∴sinA =√1−cos 2A =3√78,sinB =√1−cos 2B =5√716由正弦定理得:asinA =bsinB ∴3√78=5√716∴a =6(Ⅱ)sinC =sin(A +B)=sinAcosB +sinBcosA =3√78×916+5√716×18=√74S =12basinC =12(11−6)×6×√74=15√74.16.【2019年北京理科15】在△ABC 中,a =3,b ﹣c =2,cos B =−12. (Ⅰ)求b ,c 的值;(Ⅱ)求sin (B ﹣C )的值. 【答案】解:(Ⅰ)∵a =3,b ﹣c =2,cos B =−12. ∴由余弦定理,得b 2=a 2+c 2﹣2ac cos B =9+(b −2)2−2×3×(b −2)×(−12), ∴b =7,∴c =b ﹣2=5;(Ⅱ)在△ABC 中,∵cos B =−12,∴sin B =√32, 由正弦定理有:c sinC=b sinB,∴sinC =csinB b =5×√327=5√314,∵b >c ,∴B >C ,∴C 为锐角, ∴cos C =1114,∴sin (B ﹣C )=sin B cos C ﹣cos B sin C=√32×1114−(−12)×5√314=4√37.17.【2018年北京理科15】在△ABC中,a=7,b=8,cos B=−1 7.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【答案】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cos B=−17,∴sin B=√1−cos2B=√1−(−17)2=4√37,由正弦定理得asinA =bsinB得sin A=asinBb=7×4√378=√32,则A=π3.(Ⅱ)由余弦定理得b2=a2+c2﹣2ac cos B,即64=49+c2+2×7×c×1 7,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=c sin A=3×√32=3√32.18.【2017年北京理科15】在△ABC中,∠A=60°,c=37a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【答案】解:(1)∠A=60°,c=37a,由正弦定理可得sin C=37sin A=37×√32=3√314,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=13 14,∴sin B=sin(A+C)=sin A cos C+cos A sin C=√32×1314+12×3√314=4√37,∴S△ABC=12ac sin B=12×7×3×4√37=6√3.19.【2016年北京理科15】在△ABC中,a2+c2=b2+√2ac.(Ⅰ)求∠B的大小;(Ⅱ)求√2cos A +cos C 的最大值.【答案】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+√2ac . ∴a 2+c 2﹣b 2=√2ac .∴cos B =a 2+c 2−b 22ac =√2ac 2ac =√22,∴B =π4(Ⅱ)由(I )得:C =3π4−A , ∴√2cos A +cos C =√2cos A +cos (3π4−A )=√2cos A −√22cos A +√22sin A=√22cos A +√22sin A=sin (A +π4). ∵A ∈(0,3π4),∴A +π4∈(π4,π),故当A +π4=π2时,sin (A +π4)取最大值1, 即√2cos A +cos C 的最大值为1.20.【2015年北京理科15】已知函数f (x )=√2sin x2cos x2−√2sin 2x2.(Ⅰ)求f (x )的最小正周期;(Ⅱ)求f (x )在区间[﹣π,0]上的最小值. 【答案】解:(Ⅰ)f (x )=√2sin x2cos x2−√2sin 2x2=√22sin x −√22(1﹣cos x ) =sin x cos π4+cos x sin π4−√22=sin (x +π4)−√22,则f (x )的最小正周期为2π; (Ⅱ)由﹣π≤x ≤0,可得 −3π4≤x +π4≤π4,即有﹣1≤sin(x +π4)≤√22,则当x =−3π4时,sin (x +π4)取得最小值﹣1, 则有f (x )在区间[﹣π,0]上的最小值为﹣1−√22.21.【2014年北京理科15】如图,在△ABC 中,∠B =π3,AB =8,点D 在边BC 上,且CD =2,cos ∠ADC =17. (1)求sin ∠BAD ; (2)求BD ,AC 的长.【答案】解:(1)在△ABC 中,∵cos ∠ADC =17,∴sin ∠ADC =√1−cos 2∠ADC =√1−(17)2=√4849=4√37, 则sin ∠BAD =sin (∠ADC ﹣∠B )=sin ∠ADC •cos B ﹣cos ∠ADC •sin B =4√37×12−17×√32=3√314.(2)在△ABD 中,由正弦定理得BD =AB⋅sin∠BAD sin∠ADB=8×3√3144√37=3,在△ABC 中,由余弦定理得AC 2=AB 2+CB 2﹣2AB •BC cos B =82+52﹣2×8×5×12=49, 即AC =7.22.【2014年北京理科18】已知函数f (x )=x cos x ﹣sin x ,x ∈[0,π2](1)求证:f (x )≤0; (2)若a <sinxx <b 对x ∈(0,π2)上恒成立,求a 的最大值与b 的最小值. 【答案】解:(1)由f (x )=x cos x ﹣sin x 得 f ′(x )=cos x ﹣x sin x ﹣cos x =﹣x sin x , 此在区间∈(0,π2)上f ′(x )=﹣x sin x <0,所以f (x )在区间∈[0,π2]上单调递减,从而f (x )≤f (0)=0. (2)当x >0时,“sinx x>a ”等价于“sin x ﹣ax >0”,“sinx x<b ”等价于“sin x ﹣bx <0”令g (x )=sin x ﹣cx ,则g ′(x )=cos x ﹣c , 当c ≤0时,g (x )>0对x ∈(0,π2)上恒成立,当c ≥1时,因为对任意x ∈(0,π2),g ′(x )=cos x ﹣c <0,所以g (x )在区间[0,π2]上单调递减,从而,g (x )<g (0)=0对任意x ∈(0,π2)恒成立,当0<c <1时,存在唯一的x 0∈(0,π2)使得g ′(x 0)=cos x 0﹣c =0,g (x )与g ′(x )在区间(0,π2)上的情况如下:x (0,x 0) x 0(x 0,π2)g ′(x ) + ﹣ g (x )↑↓因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0进一步g (x )>0对任意x ∈(0,π2)恒成立,当且仅当g(π2)=1−π2c ≥0即0<c ≤2π综上所述当且仅当c ≤2π时,g (x )>0对任意x ∈(0,π2)恒成立,当且仅当c ≥1时,g (x )<0对任意x ∈(0,π2)恒成立,所以若a <sinxx <b 对x ∈(0,π2)上恒成立,则a 的最大值为2π,b 的最小值为123.【2013年北京理科15】在△ABC 中,a =3,b =2√6,∠B =2∠A . (Ⅰ)求cos A 的值; (Ⅱ)求c 的值.【答案】解:(Ⅰ)由条件在△ABC 中,a =3,b =2√6,∠B =2∠A , 利用正弦定理可得 a sinA=b sinB,即3sinA=2√6sin2A =2√62sinAcosA. 解得cos A =√63.(Ⅱ)由余弦定理可得 a 2=b 2+c 2﹣2bc •cos A ,即 9=(2√6)2+c 2﹣2×2√6×c ×√63, 即 c 2﹣8c +15=0.解方程求得 c =5,或 c =3.当c =3时,此时a =c =3,根据∠B =2∠A ,可得 B =90°,A =C =45°, △ABC 是等腰直角三角形,但此时不满足a 2+c 2=b 2,故舍去.当c =5时,求得cos B =a 2+c 2−b 22ac =13,cos A =b 2+c 2−a 22bc =√63,∴cos2A =2cos 2A ﹣1=13=cos B ,∴B =2A ,满足条件. 综上,c =5.1.函数f (x )=cos (ωx −π3)(ω>0)的图像关于直线x =π2对称,则ω可以为( ) A .13B .12 C .23D .1【答案】C【解析】f(x)=cos(ωx −π3)(ω>0)对称轴为:ωx −π3=kπ⇒π2ω−π3=kπ⇒ω=2k +23(ω>0)(k ∈Z)当k =0时,ω取值为23. 故选:C.2.在△ABC 中,∠B =45°,c =4,只需添加一个条件,即可使△ABC 存在且唯一.条件:①a =3√2; ②b =2√5;③cosC =−45中,所有可以选择的条件的序号为( ) A .① B .①② C .②③ D .①②③【答案】B 【解析】对于①,c =4,∠B =45°,a =3√2,所以,b 2=a 2+c 2−2accosB =10,得b =√10,所以,此时,△ABC 存在且唯一,符合题意;对于②,c =4,∠B =45°,b =2√5,所以,csinC =bsinB ,解得sinC =csinB b=√105,因为c <b ,所以,∠C <∠B ,所以∠C 为锐角,此时,△ABC 存在且唯一,符合题意;对于③,c =4,∠B =45°,cosC =−45,所以,π2<C <π,得sinC =35,进而csinC =bsinB , 可得b =csinB sinC=2√235=10√23,明显可见,c=123<10√23=b ,与∠C >∠B 矛盾,故③不符题意.故可以选择的条件序号为:①② 故选:B模拟好题3.已知cosα=35,α是第一象限角,且角α,β的终边关于y轴对称,则tanβ=()A.34B.−34C.43D.−43【答案】D 【解析】∵cosα=35,α是第一象限角,∴sinα=√1−cos2α=45,tanα=sinαcosα=43,∵角α,β的终边关于y轴对称,∴tanβ=−tanα=−43.故选:D.4.将函数y=cos(2x+π2)的图象向右平移π2个单位长度后,所得图象对应的函数为()A.y=sin2x B.y=−sin2x C.y=cos2x D.y=−cos2x 【答案】A【解析】将函数y=cos(2x+π2)的图象向右平移π2个单位长度后,所得图象对应的函数为y=cos[2(x−π2)+π2]=cos(2x−π2)=sin2x.故选:A.5.半径为3的圆的边沿有一点A,半径为4的圆的边沿有一点B,A、B两点重合后,小圆沿着大圆的边沿滚动,A、B两点再次重合小圆滚动的圈数为()A.1B.2C.3D.4【答案】D【解析】设A、B两点再次重合小圆滚动的圈数为n,则n×2π×3=6nπ=k×2π×4=8kπ,其中k、n∈N∗,所以,n=4k3,则当k=3时,n=4.故A、B两点再次重合小圆滚动的圈数为4.故选:D.6.已知点P(cosθ,sinθ)在直线ax−y+3=0上.则当θ变化时,实数a的范围为()A.[−2√2,2√2]B.(−∞,−2√2]∪[2√2,+∞)C.[−3,3]D.(−∞,−3]∪[3,+∞)【答案】B【解析】∵点P(cosθ,sinθ)在直线ax −y +3=0上, ∴acosθ−sinθ+3=0,∴sinθ−acosθ=√1+a 2sin (θ−φ)=3,其中tanφ=a , ∵sin (θ−φ)≤1, ∴√1+a 2≥3,即a 2≥8, 解得a ≤−2√2或a ≥2√2.故选:B.7.已知函数f(x)= cos2x +cosx ,且x ∈[0,2π],则f(x)的零点个数为( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】由cos2x +cosx =2cos 2x +cosx −1=(cosx +1)(2cosx −1)=0 可得cosx =−1或cosx =12,又x ∈[0,2π],则x =π,或x =π3,或x =5π3 则f(x)的零点个数为3 故选:C8.已知函数f(x)=√3sin2x −2cos 2x +1,将f(x)的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变,得到函数y =g(x)的图象,若g (x 1)⋅g (x 2)=−4,则|x 1−x 2|的值不可能为( ) A .5π4B .3π4C .π2D .π4【答案】C 【解析】∵f (x )=√3sin2x −cos2x =2sin (2x −π6),∴g (x )=2sin (4x −π6), ∴g (x )的最小正周期T =2π4=π2,∵g (x )max =2,g (x )min =−2,又g (x 1)⋅g (x 2)=−4, 不妨设g (x 1)=2,g (x 2)=−2∴x 1与x 2分别对应g (x )的最大值点和最小值点, ∴|x 1−x 2|=T2+kT =π4+kπ2(k ∈Z );当k =2时,|x 1−x 2|=5π4;当k =1时,|x 1−x 2|=3π4;当k =0时,|x 1−x 2|=π4 故选:C9.已知函数f (x )=sin (2x +φ)(0<φ<π2),若把f (x )的图像向左平移π12个单位后为偶函数,则φ=( ) A .−π6 B .−π3C .5π12D .π3【答案】D 【解析】由题意得:g (x )=f (x +π12)=sin (2x +π6+φ).∵g (x )为偶函数,∴π6+φ=π2+kπ(k ∈Z ),解得:φ=π3+kπ(k ∈Z ). ∵0<φ<π2, ∴φ=π3. 故选:D .10.已知△ABC ,则“sin A +cos A <1”是“△ABC 是钝角三角形”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】解:△ABC 中,0<A <π,∵sinA +cosA =√2sin(A +π4)<1,∴sin(A +π4)<√22,∵ π4<A +π4<π+π4,∴A +π4>3π4,∴A >π2,所以△ABC 是钝角三角形,充分性成立; 若△ABC 是钝角三角形,角A 不一定是钝角,反例:A =π6,此时sin A +cos A =sin π6+cos π6>1,必要性不成立; 故选:A.11.在△ABC 中,a =2,b =√3,A =2B ,则cosB =______.【答案】√33【解析】 解:在△ABC 中,由正弦定理可得asinA =bsinB , 即2sin2B=√3sinB ,即22sinBcosB =√3sinB , 所以cosB =√33.故答案为:√33.12.若sinαcosβ−cosαsinβ=cos60∘,请写出一组符合题意的α、β___________.【答案】α=45°、β=15°(答案不唯一)【解析】解:因为sinαcosβ−cosαsinβ=sin(α−β),cos60∘=cos(90∘−30∘)=sin30∘,所以sin(α−β)=sin30∘,所以α−β=30°+k×360°,k∈Z或α−β=150°+k×360°,k∈Z,不妨令α=45°、β=15°;故答案为:α=45°、β=15°(答案不唯一)13.已知△ABC的三个角A,B,C的对边分别为a,b,c,则能使cosAcosB =ba成立的一组A,B的值是________.【答案】A=B=π6(答案不唯一)【解析】由正弦定理得:a=2RsinA,b=2RsinB,∵cosAcosB =ba,∴cosAcosB=sinBsinA,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∵A∈(0,π),B∈(0,π)∴A=B=π6(答案不唯一).故答案为:A=B=π6(答案不唯一).14.若函数y=sin(2ωx+π3)的图像向右平移π6个单位长度后与函数y=cos(2ωx+π4)的图象重合,则ω的一个可能的值为___________;【答案】−54(答案不唯一)【解析】解:将函数y=sin(2ωx+π3)的图像向右平移π6个单位长度后,得到函数y=sin[2ω(x−π6)+π3]=sin(2ωx−πω3+π3)=sin[(2ωx−πω3−π6)+π2]=cos(2ωx−πω3−π6)的图像,即y=cos(2ωx−πω3−π6)与函数y=cos(2ωx+π4)的图像重合,即−πω3−π6=π4+2kπ,k ∈Z ,所以ω=−6k −54,k ∈Z ,故答案为:−54(答案不唯一).15.已知函数y =sin(ωx +φ)(ω>0)与直线y =12的交点中,距离最近的两点间距离为π3,那么此函数的周期是___________. 【答案】kπ且k ∈Z 【解析】根据正弦型函数的周期性,当sin(ωx +φ)=12,则: 若ωx 1+φ=π6,最近的另一个值为ωx 2+φ=5π6,所以ω(x 2−x 1)=2π3,而x 2−x 1=π3,可得ω=2. 故此函数的最小正周期是2πω=π,则函数的周期为kπ且k ∈Z . 故答案为:kπ且k ∈Z16.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知acosB =√3bsinA . (1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求△ABC 的面积. 条件①:a =3;条件②:b =2√2;条件③:cosC =−23;条件④:c =2. 【答案】(1)B =π6 (2)答案不唯一,见解析 【解析】(1)解:由acosB =√3bsinA 及正弦定理可得sinAcosB =√3sinAsinB ,∵A 、B ∈(0,π),则sinA >0,cosB =√3sinB >0,∴tanB =√33,故B =π6.(2)解:若选①②,由余弦定理可得b 2=a 2+c 2−2accosB ,即c 2−3√3c +1=0, 解得c =3√3±√232,此时,△ABC 不唯一;若选①③,已知a =3,B =π6,cosC =−23∈(−√32,−12),且C ∈(0,π),则C ∈(2π3,5π6),所以,B +C ∈(5π6,π),则△ABC 唯一, sinC =√1−cos 2C =√53,sinA =sin (C +B )=sinCcos π6+cosCsin π6=√15−26,由正弦定理b sinB =asinA 可得b =asinB sinA=9(√15+2)11, 所以,S △ABC =12absinC =12×3×9(√15+2)11×√53=45√3+18√522;若选①④,已知a =3,B =π6,c =2,此时△ABC 唯一,S △ABC =12acsinB =32;若选②③,已知b =2√2,B =π6,cosC =−23∈(−√32,−12),且C ∈(0,π),则C ∈(2π3,5π6),所以,B +C ∈(5π6,π),则△ABC 唯一, sinC =√1−cos 2C =√53,sinA =sin (C +B )=sinCcos π6+cosCsin π6=√15−26, 由正弦定理bsinB =csinC 可得c =bsinC sinB=4√103, 所以,S △ABC =12bcsinA =20√3−8√59;若选②④,已知b =2√2,B =π6,c =2,由余弦定理可得b 2=a 2+c 2−2accosB ,可得a 2−2√3a −4=0, ∵a >0,解得a =√3+√7,此时,△ABC 唯一,S △ABC =12acsinB =√3+√72;若选③④,已知B =π6,c =2,cosC =−23∈(−√32,−12),且C ∈(0,π),则C ∈(2π3,5π6),所以,B +C ∈(5π6,π),则△ABC 唯一, sinC =√1−cos 2C =√53,sinA =sin (C +B )=sinCcos π6+cosCsin π6=√15−26, 由正弦定理bsinB =csinC 可得b =csinB sinC=3√55,S △ABC =12bcsinA =5√3−2√510. 17.在 △ABC 中,c =√7,且 △ABC 同时满足条件①、条件②、条件③、条件④这四个条件中的三个,请选择三个条件并解答下列问题: (1)求边 b ; (2)求 S △ABC .条件① a +b =5; 条件②sin B =√217;条件③bcosB =4√77; 条件④cos A =√714.【答案】(1)答案见解析; (2)答案见解析; 【解析】(1)选①②③,因为sin B =√217,bcosB =4√77,所以cosB =√1−sin 2B =4√77,b =1,选②③④,因为sin B =√217,bcosB =4√77, 所以cosB =√1−sin 2B =4√77,b =1,选①②④,因为cos A =√714可得sinA =√1−cos 2A =3√2114, 由正弦定理可得asinA =bsinB ,所以a ×√217=b ×3√2114, 所以a =32b ,又a +b =5,所以b =2, 选①③④,因为bcosB =4√77,又cosB =a2+c 2−b 22ac所以b(a 2+c 2−b 2)=2ac 4√77,又c =√7,所以b(a2+7−b 2)=8a ,又a +b =5,所以b =2,a =3(2)选①②③,由(1) b =1,又a +b =5,所以a =4, 所以S △ABC =12acsinB =12×4×√7×√217=2√3,选②③④,由cos A =√714可得sinA =√1−cos 2A =3√2114, 由正弦定理可得asinA =bsinB ,又b =1,sin B =√217, 所以a =32,所以S △ABC =12acsinB =12×32×√7×√217=3√34, 选①②④,由(1)b =2,因为a +b =5, 所以a =3,所以S △ABC =12acsinB =12×3×√7×√217=3√32, 选①③④,由(1) b =2,因为a +b =5,所以a =3, 所以cosB =2√77,sinB =√1−cos 2B =√217,所以S △ABC =12acsinB =12×3×√7×√217=3√32, 18.在△ABC 中,√3sin(B +π6)=−cos(B +π6). (1)求B 的值;(2)给出以下三个条件:①a 2−b 2+c 2+3c =0;②a =√3,b =1;③S △ABC =15√34,若这三个条件中仅有两个正确,请选出正确的条件并回答下面问题: (i )求sinA 的值;(ii )求∠ABC 的角平分线BD 的长. 【答案】(1)B =2π3;(2)(i )sinA =3√314,(ii )BD =158.【解析】(1)由题设√3sin(B +π6)+cos(B +π6)=2sin(B +π3)=0,而π3<B +π3<4π3,所以B +π3=π,故B =2π3.(2)若①②正确,则c 2+3c +2=(c +1)(c +2)=0,得c =−1或c =−2, 所以①②有一个错误条件,则③是正确条件, 若②③正确,则S △ABC =12absinC =15√34,可得sinC =152>1,即②为错误条件;综上,正确条件为①③,(i )由2accosB =a 2+c 2−b 2,则c(3−a)=0,即a =3, 又S △ABC =12acsinB =15√34,可得c =5,所以9−b 2+25+15=0,可得b =7,则asinA =bsinB =√3,故sinA =3√314, (ii )由角平分线的性质知:AD =58×7=358且∠ABD =π3, 在△ABD 中BD sinA =AD sin∠ABD ,则BD =158.19.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知acosB =√3bsinA . (1)求角B 的大小;(2)从以下3个条件中选择2个作为己知条件,使三角形存在且唯一确定,并求△ABC 的面积. 条件①:a =3;条件②:b =2√2;条件③:cosC =−23;④c =2 【答案】(1)B =π6(2)答案见解析【解析】(1)由acosB =√3bsinA 和正弦定理得sinAcosB =√3sinBsinA ,因为0<A <π,所以sinA ≠0,所以cosB =√3sinB >0,tanB =√33,因为0<B <π,所以B =π6. (2)若选条件①:a =3;条件②:b =2√2,由(1)B =π6, 由余弦定理得(2√2)2=32+c 2−2×3c ×√32,解得c =3√3±√232, 因为答案不唯一,所以舍去.若选条件②:b =2√2;条件③:cosC =−23;由(1)B =π6, 因为cosC =−23,0<C <π,所以sinC =√53,由正弦定理得√53=2√212,解得c =4√103,由余弦定理得(4√103)2=8+a 2+2×2√2a ×23,解得a =2√30−4√23, 则△ABC 的面积为S =12absinC =20√3−8√59; 若选条件①:a =3;条件③:cosC =−23;由(1)B =π6, 因为cosC =−23,0<C <π,所以sinC =√53,所以sinA =sin (π−B −C )=sinBcosC +cosBsinC =12×(−23)+√32×√53=√15−26, 由正弦定理得√53=√15−26,解得c =30√3+12√511,则△ABC 的面积为S =12absinC =45√3+18√522. 若选条件①:a =3; ④c =2,由(1)B =π6, 则△ABC 的面积为S =12acsinB =32.若选条件②:b =2√2;④c =2,由(1)B =π6, 由余弦定理得(2√2)2=4+a 2−2×2a ×√32,解得a =√3+√7,则△ABC 的面积为S =12acsinB =12×2×(√3+√7)×12=√3+√72.若选条件③:cosC =−23;④c =2,由(1)B =π6,因为cosC =−23,0<C <π,所以sinC =√53,所以sinA =sin (π−B −C )=sinBcosC +cosBsinC =12×(−23)+√32×√53=√15−26, 由正弦定理得√53=√15−26,解得a =5√3−2√55, 则△ABC 的面积为S =12acsinB =12×2×5√3−2√55×12=5√3−2√510. 20.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(a −2c )cosB +bcosA =0. (1)求B ;(2)从以下条件中选择两个,使△ABC 存在且唯一确定,并求△ABC 的面积. ①若a =5;②b =3;③C =2π3;④△ABC 的周长为9.【答案】(1)B =π3; (2)选①④,面积为9√34.【解析】(1)因为(a −2c )cosB +bcosA =0,由正弦定理得(sinA −2sinC)cosB +sinBcosA =0, 2sinCcosB =sinAcosB +sinBcosA =sin(A +B)=sinC , 三角形中sinC ≠0,所以cosB =12,B ∈(0,π),所以B =π3; (2)因为B =π3,所以0<C <2π3,因此条件③不能确定三角形;若已知①②,则由正弦定理得sinA =asinB b=5sin π33=5√36>1,无解;若已知①④,即a =5,a +b +c =9,则b +c =4<a ,与三角形的性质矛盾,三角形不存在. 所以只有条件②④能确定三角形.b =3,a +b +c =9,则a +c =6,由(1)B =π3,b sinB=a sinA=c sinC=a+c sinA+sinC,即3sin π3=6sinA+sinC ,所以sinA +sinC =√3,sinA +sinC =sinA +sin(2π3−A)=sinA +sin 2π3cosA −cos2π3sinA =32sinA +√32cosA =√3sin(A +π6)=√3,sin(A +π6)=1,又A ∈(0,2π3),所以A =π3,从而C =π3, △ABC 为等边三角形,唯一确定,面积为S =12×32×sin π3=9√34.。

专题解三角形大题(含答案)

专题解三角形大题(含答案)

专题解三角形大题(含答案)靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。

今天,你,做数学题了吗?1.在△ABC中,已知bcosA+a=c,求B的大小和△ABC的面积。

根据正弦定理和余弦定理,可以得到sinBcosA+sinA=sinC和cosB=(c-a2-b2)/2ab。

代入已知条件,解得B=π/3,S△ABC=absinB=√3/4.2.在△ABC中,已知(b-a)sinB+asinA=csinC,且c=2,求角C的度数和△ABC面积的最大值。

同样利用正弦定理和余弦定理,可以得到a2+b2-c2=ab和cosB=(c-a2-b2)/2ab。

解得C=π/3,S△ABC=absinC=√3.3.在△ABC中,已知a+b+c=2,求sinC和如果△ABC是钝角三角形,求其面积。

根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。

代入已知条件,解得sinC=√3/2,若△ABC是钝角三角形,面积为0.4.在△ABC中,已知2cosC(acosB+bcosA)=c,求角C和如果c=2,求△ABC面积的最大值。

根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。

代入已知条件,解得C=π/3,S△ABC=absinC=√3.当c=2时,代入面积公式,解得S△ABC=√3.5.在四边形ABCD中,已知∠D=2∠B,且AD=2,CD=6,cosB=1/3,求△ACD的面积和AB的长。

根据余弦定理,可以得到AC2=40-24cosB=32,再根据海龙公式和正弦定理,可以解得S△ACD=8√3和AB=2√7.6.在△ABC中,已知bsin(A+C)=asinC,且a=2c,求sinB和△ABC的周长。

代入正弦定理和已知条件,解得sinB=1/2,周长为3c。

1.由$a^2+b^2-c^2=ab$,得到$ab+4=a^2+b^2$。

由不等式$a^2+b^2\geq 2ab$,得到$ab+4\geq 2ab$,因此$ab\leq 4$。

北京高三理科解三角形大题专题(带答案)

北京高三理科解三角形大题专题(带答案)

解三角形大题专题(2014石景山一模)15.(本小题满分13分)ABC A,B,C a,b,c a b c3a2b sin A 在△中,角的对边分别为,且,.(Ⅰ)求角的大小;Ba b7c ABC2(Ⅱ)若,,求边的长和△的面积.(2014西城一模)15.(本小题满分13分)222在△ABC中,角A,B,C所对的边分别为a,b,c.已知.b c a bc(Ⅰ)求的大小;A6(Ⅱ)如果,,求△ABC的面积.B b 2cos3(2014 海淀二模)15.(本小题满分13 分)在锐角中,且.ABC a 2 7 sin A b 21(Ⅰ)求的大小;B(Ⅱ)若 a 3c ,求c 的值.(2015西城二模)15.(本小题满分13 分)在锐角△ABC 中,角A,B ,C 所对的边分别为a,b ,c ,已知a =7 ,b =3,.(Ⅰ)求角 A 的大小;(Ⅱ)求△ABC 的面积.(2013 丰台二模)15.(13 分)已知ABC 的三个内角分别为A,B,C, 且 22sin (B C) 3sin 2A. (Ⅰ)求 A 的度数;(Ⅱ)若BC 7, AC 5,求ABC 的面积S.(2014 延庆一模)15.(本小题满分13 分)在三角形ABC 中,角A, B,C 所对的边分别为a,b,c ,且a 2,3C ,cos B .4 5(Ⅰ)求sin A的值;(Ⅱ)求ABC 的面积.(2015 顺义一模)15. (本小题满分13 分)在ABC 中,角A, B, C 所对的边分别为a, b, c ,已知 3 2,sin 6b B ,3 B A .2(I) 求a的值;(II) 求cosC 的值.(2016 东城一模)(15)(本小题共13 分)在△ABC 中,BC 2 2 ,AC 2 ,且cos2 A B .2(Ⅰ)求AB 的长度;(Ⅱ)若 f (x) sin(2 x C) ,求y f ( x) 与直线3y 相邻交点间的最小距离.2ABC 中,BC 2 , ABC .(Ⅰ)若2 5cos ,AB 5, 求AC 的长度;2 5(Ⅱ)若B AC ,AB f ( ) ,求 f ( )的最大值.6(2016 西城一模)15.(本小题满分13 分)在△ABC 中,角 A ,B ,C 所对的边分别为a,b,c,设 A ,sin B 3sin C .3(Ⅰ)若a 7 ,求b的值;(Ⅱ)求tan C 的值.2π△A B C a b cABC A b3△ABC 在中,角,,的对边分别是,,,且,,的面3153积为.4a(I)求边的边长;(II)求cos2B的值.(2015东城一模)(15)(本小题共13分)在△ABC中,b2,3cos C,△ABC的面积为474.(Ⅰ)求a的值;(Ⅱ)求sin2A值.(2015 海淀二模)(15)(本小题满分13 分)在ABC 中,c 5 ,b 2 6 ,3 6a cos A.2(Ⅰ)求a的值;(Ⅱ)求证: B 2 A .(2014 顺义一模)15.(本小题共13 分)已知ABC 中,角A、B、C 所对的边分别为a、b、c ,且满足sin A( 3 cos A sin A)32(1)求角 A ;(2)若a 2 2 ,S ABC 2 3 ,求b、c的值(2015 石景山期末)15.(本小题共13 分)如图所示,在四边形ABCD 中,AB DA ,CE 7 ,2ADC ;E 为AD3边上一点,DE 1,EA 2 ,BEC .3 (Ⅰ)求sin∠CED 的值;(Ⅱ)求BE 的长.(2015 朝阳二模)15.(本小题共13 分)在梯形ABCD中,(Ⅰ)求AC的长;(Ⅱ)求梯形ABCD的高.(2015 丰台二模)15.(本小题共13 分)在△ABC 中,A 30 ,BC 2 5 ,点D 在AB 边上,且BCD 为锐角,CD 2 ,△BCD 的面积为4.(Ⅰ)求cos BCD 的值;(Ⅱ)求边AC 的长.(2016海淀一模)15.(本小题满分13 分)如图,在△ABC 中,点D在边AB上,且A DDB13.记∠ACD=,∠BCD=.(Ⅰ)求证:A CBCsin3sin;(Ⅱ)若, , 19AB ,求BC 的长.6 2(2015 房山一模)15.(本小题共13 分)已知函数 2f (x) sin(2 x ) 2cos x 1(x R) .6(Ⅰ)求 f (x) 的单调递增区间;(Ⅱ)在△ABC 中,三个内角A, B, C 的对边分别为a, b,c ,已知 1f A ,且△ABC 外接2 圆的半径为3,求a的值.(2013 石景山一模)15.(本小题满分13 分)已知函数f ( x) sin(2 x ) cos2x.6(Ⅰ)求函数 f (x)的单调递增区间;(Ⅱ)在△ABC 中,内角A、B、C 的对边分别为a、b、c.已知3f ( A) , a 2,B ,2 3求△ABC 的面积.(2013 朝阳二模)15.(13 分)在△ABC 中,A, B,C 所对的边分别为a,b,c ,且A A A2f (A) 2cos sin( ) sin2 2 22 cos A 2 .(Ⅰ)求函数 f ( A) 的最大值;(Ⅱ)若 f ( A) 0,C , a 6 ,求 b 的值.12(2014 东城一模)15. (本小题共13 分)在ABC 中,s inaA 3 cosbB(1)求角 B 的值;(2)如果 b 2,求ABC 面积的最大值(2013 东城一模)(15)(13 分)在△中,三个内角,,的对边分别为,,,且.ABC A B C a b c b sin A 3acosB (Ⅰ)求角;Bb 2 3 ac(Ⅱ)若,求的最大值.(2014 丰台二模)(15)(本小题满分13 分)已知△ABC 中,∠A, ∠B, ∠C 的对边长分别为a,b,c , 且 2 2 3oa b ab , C 60 . (Ⅰ)求 c 的值;(Ⅱ)求 a b 的取值范围.WORD 格式(2014 石景山一模)15.(本小题满分13 分)解:(Ⅰ)因为3a 2bsin A,所以3sin A 2sin B sinA ⋯⋯2分因为0 A ,所以sin A 0 ,所以sin 3B ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分2因为0 B ,且a b c ,所以 B 60 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(Ⅱ)因为a2,b 7,所以由余弦定理得 2 2 2 1( 7) 2 2 2c c ,即c2 2c 3 0,2解得c 3或c 1(舍),所以c边的长为3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分1 1 3 3 3S ac B .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 分= sin 2 3 ABC2 2 2 2(2014 西城一模)15.(本小题满分13 分)(Ⅰ)解:因为b2 c2 a2 bc ,所以cos A 2 2 2 1b c a ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分3WORD格式2bc 2又因为A(0, π) ,所以πA .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分53(Ⅱ)解:因为c os 6B ,B (0, π) ,3所以 2 3sin 1 cosB B .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分3由正弦定理a bsin A sin B,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分得 a b sin Asin B3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分2 2 2因为b c a bc ,所以 2 2 5 0c c ,WORD格式解得c16,因为c0,所以c61⋯⋯⋯11分故△ABC的面积1sin323S bc A.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13分22(2014海淀二模)15.解:(Ⅰ)由正弦定理可得a bsin A sin B----------------------------2分因为a27sin A,b21所以sin sin21sin3b A ABa27sin A2---------------------------5分在锐角A BC中,B60---------------------------7分(Ⅱ)由余弦定理可得2222cosb ac ac B----------------------------9分又因为a3c所以222219c c3c,即23c-------------------------------11分解得c3-------------------------------12分经检验,由2221b c acos A02bc27可得A90,不符合题意,所以c3舍去.--------------------13分(2015西城二模)(2013 丰台二模)15.解:(Ⅰ) 22sin (B C) 3sin 2A.22sin A 2 3sin Acos A, ⋯⋯⋯⋯⋯⋯⋯⋯⋯.2 分sin A 0, sin A 3cos A, tan A 3 , ⋯⋯⋯⋯⋯⋯⋯⋯⋯.4 分0 A , A 60 °. ⋯⋯⋯⋯⋯⋯⋯⋯.6 分2 AB2 AC2 AB AC(Ⅱ)在ABC 中, 2 cos 60BC , BC 7, AC 5,49 2 AB 2 AB ABAB 25 5 , AB 5 24 0, 8或AB 3(舍),⋯⋯⋯⋯.10 分113S ABCAB AC sin 605 8 10 3 . ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯.13 分222(2014 延庆一模) 15.(本小题满分 13 分)解:(Ⅰ)3cos B,54sin B⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 1分5sin A sin( B C )⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 2 分 sin B cosC cos B s in C ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 4 分 4 2 3 2 7 2⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 6分5 25210(Ⅱ)b sinB a sin A ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 8 分 b 24 ,7 2 510 8 2 b⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯10分7S1ABCsin ab 2C ,⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 11 分1 2 28 2 7 228 7 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯⋯ 1分3(2015 顺义一模) 16. 解:(I) 在 ABC 中 ,因为B A, 2所以 BA,即 22 B ,⋯ ⋯ (2)分所以 sin sin sincosABB B ..........................................4 分2222 6 31 sin B 1 ...........................................5 分3 3由正弦定理,a bsin A sin B得a33 2b sin A 3sin B 633. ...........................7 分(II) 因为B A ,即2 B A ,2所以B 为钝角, A为锐角.由(I)可知,sin 3A ,3所以22 3 6cos A 1 sin A 1 . ...........................................9 分3 3又6 3sin B ,cos B , ...........................................10 分3 3所以cos C cos A B cos A B ...........................................11 分...........................................12 分cos AcosB sin A s in B6 3 3 63 3 3 32 23............................................13 分(2016 东城一模)(15)(本小题共13 分)解:(Ⅰ)Q cos C cos A B cos A B2 2C 45 ⋯⋯ 3 分Q BC 2 2 ,AC 2 ,2 2 2 2 cos (2 2)2 22 8 2 cos450 AB AC BC AC BC C 4AB 2 ⋯⋯7 分(Ⅱ)由3f (x) sin(2 x ) ,4 2解得 2 2x k 或4 322x 2k ,k Z ,4 3解得5x k 或x2 k2 ,1 1 2424k1,k2 Z .因为x1 x2 (k1 k2 ) ≥,当k1 k2 时取等号,6 6所以当3f (x) 时,相邻两交点间最小的距离为26. ⋯⋯⋯⋯13 分(2015 延庆一模)17. (本小题满分13 分)解:(Ⅰ)cos 2 52 5 ,2 2 5 23 cos 2cos 1 2 ( ) 12 5 5 ⋯⋯⋯⋯⋯⋯⋯2 分2 2 2 2 cos AC AB BC AB BC25 4 2 5 2 3 517 ⋯⋯⋯⋯⋯⋯⋯⋯ 5 分AC 17 ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ)5BAC , ABC , BCA ⋯⋯⋯⋯⋯⋯7 分6 6AB BC 25 1sin( ) sin6 6 24⋯⋯⋯⋯⋯⋯⋯⋯9 分5AB 4sin( ) ,65 5f ( ) 4sin( ), (0, ) ⋯⋯⋯⋯⋯⋯⋯⋯10 分6 65 5(0, ) 6 6,当56 2时,即3时f 的最大值为4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 分( )(2016 西城一模)15.(本小题满分13 分)(1)解:因为s in B 3sin C ,由正弦定理a b csin A sin B sin C,得b 3c ,由余弦定理 2 2 2 2 cosa b c bc A 及πA ,a 7 ,得32 27 b c bc所以2b b2 ( )2 7b ,解得 b 3 .3 3(2)解:由πA ,得32πB C ,3所以2πsin( C)3sin C .3即3 1cosC sin C 3sin C ,2 2所以3 5cos C sin C ,2 2所以3 tan C.5(2014 朝阳二模)15.(本小题满分13 分)解:(Ⅰ)由1S bc A得, 1 3 sin 15 3sinABCS c .ABC22 3 4所以c 5 .由 2 2 2 2 cosa b c bc A 得,2 32 52 23 5 cos 49a ,3所以a 7.⋯⋯⋯⋯⋯7 分7 3a b(Ⅱ)由得,sin B ,3sin A sin B2所以sin 3 3B .14所以 2 71cos 2B 1 2sin B .⋯⋯⋯⋯⋯13 分98(2015 东城一模)(2015 海淀二模)(15)(共13 分)解:(Ⅰ)因为3 6a cosA,2所以 a2 2 23 6b c a2 2bc. ⋯⋯⋯⋯⋯⋯3 分因为c 5 ,b 2 6 ,所以 23a 40a 49 3 0 .解得:a 3,或49a (舍). ⋯⋯⋯⋯⋯⋯ 6 分3(Ⅱ)由(Ⅰ)可得:2 6 cosA3 .3 6 3所以2 1cos2 A 2cos A 1 . ⋯⋯⋯⋯⋯⋯9 分3因为a3,c 5 ,b 2 6 ,所以cosB2 2 2 1a c b2ac 3. ⋯⋯⋯⋯⋯⋯11 分所以cos 2A cos B . ⋯⋯⋯⋯⋯⋯12 分因为c b a ,所以 A (0, ) .3因为B(0, ) ,所以 B 2 A . ⋯⋯⋯⋯⋯⋯13 分另解:因为A(0, ) ,所以2 3 sin A 1 cos A .3由正弦定理得:2 6 3 sin B 33.所以sin 2 2B .3所以3 6 2 2sin 2A 2 sin B. ⋯⋯⋯⋯⋯⋯12 分3 3 3因为c b a ,所以 A (0, ) ,B (0, ) .3 2所以 B 2 A . ⋯⋯⋯⋯⋯⋯13 分(2014 顺义一模)即3 1sin 2A cos 2A 1 sin(2 A ) 1————5 分2 2 6Q 0 A ,112A6 6 6由sin(2 A ) 1得26 A ,6 2A ———7分3(2015 石景山期末)15.(本小题共13 分)(Ⅰ)设C ED .在CED 中,由余弦定理,得2 2 2 2 cosCE CD DE CD DE CDE ⋯⋯⋯⋯⋯⋯⋯ 2 分得CD 2+CD-6=0,解得CD=2(CD=-3 舍去).⋯⋯⋯⋯⋯⋯⋯4 分在CED 中,由正弦定理,得sin21CED ⋯⋯⋯⋯⋯⋯⋯ 6 分7(Ⅱ)由题设知0(,),所以3 cos2 77⋯⋯⋯⋯⋯⋯⋯8 分而2AEB ,所以32 2 2cos AEB cos()=cos cos sin sin3 3 31 3 12 73 21 7 = cos sin2 2 2 7 2 7 14 . ⋯⋯⋯⋯⋯⋯11 分在Rt EAB 中,BEcos 2AEB4 7 . ⋯⋯⋯⋯⋯⋯⋯13 分(2015 朝阳二模)15.(本小题共13 分)解:(Ⅰ)在中,因为,所以.由正弦定理得:,即.(Ⅱ)在中,由余弦定理得:,整理得,解得(舍负).过点作于,则为梯形的高.因为,,所以.在直角中,.即梯形的高为.(2015 丰台二模)18.(本小题共13分)解:(Ⅰ)因为1S BC CD sin BCD 4,BCD2所以2 5 sin BCD .5因为BCD 为锐角,所以2 5 52cos BCD 1 ( ) .⋯⋯⋯⋯⋯⋯6 分5 52 2 2 ,(Ⅱ)在BCD 中,因为DBCD BC 2CD BC cos BCD所以DB 4.因为 2 CD 2 BC2DB ,所以CDB 90 .所以ACD 为直角三角形.因为 A 30 ,所以AC 2CD 4 ,即AC 4 .⋯⋯⋯⋯⋯⋯13 分(2016 海淀一模)15.解:(Ⅰ)在ACD 中,由正弦定理, 有AC ADsin ADC sin⋯⋯⋯⋯⋯⋯⋯2 分在BCD 中,由正弦定理, 有BC BDsin BDC sin⋯⋯⋯⋯⋯⋯⋯4 分因为ADC BDC π, 所以sin ADC sin BDC ⋯⋯⋯⋯⋯⋯⋯ 6 分因为A DDB 13, 所以A CBCsin3sin⋯⋯⋯⋯⋯⋯⋯7 分(Ⅱ)因为π,6π,2由(Ⅰ)得ACBCπsin 2 3π 23sin6⋯⋯⋯⋯⋯⋯⋯9 分设AC 2k, BC 3k,k 0 , 由余弦定理,2 2 2 2 cosAB AC BC AC BC ACB ⋯⋯⋯⋯⋯⋯⋯11 分代入, 得到 2 2 2π19 4k 9k 2 2k 3k cos ,3解得k 1, 所以BC 3. ⋯⋯⋯⋯⋯⋯⋯13 分(2015 房山一模)15.(本小题共13 分)2 ⋯⋯⋯⋯⋯⋯2分3 1解:(Ⅰ)∵ f ( x) sin(2 x ) 2 cos x 1 sin 2x cos2x cos 2x6 2 23 2 sin12x cos 2x2= sin(2 x )⋯⋯⋯⋯⋯⋯3分6由2k 2x 2k (k2 6 2 Z) 得,k x k (k3 6Z) 5 分∴ f (x) 的单调递增区间是[ k , k ]( k Z) ⋯⋯⋯⋯⋯⋯7 分3 6(Ⅱ)∵ 1f (A) sin( 2 A ) ,0 A ,6 22 A 26 6 6于是2A6 5 6∴A⋯⋯⋯⋯⋯10 分3∵ABC 外接圆的半径为3a由正弦定理2Rsin A,得3a 2R s in A 2 3 3,⋯⋯⋯⋯⋯13分2(2013 石景山一模)15.(本小题满分13 分)解:(Ⅰ)( ) sin(2 ) cos2f x x x6sin 2 xcos cos2 x sin cos2 x6 63 3sin 2x cos2x⋯⋯⋯⋯ 1 分2 21 33( sin 2x cos2 x)2 23 sin(2 x ) ⋯⋯⋯⋯ 3 分3令+2 2 +2k x k2 3 25+k x +k ⋯⋯⋯⋯ 5 分12 12函数 f ( x)的单调递增区间 5 + + ( )k ,k k Z . ⋯⋯⋯⋯ 6 分12 12(Ⅱ)由3f ( A) ,21sin(2 A )= ,3 2因为A 为ABC 内角,由题意知2A ,所以352A3 3 3因此25A ,解得3 6A .⋯⋯⋯⋯8 分4由正弦定理asin Absin B ,得b 6 ,⋯⋯⋯⋯10分由A ,由4 B ,可得3sin6 2C ,⋯⋯⋯⋯12 分4∴ 1 sin 1 2 6 6 2 3 3s ab C .⋯⋯⋯⋯13 分2 2 4 2(2013 朝阳二模)(15)(本小题满分13 分)解:(Ⅰ)因为A A A A2 2f ( A) 2cos sin sin cos2 2 2 2sin A cos A 2 sin( A ) .4因为A 为三角形的内角,所以0 A ,所以 A .4 4 4所以当A,即 423 A 时, f (A) 取得最大值,且最大值为2 . ⋯ ⋯ ⋯ 6分4(Ⅱ)由题意知( )2 sin() 0 f A A,所以 sin( A) 0 . 44又因为A,所以 A0 ,所以 44 44A.4又因为 C,所以 12B.3由正弦定理ab sin A sin B得,b 6 sin aB sin3 3sin A sin4. ⋯ ⋯ ⋯ ⋯13 分(2014 东城一模) 15.(共 13 分)解:⑴因为ab sin A sin B , s in A3cos B ab, 所以 sin B= 3 cos B , tan B= 3 .因为 B (0 ,π) . 所以 π B = .3 ⑵因为 πB= ,3所以cosB2 2 21 ac b2ac2, 因为 b 2 ,所以 22 = 4 2 a c ac ac ,所以 ac 4 (当且仅当 a c 时,等号成立),所以 1S △ac , sin B3 , ABC2所以 △ ABC 面积最大值为3 .(2013 东城一模)(15)(共 13 分)解:(Ⅰ)因为b sin A3a cosB ,由正弦定理可得 sin Bsin A3sin A cosB ,因为在△中,,ABCsin A 0所以 tan B3 .又,0 B所以.B32222cosb ac ac B (Ⅱ)由余弦定理,因为,,B b23322所以12a c ac.222因为,a c ac所以.ac12a c ac1223当且仅当时,取得最大值.(2014丰台二模)。

2024年高考数学复习大题全题型专练:专题07 解三角形(解析版)

2024年高考数学复习大题全题型专练:专题07 解三角形(解析版)

专题7解三角形一、解答题1.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A,由(1)得2250b c ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B.(1)若23C ,求B ;(2)求222a b c 的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos 2A B A B 化成 cos sin A B B ,再结合π02B ,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B ,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ,即 1sin cos cos sin sin cos cos 2B A B A B A BC ,而π02B ,所以π6B ;(2)由(1)知,sin cos 0BC ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B ,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B B B BB .当且仅当22cos 2B 时取等号,所以222a b c的最小值为5.3.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C .(1)求sin A 的值;(2)若11b ,求ABC 的面积.【答案】(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab以及4a 可解出a ,即可由三角形面积公式in 12s S ab C 求出面积.(1)由于3cos 5C ,0πC ,则4sin 5C.因为4a ,由正弦定理知4sin A C,则sin 45A C .(2)因为4a ,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a ,即26550a a ,解得5a ,而4sin 5C ,11b ,所以ABC 的面积114sin 51122225S ab C .4.(2022·北京·高考真题)在ABC 中,sin 2C C.(1)求C ;(2)若6b ,且ABC 的面积为ABC 的周长.【答案】(1)6 (2)6+【解析】【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.(1)解:因为 0,C ,则sin 0C2sin cos C C C ,可得cos 2C ,因此,6C .(2)解:由三角形的面积公式可得13sin 22ABC S ab C a,解得a .由余弦定理可得2222cos 48362612c a b ab C ,c所以,ABC 的周长为6a b c .5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B.(1)求ABC 的面积;(2)若sin sin A C,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b ac B A C,即可求解.(1)由题意得22221231,,2S a S S,则222123S S S a b c 即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则22cos 3B ,1cos 4ac B ,则12sin 28ABC S ac B ;(2)由正弦定理得:sin sin sin b a c B A C,则229sin sin sin sin sin 423b a c ac B A C A C ,则3sin 2b B ,31sin 22b B .6.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得 sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B ,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C.(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a cb bc a b c a a b c ,化简得:2222a b c ,故原等式成立.7.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB m ,15AD m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20 ,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)【答案】(1)23.3m(2)当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.14【解析】【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD ,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值.(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD 则AE EH ,所以直角ADE 与直角HED △全等所以20ADE HDE在直角HED △中,tan 2015tan 20EH DH90250HDF ADE在直角FHD △中,tan 5015tan 50HF ADsin 20sin 5015tan 20tan 5015cos 20cos50EF EH HFsin 2050sin 20cos50cos 20sin 501515cos 20cos50cos 20cos50sin 70151523.3cos 20cos50cos50(2)设ADE ,902HDF ,则15tan AE ,15tan 902FH 115151515tan 15tan 90215tan 222tan 2EFD S EF DHV 11515tan 22ADE S AD AE V 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADE DEF S S S22512253tan 4tan 42当且当13tan tan ,即tan 时取得等号,此时15tan 158.73AE即当tan 3 时,梯形AEFD 的面积取得最小值2则此时梯形FEBC 的面积有最大值1530255.142所以当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.148.(2022·全国·模拟预测)在 ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且 sin sin sin 6b a b c A B C S .(1)求角B 的大小;(2)若1a b ,2c b ,求cos A ,cos C 的值.【答案】(1)3(2)17,1114【解析】【分析】(1)由三角形的面积公式结合正弦余弦定理化简即可得到答案;(2)由余弦定理计算即可.(1)由in 12s S ab C ,又 sin sin sin 3sin b a b c A B C ab C ,由0b ,则 sin sin sin 3sin a b c A B C a C .由正弦定理得 3a b c a b c ac ,所以222a c b ac .由余弦定理得2221cos 222a cb ac B ac ac ,因为0B ,所以3B .(2)因为222a c b ac ,1a b ,2c b ,所以 2221212b b b b b ,解得7b ,所以8a ,5c .所以2222227581cos 2707b c a A bc ,22222287511cos 211214a b c C ab .9.(2022·全国·模拟预测)在ABC 中,角A B C ,,的对边长分别为a b c ,,,ABC 的面积为S ,且24cos cos tan S a B ab A B.(1)求角B 的大小;(2)若322AB BC ,,点D 在边AC 上,______,求BD 的长.请在①AD DC ;②DBC DBA ;③BD AC 这三个条件中选择一个,补充在上面的横线上,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)π3B (2)答案不唯一,具体见解析【解析】【分析】(1)根据面积公式可得2cos cos cos c B a B b A ,利用正弦定理以及和角关系可得1cos 2B ,进而可求.(2)根据余弦定理可求出AC ,然后在ABD △和在DBC △中分别用余弦定理即可求①.根据面积公式即可求解②③.(1)因为24cos cos tan S a B ab A B ,所以214sin 2cos cos sin cos ac B a B ab A B B,所以22cos cos cos ac B a B ab A ,即2cos cos cos c B a B b A .由正弦定理,得2sin cos sin cos sin cos C B A B B A ,所以 2sin cos sin sin C B A B C .因为 0,πC ,所以sin 0C ,所以1cos 2B.又 0,πB ,所以π3B.(2)若选①.法一:在ABC 中,由余弦定理,得2222233π132cos 222cos 2234AC AB BC AB BC B ,所以ACAD DC 在ABD △中,由余弦定理,得2222cos AB BD DA BD DA ADB ,即2134cos 16BD BD ADB .在DBC △中,由余弦定理,得2222cos BC BD DC BD DC CDB ,即2913cos 416BD CDB .又πADB CDB ,所以cos cos 0ADB CDB .所以29134248BD ,所以374BD .法二:因为AD DC ,所以D 为AC 的中点,所以 12BD BA BC ,所以222124BD BA BC BA BC 19337422cos6044216.所以BD BD 若选②.在ABC 中,ABC ABD CBD S S S ,即1π1π1πsin sin sin 232626BA BC BA BD BD BC ,即1311131222222222BD BD ,解得BD 若选③.在ABC 中,由余弦定理,得2222cos AC AB BC AB BC B2233π13222cos 2234 ,所以AC .因为1sin 2ABC S BA BC B △12ABC S BD AC △,BD 10.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C A B C ,a b .(1)求角B ;(2)若3a ,7b ,D 为AC 边的中点,求BCD △的面积.【答案】(1)23B (2)1538【解析】【分析】(1)根据同角三角函数的关系,结合两角和差的正余弦公式化简即可(2)由余弦定理可得5c ,再根据BCD △的面积为ABC 面积的一半,结合三角形的面积公式求解即可(1)由cos 2cos tan sin C A B C,有tan sin cos 2cos B C C A ,两边同乘cos B 得sin sin cos cos 2cos cos B C B C A B ,故 cos 2cos cos B C A B ,即cos 2cos cos A A B .因为a b ,所以A 为锐角,cos 0A ,所以1cos 2B .又因为 0,B ,所以23B .(2)在ABC 中,由余弦定理2221cos 22a c b B ac ,即2949162c c ,故23400c c ,解得5c 或8c 舍).故11235sin 223BCD ABC S S △△11.(2022·福建·三明一中模拟预测)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且22cos c b a C .(1)求角A ;(2)若M 为BC 的中点,AM ABC 面积的最大值.【答案】(1)π3A 【解析】【分析】(1)解法一:根据正弦定理边化角求解即可;解法二:利用余弦定理将cos C 用边表示再化简即可;(2)解法一:根据基底向量的方法得1()2AM AB AC ,两边平方化简后可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可;解法二:设BM MC m ,再分别在ABM ,ACM △和ABC 中用余弦定理,结合cos cos 0AMB AMC 可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可(1)解法一:因为22cos c b a C ,由正弦定理得:sin 2sin 2sin cos C B A C ,所以sin 2sin()2sin cos C A C A C 2sin cos 2cos sin 2sin cos 2cos sin A C A C A C A C ,因为sin 0C ,所以12cos 1,cos 2A A,为0πA ,所以π3A .解法二:因为22cos c b a C ,由余弦定理得:222222a b c c b a ab,整理得222bc b c a ,即222a b c bc ,又由余弦定理得2222cos a b c bc A所以12cos 1,cos 2A A,因为0πA ,所以π3A .(2)解法一:因为M 为BC 的中点,所以1()2AM AB AC ,所以222124AM AB AB AC AC ,即22132cos 43c b bc ,即2212b c bc ,而222b c bc ,所以122bc bc 即4bc ,当且仅当2b c 时等号成立所以ABC 的面积为113sin 4222ABC S bc A △即ABC 解法二:设BM MC m ,在ABM 中,由余弦定理得2232cos c m AMB ,①在ACM △中,由余弦定理得2232cos b m AMC ,②因为πAMB AMC ,所以cos cos 0AMB AMC 所以①+②式得22262b c m .③在ABC 中,由余弦定理得22242cos m b c bc A ,而π3A ,所以2224m b c bc ,④联立③④得:22222212b c b c bc ,即2212b c bc ,而222b c bc ,所以122bc bc ,即4bc ,当且仅当2b c 时等号成立.所以ABC 的面积为11sin 4222ABC S bc A △ABC 12.(2022·北京市第十二中学三模)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin a B A .(1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求ABC 的面积.条件①:3a ;条件②:b ;条件③:2cos 3C ;条件④:2c .【答案】(1)6B(2)答案不唯一,见解析【解析】【分析】(1)由正弦定理化简可得出tan B 的值,结合角B 的取值范围可求得角B 的值;(2)选①②,利用余弦定理可判断ABC 不唯一;选①③或②③或③④,利用三角形的内角和定理可判断ABC 唯一,利用正弦定理结合三角形的面积可判断ABC 的面积;选①④,直接判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积;选②④,利用余弦定理可判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积.(1)解:由cos sin a B A 及正弦定理可得sin cos sin A B A B ,A ∵、 0,B ,则sin 0A ,cos 0 B B ,tanB 6B .(2)解:若选①②,由余弦定理可得2222cos b a c ac B ,即210c ,解得 c ,此时,ABC 不唯一;若选①③,已知3a ,6B,21cos 32C ,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A C B C C由正弦定理sin sin b a B A 可得 92sin sin 11a B b A,所以, 9211sin 32211ABC S ab C △;若选①④,已知3a ,6B,2c ,此时ABC 唯一,1322sin ABC S ac B;若选②③,已知b 6B ,21cos 32C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A CBC C 由正弦定理sin sin b c B C 可得sin 410sin 3b C c B ,所以,120385sin 29ABC S bc A △;若选②④,已知b 6B,2c ,由余弦定理可得2222cos b a c ac B ,可得240a ,0a ∵,解得a ABC 唯一,1sin2ABC S ac B △若选③④,已知6B ,2c ,231cos 322C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,5sin 3C, 152sin sin sin cos cos sin 666A CBC C ,由正弦定理sin sin b c B C 可得sin sin 5c B b C ,1sin 210ABC S bc A △.13.(2022·内蒙古·海拉尔第二中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为,,a b c ,且sin cos (cos )sin .232B BC C (1)当π3B,求sin sin C A 的值(2)求B 的最大值.【答案】(1)sin C +sin A =1(2)2π3【解析】【分析】(1)代入π3B ,解得313sin cos 223C C ,对sin sin C A 变形得到1sin sin sin cos 12C A C C ,求出答案;(2)对题干条件两边同乘以2cos2B ,变形得到sin sin sin C A B ,利用正弦定理得到a c ,利用余弦定理和基本不等式求出B 的最大值.(1)由题意得:ππsin coscos )sin 66C C ,1cos 2C C则π31sin sin sin sin sin cos sin cos 1322C A C C C C C C(2)sin cos cos )sin 22B B C C ,两边同乘以2cos 2B 得:22sin cos cos )2sin cos 222B B B C C ,即 sin 1cos cos )sin C B C B ,整理得:sin sin sin C A B ,由正弦定理得:3a cb ,由余弦定理得: 2222222cos 1226ac b ac a c b b B ac ac ac,因为 22143a c acb ,当且仅当ac 时等号成立,此时21cos 162b B ac ,由于 0,πB ,而cos y x 在 0,π上单调递减,故B 的最大值为2π314.(2022·广东·大埔县虎山中学模拟预测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且222ab a b c .(1)求角C ;(2)若△ABC 的面积534S ,且c △ABC 的周长.【答案】(1)π3(2)6【解析】【分析】(1)利用余弦定理求得cos C 的值,进而求得角C 的值;(2)依据题给条件得到关于a b ,的方程组,求得+a b 的值,进而求得△ABC 的周长.(1)因为222ab a b c ,由余弦定理,得到2221cos 22a b c C ab ,又0πC ,所以π3C ;(2)因为△ABC 的面积4S ,且c π3C所以有221sin 212S ab C ab a b ,联立22526ab a b ,则6a b ,所以△ABC 的周长为6a b c 15.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C .(1)求角A 的大小;(2)若2B D D C ,2AD ,且AD 平分BAC ,求ABC 的面积.【答案】(1)60A (2)332【解析】【分析】(1)由两角和的正切公式化简后求解(2)由AD 是角平分线得到2c b ,再利用面积公式求解(1)tan tantan tan tan tan 0tan()1tan tan B C B C B C B C B C故tan A 60A ;(2)设BC 边的高为h ,所以11sin 22ABD S AB AD BAD BD h ,11sin 22ABC S AC AD DAC CD h 又AD 是角平分线,所以BAD DAC所以AB BD AC DC,即2c b ,又ABC ABD ACD S S S ,则111sin 602sin 302sin 30222bc c b ,解得b c ,133sin 6022ABC S bc △.16.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,3a ,2b ,sin A m .(1)若ABC 唯一确定,求m 的值;(2)设I 是ABC 的内切圆圆心,r 是ABC 内切圆半径,证明:当21c r 时,IC IA IB .【答案】(1)1(2)证明见解析【解析】【分析】(1)若01m ,根据sin A m ,b a ,可知A 可以为锐角,也可以为钝角,ABC 有两种情况,若1m ,则三角形为直角三角形,ABC 有唯一解.(2)由21c r 可推导出ABC 为直角三角形,故可计算出,,IC IA IB 的值,即得证.(1)设AB 边上的高为c h ,则sin 20c h b A m .当1m 时,由勾股定理,若A 为锐角,则c A 为钝角,则c ABC 存在两种情况,不能被唯一确定.当1m 时,ABC 为直角三角形,其中A 为直角顶点,c 可以唯一确定,即ABC 唯一确定,故m 的值为1.(2)当21c r 时,由余弦定理,22223cos 23a b c r r C ab ,故由同角三角函数的关系可得sin C所以ABC 的面积1sin 2S ab C另一方面, 132S a b c r r r3r r ,两边平方可得 213r r r r ,解得r ,21c r ABC 是以A 为直角顶点的直角三角形.因此有222112922IC,IC22211322IA 2IA ;22211322IB ,IB 所以有IC IA IB 成立.17.(2022·上海市光明中学模拟预测)已知在三角形ABC 中,2a b ,三角形的面积12S .(1)若4b ,求 tan A B ;(2)若3sin 5C ,求sin sin A B ,.【答案】(1)(2)25sin 5A ,sin B 或6205sin 205A ,sin B 【解析】【分析】(1)根据面积公式及4b ,得到3sin 4C ,分C 为锐角和C 为钝角时,求出cos C ,进而求出tan C ,求出 tan A B ;(2)由面积公式求出b a ,分C 为锐角和C 为钝角,由余弦定理和正弦定理求出答案.(1)∵2113sin 2sin 16sin 12sin 224S ab C b C C C 而sin tan()tan(π)tan cos CA B C C C分情况讨论,当C 为锐角时,cos 0cos C C∴tan()A B当C 为钝角时,cos 0cos C Ctan()A B (2)22113sin 2sin 12225S ab C b C b ,因为0b ,所以b a分情况讨论,当C 为锐角时,4cos 0cos 5C C由余弦定理,222cos 366c a b ab C c由正弦定理,10sin sin sin sin sin sin 5a b c A A B C A B ,sin 5B当C 为钝角时,4cos 0cos 5C C ,由余弦定理,222cos 164c a b ab C c由正弦定理,sin sin sin sin a b c A A B C,sin B 18.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c,已知cos sin B b C .(1)求C 的大小;(2)若ABC为锐角三角形且c 22a b 的取值范围.【答案】(1)3C(2)(5,6]【解析】【分析】(1)利用正弦定理边化角,再分析求解即可;(2)22224sin 4sin 3a b A A,再利用三角函数求值域即可.(1)cos sin B b C及正弦定理可得sin sin sin )B C B C A B Ccos sin B C B C ,所以sin sin cos B C B C ,因为B 、(0,)C ,则sin 0Bsin 0C C,则tan C 3C.(2)依题意,ABC为锐角三角形且c2sin sin sin a b c A B C ,所以2sin a A ,2sin 2sin()2sin 3b B A C A,所以222221cos 21cos 234sin 4sin 44322A A a b A A142cos 2222cos 222c 2cos 2222os 23A A A A A2c 42co os 242sin 246s 2cos 2sin 2A A A A A A,由于23A B ,所以022032A A,解得62A ,所以23A ,52666A ,所以푠� 2�∈12,1,所以2sin 2(1,2]6A ,所以2sin 24(5,6]6A.所以22a b 的取值范围是(5,6].19.(2022·辽宁实验中学模拟预测)在① sin sin sin sin A C a b c B C ,② 2222cos 2a b c a c B a,③ sin cos 6a B C B b这三个条件中选一个,补充在下面问题中,并解答.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且__________.(1)求B(2)若b ABC 的平分线交AC 于点D ,且5BD,求ABC 的面积.【答案】(1)=3B【解析】【分析】(1)若选条件①,先用正弦定理将角转化为边的关系,再利用余弦定理即可;若选条件②,先用余弦定理将边转化为角的关系,再利用正弦定理即可;若选条件③,先用三角形的内角之和为 ,再利用正弦定理即可;(2)利用角平分线的性质得到ABC ABD BCD S S S △△△,结合余弦定理和三角形的面积公式即可(1)选择条件①:根据正弦定理,可得:a c abc b c 可得:222a c b ac 根据余弦定理,可得:2221cos 22a cb B ac 0,,=3B B 选择条件②:根据余弦定理,可得:2cos (2)cos =cos 2abC a c B b C a根据正弦定理,可得:(2sin sin )cos sin cos A C B B C整理可得:2sin cos sin()sin A B B C A可得:1cos 2B 0,,=3B B选择条件③:易知:A B C可得:sin cos()6a A B b根据正弦定理,可得:sin sin cos(sin 6A A B B可得:1sin cos()sin 62B B B B整理可得:tan B 0,,=3B B(2)根据题意,可得:ABC ABD BCDS S S △△△可得:1143143sin sin sin 23256256ac a 整理可得:54a c ac 根据余弦定理,可得:2222cosb ac ac ABC可得:2213=a c ac ,即2()313a c ac 可得:225()482080ac ac 解得:4ac 或5225ac (舍)故1=sin 23ABC S ac △20.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos 2B C B C A .(1)求角A 的大小;(2)若a 2bc 的最大值.【答案】(1)3A (2)【解析】【分析】(1)利用两角和的余弦公式、二倍角的余弦公式可得出关于cos A 的方程,结合1cos 1A 可求得cos A 的值,再结合角A 的取值范围可求得角A 的值;(2)由正弦定理结合三角恒等变换化简得出 2b c B ,结合正弦型函数的有界性可求得2b c 的最大值.(1)解:由已知可得 cos 25cos cos sin sin cos 25cos A B C B C A B C 2cos 25cos 2cos 5cos 13A A A A ,即22cos 5cos 20A A ,0A ∵,则1cos 1A ,解得1cos 2A ,因此,3A .(2)解:由正弦定理可得2sin sin sin b c aBC A,所以, 24sin 2sin 4sin 2sin 4sin 2sin 3b c B C B B A B B 4sin sin 5sin B B B B B B,其中 为锐角,且tan,因为3A ,则203B ,23B ,所以,当2B 时,即当2B 时,2b c 取得最大值。

(完整版)高考解三角形大题(30道)

(完整版)高考解三角形大题(30道)

专题精选习题 ---- 解三角形1.在 ABC 中,内角 A, B,C 的对边分别为cos A 2 cosC2c a a, b, c ,已知.cos Bb( 1)求sin C的值;sin A1, b( 2)若 cos B2 ,求 ABC 的面积 S .42.在 ABC 中,角 A, B,C 的对边分别是a, b, c ,已知 sin C cosC 1 sin C.( 1)求 sin C 的值;2( 2)若 a 2b 24(ab) 8,求边 c 的值 .3.在ABC 中,角 A, B,C 的对边分别是 a, b, c .( 1)若 sin( A) 2 cos A ,求 A 的值;6( 2)若 cos A1, b 3c ,求 sin C 的值 .34. ABC 中, D 为边 BC 上的一点, BD 33, sin B5, cos ADC 3 ,求 AD .13 55.在ABC 中,角A, B,C的对边分别是(1)求ABC的周长;(2)求cos( A C)的值 .6.在ABC 中,角A, B,C的对边分别是5( 1)当p4,b 1时,求 a,c 的值;( 2)若角B 为锐角,求 p 的取值范围.7.在ABC 中,角A, B,C的对边分别是(1)求A的值;(2)求sin B sin C的最大值 .8.在ABC 中,角A, B,C的对边分别是1a, b, c ,已知 a 1,b 2, cosC.4a, b, c .已知 sin A sin C p sin B( p R) ,且 ac 1 b2.4 a, b, c .且 2a sin A (2b c) sin B (2c b) sin C .1a, b, c ,已知 cos2C.4( 1)求sin C的值;( 2)当a2,2 sin A sin C 时,求 b, c的长.9.在 ABC 中,角 A, B,C 的对边分别是a, b, c ,且满足 cosA2 5, AB AC 3 .25( 1)求ABC 的面积;( 2)若 b c 6 ,求 a 的值 .10.在ABC 中,角 A, B, C 的对边分别是 a,b,c , cos(C) cos(C) 2 .442( 1) 求角 C 的大小;( 2)若 c 2 3 , sin A2 sin B ,求 a,b .11.在ABC 中,角 A, B,C 的对边分别是 a, b, c ,且 . a cosC1c b2( 1)求角 A的大小;( 2)若 a 1,求 ABC 的周长 l 的取值范围 .12.在ABC 中,角 A, B, C 的对边分别是 a,b,c ,且满足 (2b c) cos A a cosC0 .( 1)求角 A 的大小;( 2)若a3 3 3ABC 的形状,并说明原由 .,SABC4,试判断13.在ABC 中,角A, B, C的对边分别是a,b,c ,且 2(a2b2c2 )3ab.( 1)求sin2AB ;2( 2)若c 2,求ABC 面积的最大值.14.在ABC 中,角A, B, C的对边分别是a,b,c ,且满足 4a2 cos B 2ac cos B a2b2 c 2.( 1)求角B的大小;( 2)设m(sin 2 A, cos2C), n (3,1) ,求 m n 的取值范围.115.已知m(sin x,cos x), n (cos x, cos x)(0) ,若函数 f (x) m n的最小正周期为2 4.(1)求函数y f ( x)取最值时x的取值会集;( 2)在ABC 中,角A, B,C的对边分别是a, b, c ,且满足 ( 2a c) cos B bcosC ,求 f ( A) 的取值范围 .16.如图,ABC中,sin ABC 3, AB 2 ,点D在线段AC上,且 AD 2DC , BD 4 3.233 (1)求 BC 的长;A(2)求 DBC 的面积.DB C17.已知向量a(cos,sin), b(cos,sin ), a b 25.5( 1)求cos() 的值;( 2)若0,0, sin 5.2,求 sin21318.在ABC 中,角A, B,C 的对边分别是a,b,c ,已知 sin 2 2C sin 2C sin C cos 2C 1 ,且a b 5 ,c7 .(1)求角C的大小;(2)求ABC的面积 .119.在ABC 中,角A, B, C的对边分别是a,b,c ,且满足 cos A ( 3 sin A cos A).2( 1)求角A的大小;( 2)若a 2 2, S ABC 2 3 ,求b, c的长.20.已知函数 f ( x)3 sin x 1cos x, (x R),当x [ 1,1]时,其图象与x轴交于M , N两点,22最高点为 P .( 1)求PM , PN夹角的余弦值;( 2)将函数 f ( x) 的图象向右平移 1 个单位,再将所得图像上每点的横坐标扩大为原来的 2 倍,而得到函数 y g (x) 的图象,试画出函数y g( x) 在[2,8] 上的图象.3 321.已知函数f ( x)2a sin2 x 2 sin x cos x a (a为常数)在 x3处获取最大值 .( 1)求a8的值;( 2)求f( x) 在 [ 0,] 上的增区间.22.在ABC 中,角A, B, C的对边分别是a,b,c ,且 b2c2a2bc .( 1)求角A的大小;( 2)若函数f ( x) sin xcosxcos2x,当 f ( B)213 ,求b的值.2时,若a22223.在ABC 中,角A, B, C的对边分别是a, b, c,已知.B,sin A 3 , b335(1)求sin C的值;(2)求ABC的面积 .24.在ABC 中,角A, B, C的对边分别是a,b,c ,且 b cosC (3a c) cos B .(1)求sin B的值;(2)若b 2,且a c,求ABC的面积 .25.已知函数f ( x)3 sin xcos x cos2x1 222 2 .(1)求f ( x)的单调区间;( 2)在锐角三角形ABC 中,角A, B, C的对边分别是a, b, c ,且满足 ( 2b a) cosC c cos A ,求 f ( A) 的取值范围.26.在ABC 中,角A, B, C的对边分别是a,b,c , a sin Asin B b cos2 A2a .( 1)求b ;a( 2)若c2b23a2,求角B.27.港口A北偏东30方向的C处有一检查站,港口正东方向的 B 处有一轮船,距离检查站为 31海里,该轮船从 B 处沿正西方向航行20 海里后到达 D 处观察站,已知观察站与检查站距离为21海里,问此时轮船离港口A还有多远?28.某巡逻艇在 A 处发现在北偏东45 距 A 处8海里的 B 处有一走私船,正沿东偏南15 的方向以12海里 /小时的速度向我岸行驶,巡逻艇马上以12 3 海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇航行方向.29.在海岛A上有一座海拔1km的山岳,山顶设有一个观察站P.有一艘轮船按一固定方向做匀速直线航行,上午11:00 时,测得此船在岛北偏东15 、俯角为 30 的 B 处,到11:10时,又测得该船在岛北偏西45、俯角为 60 的 C 处.( 1)求船航行速度;( 2)求船从 B 到 C 行驶过程中与观察站P 的最短距离 .30.以下列图,甲船由 A 岛出发向北偏东45 的方向做匀速直线航行,速度为船从 A 到出发的同时,乙船从 A 岛正南 40 海里处的 B 岛出发,朝北偏东匀速直线航行,速度为m 海里 / 小时 .(1)求 4 小时后甲船到 B 岛的距离为多少海里;(2)若两船能相遇,求 m.15 2 海里/小时,在甲( tan1)的方向做2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京高三理科解三角形大题专题(带答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN解三角形大题专题(2014石景山一模)15.(本小题满分13分)在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<,2sin b A =.(Ⅰ)求角B 的大小;(Ⅱ)若2a =,b =c 边的长和△ABC 的面积.(2014西城一模)15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知222b c a bc +=+.(Ⅰ)求A 的大小;(Ⅱ)如果cos 3=B ,2b =,求△ABC 的面积.(2014海淀二模)15.(本小题满分13分)在锐角ABC∆中,27sinb=.a A=且21(Ⅰ)求B的大小;(Ⅱ)若3a c=,求c的值.(2015西城二模)15.(本小题满分13 分)在锐角△ABC 中,角A,B ,C 所对的边分别为a,b ,c ,已知a =7,b =3,.(Ⅰ)求角A 的大小;(Ⅱ)求△ABC 的面积.(2013丰台二模)15.(13分)已知ABC ∆的三个内角分别为A,B,C,且22sin ()2.B C A += (Ⅰ)求A 的度数;(Ⅱ)若7,5,BC AC ==求ABC ∆的面积S .(2014延庆一模)15.(本小题满分13分)在三角形ABC 中,角C B A ,,所对的边分别为c b a ,,,且2=a ,4π=C ,53cos =B . (Ⅰ)求A sin 的值;(Ⅱ)求ABC ∆的面积.(2015顺义一模)15.(本小题满分13分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知3b B ==, 2B A π-=.(I)求a 的值;(II)求cos C 的值.(2016东城一模)(15)(本小题共13分)在△ABC 中,BC =,2AC =,且()cos A B +=. (Ⅰ)求AB 的长度;(Ⅱ)若()sin(2)f x x C =+,求()y f x =与直线y =相邻交点间的最小距离.(2015延庆一模)15.(本小题满分13分)ABC ∆中,2=BC ,θ=∠ABC .(Ⅰ)若5522cos =θ,5=AB ,求AC 的长度;(Ⅱ)若6π=∠BAC ,)(θf AB =,求)(θf 的最大值.(2016西城一模)15.(本小题满分13分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,设3A π=,sin 3sin B C =.(Ⅰ)若a =b 的值;(Ⅱ)求tan C 的值.(2014朝阳二模)15.(本小题满分13分)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,且2π3A =,3b =,ABC △. (I )求边a 的边长;(II )求cos2B 的值.(2015东城一模)(15)(本小题共13分)在△ABC 中,2b =,3cos 4C =,△ABC . (Ⅰ)求a 的值;(Ⅱ)求sin 2A 值.(2015海淀二模)(15)(本小题满分13分)在ABC ∆中,5c =,b =a A =.(Ⅰ)求a 的值;(Ⅱ)求证:2B A ∠=∠.(2014顺义一模)15.(本小题共13分)已知ABC ∆中,角C B A 、、所对的边分别为c b a 、、,且满足)sin cos 3(sin A A A +23=(1)求角A ;(2)若22=a ,32=∆ABC S ,求c b 、的值(2015石景山期末)15.(本小题共13分)如图所示,在四边形ABCD 中, AB DA ⊥,7CE =,23ADC π∠=;E 为AD边上一点,1DE =,2EA =,3BEC π∠=.(Ⅰ)求sin ∠CED 的值;(Ⅱ)求BE 的长.(2015朝阳二模)15.(本小题共13分)在梯形ABCD 中, (Ⅰ)求AC 的长;(Ⅱ)求梯形ABCD 的高.(2015丰台二模)15.(本小题共13分)在△ABC 中,30A ︒=,52=BC ,点D 在AB 边上,且BCD ∠为锐角,2CD =,△BCD 的面积为4.(Ⅰ)求cos BCD ∠的值;(Ⅱ)求边AC 的长.(2016海淀一模)15.(本小题满分13 分)如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β.(Ⅰ)求证:sin 3sin AC BC βα= ;(Ⅱ)若,,1962AB ππαβ===,求BC 的长.(2015房山一模)15.(本小题共13分)已知函数2()sin(2)2cos 1()6f x x x x π=--∈+R .(Ⅰ)求()f x 的单调递增区间;(Ⅱ)在△ABC 中,三个内角,,A B C 的对边分别为,,a b c ,已知()12f A =,且△ABC 3,求a 的值.(2013石景山一模)15.(本小题满分13分) 已知函数()sin(2)cos26f x x x π=++.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知()f A =,2a =,3B π=,求△ABC 的面积.(2013朝阳二模)15.(13分)在△ABC 中,,,A B C 所对的边分别为,,a b c ,且2()2cos sin()sin 222A A A f A =π-+-2cos 2A . (Ⅰ)求函数()f A 的最大值;(Ⅱ)若()0,,12f A C a 5π===b 的值.(2014东城一模)15. (本小题共13分)在ABC ∆中,b Ba Acos 3sin =(1)求角B 的值;(2)如果2=b ,求ABC ∆面积的最大值(2013东城一模)(15)(13分)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos b A B =.(Ⅰ)求角B ;(Ⅱ)若b =,求ac 的最大值.(2014丰台二模)(15)(本小题满分13分)已知△ABC 中,∠A , ∠B , ∠C 的对边长分别为,,a b c ,且223a b ab +=+,60o C =.(Ⅰ)求c 的值;(Ⅱ)求a b +的取值范围.(2014石景山一模)15.(本小题满分13分)解:(Ⅰ)2sin b A =,2sin sin A B A =,…………………………2分因为0A π<<,所以sin 0A ≠,所以sin 2B =, .............................. 4分 因为0B π<<,且a b c <<,所以60B =. (6)分(Ⅱ)因为2a =,b =所以由余弦定理得22212222c c =+-⨯⨯⨯,即2230c c --=, 解得3c =或1c =-(舍),所以c 边的长为3.…………………………10分11=sin 232222ABC S ac B ∆=⨯⨯⨯=.…………………………13分(2014西城一模)15.(本小题满分13分)(Ⅰ)解:因为222b c a bc +=+, 所以2221cos 22b c a A bc +-==,……………………………… 3分 又因为(0,π)∈A , 所以π3A =.……………………………… 5分(Ⅱ)解:因为cos =B ,(0,π)∈B ,所以sin 3B ==.……………………………7分 由正弦定理sin sin =a b A B,………………………………9分 得sin 3sin ==b A a B.……………………………10分 因为222b c a bc +=+,所以2250--=c c ,解得1=c因为0>c ,所以1=c .……………………………11分故△ABC 的面积1sin 2S bc A ==.……………………………13分(2014海淀二模)15.解:(Ⅰ)由正弦定理可得sin sin a b A B= ----------------------------2分因为,a A b ==所以sin sinb A B a == ---------------------------5分 在锐角ABC ∆中,60B = ---------------------------7分 (Ⅱ)由余弦定理可得2222cos b ac ac B =+- ----------------------------9分 又因为3a c =所以2222193c c c =+-,即23c =-------------------------------11分解得c = -------------------------------12分 经检验,由222cos 02b c a A bc +-=<可得90A >,不符合题意,所以c =舍去.--------------------13分(2015西城二模)(2013丰台二模)15.解: (Ⅰ) 22sin ()32.B C A +=22sin 23cos A A A ∴=, ……………………….2分 sin 0,sin 3,tan 3A A A A ≠∴=∴=……………………….4分 60,0=∴<<A A π °. …………………….6分(Ⅱ)在ABC ∆中, 60cos 2222⨯⨯-+=AC AB AC AB BC ,7,5,BC AC ==,525492AB AB -+=∴8,02452=∴=--∴AB AB AB 或3-=AB (舍),………….10分31023852160sin 21=⨯⨯⨯=⨯⨯=∴∆ AC AB S ABC . …………………….13分(2014延庆一模)15.(本小题满分13分)解:(Ⅰ) 53cos =B ,∴54sin =B ……………………1分 ∴)sin(sin C B A +=……………………2分C B C B sin cos cos sin +=……………………4分102722532254=⨯+⨯=……………………6分 (Ⅱ)A aB b sin sin =……………………8分 1027254=∴b ,728=∴b ……………………10分 C ab S ABC sin 21=∴∆,……………………11分 22728221⨯⨯⨯= 78=………………………………13分(2015顺义一模)15.解:(I)在ABC ∆中,因为2B A π-=,所以2B A π=+,即2B ππ<<, …….............................................................2分 所以sin sin sin cos 22A B B B ππ⎛⎫⎛⎫=-=--=- ⎪ ⎪⎝⎭⎝⎭..........................................4分(=-== ...........................................5分由正弦定理,sin sin a b A B =得sin 3sin b A a B ===. ...........................7分(II)因为2B A π-=,即2B A π=+,所以B 为钝角,A 为锐角. 由(I)可知,sin A =,所以cos A ===. ...........................................9分又sin ,cos 33B B ==-, ...........................................10分 所以()()cos cos cos C A B A B π=-+=-+⎡⎤⎣⎦ ...........................................11分 (12)分cos cos sin sin 33333A B A B=-+⎛⎫=-⨯-+ ⎪ ⎪⎝⎭= ...........................................13分(2016东城一模) (15)(本小题共13分)解:(Ⅰ)()()cos cos cos 2C A B A B π=-+=-+=⎡⎤⎣⎦ ∴ 045C = ……3分BC =,2AC =,0222222cos 2AB AC BC AC BC C ∴=+-•=+- 4=2AB ∴= ……7分(Ⅱ)由()sin(2)42f x x π=+=,解得 2243x k ππ+=π+或22243x k ππ+=π+,k Z ∈ , 解得1124x k π=π+或22524x k π=π+,12,k k Z ∈. 因为 1212()66x x k k ππ-=-π+≥,当12k k =时取等号, 所以当()f x =时,相邻两交点间最小的距离为6π. …………13分(2015延庆一模)15. (本小题满分13分)解:(Ⅰ)cos 2θ=∴223cos 2cos 12(1255θθ=-=⨯-= …………………2分∴2222cos AC AB BC AB BC θ=+-⨯⨯32542525=+-⨯⨯⨯17= ……………………5分∴AC = ……………………6分(Ⅱ) 5,,66BAC ABC BCA ππθθ∠=∠=∴∠=-………………7分 2451sin()sin662AB BC ππθ∴===- ……………………9分 54sin()6AB πθ∴=-,55()4sin(),(0,)66f ππθθθ∴=-∈ ……………………10分55(0,)66ππθ-∈, ∴当 562ππθ-=时,即3πθ=时()f θ的最大值为4 …………………………13分(2016西城一模) 15.(本小题满分13分) (1)解:因为sin 3sin B C =, 由正弦定理sin sin sin a b cA B C==,得3b c =, 由余弦定理2222cos a b c bc A =+-及π3A =,a =227b c bc =+-所以222()733b b b +-=,解得3b =.(2)解:由π3A =,得2π3B C =-, 所以2πsin()3sin 3C C -=.1sin 3sin 2C C C +=,5sin 2C C =,所以tan C =.(2014朝阳二模) 15.(本小题满分13分)解:(Ⅰ)由1sin 2ABC S bc A ∆=得,13sin 23ABC S c ∆2π=⨯⨯=. 所以5c =.由2222cos a b c bc A =+-得,22235235cos 493a 2π=+-⨯⨯⨯=, 所以7a =. ……………7分(Ⅱ)由sin sin a bA B=3sin B =,所以sin 14B =. 所以271cos 212sin 98B B =-=. ……………13分(2015东城一模)(2015海淀二模) (15)(共13分) 解:(Ⅰ)因为 36a A =, 所以 2223622b c a a bc +-=. ………………3分 因为 5c =,6b = 所以 23404930a a +-⨯=. 解得:3a =,或493a =-(舍). ………………6分 (Ⅱ)由(Ⅰ)可得:6cos 336A ==. 所以 21cos 22cos 13A A =-=. ………………9分 因为 3a =,5c =,6b =所以 2221cos 23a c b B ac +-==. ………………11分 所以cos2cos A B =. ………………12分因为 c b a >>,所以 (0,)3A π∈.因为 (0,)B ∈π,所以 2B A ∠=∠. ………………13分另解:因为 (0,)A ∈π, 所以 23sin 1cos A A =-=. 由正弦定理得:26sin 3B =. 所以 22sin 3B =. 所以 3622sin 22sin 3A B =⨯⨯==. ………………12分 因为 c b a >>,所以 (0,)3A π∈,(0,)2B π∈.所以 2B A ∠=∠. ………………13分(2014顺义一模)312cos 212A A -=∴sin(2)16A π-=————5分0A π<<,∴112666A πππ-<-< ∴由sin(2)16A π-=得262A ππ-=,∴3A π=———7分(2015石景山期末) 15.(本小题共13分)(Ⅰ)设CED α∠=.在CED ∆中,由余弦定理,得2222cos CE CD DE CD DE CDE =+-⨯⨯∠ …………………2分得CD 2+CD -6=0,解得CD =2(CD =-3舍去). …………………4分在CED ∆中,由正弦定理,得21sin 7CED ∠=…………………6分 (Ⅱ)由题设知03πα∈(,),所以7cos 7α= …………………8分 而23AEB πα∠=-,所以 222cos cos =cos cos sin sin 333AEB πππααα∠=-+() 131273217=cos 22αα-+=-⨯+=. ………………11分 在Rt EAB ∆中,247cos BE AEB==∠ …………………13分(2015朝阳二模)15.(本小题共13 分) 解:(Ⅰ)在中,因为,所以.由正弦定理得:,即.(Ⅱ)在中,由余弦定理得:,整理得,解得(舍负).过点作于,则为梯形的高. 因为,,所以.在直角中,. 即梯形的高为.(2015丰台二模) 15.(本小题共13分) 解:(Ⅰ)因为1sin 42BCD S BC CD BCD ∆=⋅⋅∠=, 所以552sin =∠BCD . 因为BCD ∠为锐角, 所以2255cos 1()5BCD ∠=-=. ………………6分 (Ⅱ)在BCD ∆中,因为BCD BC CD BC CD DB ∠⋅⋅-+=cos 2222,所以4=DB . 因为222BC CD DB =+,所以︒=∠90CDB .所以ACD ∆为直角三角形.因为30A ︒=,所以24AC CD ==,即4AC =. ………………13分(2016海淀一模) 15.解:(Ⅰ)在ACD ∆中,由正弦定理,有sin sin AC ADADC α=∠ …………………2分 在BCD ∆中,由正弦定理,有sin sin BC BDBDC β=∠ …………………4分因为πADC BDC ∠+∠=,所以sin sin ADC BDC ∠=∠ …………………6分 因为13AD DB =, 所以sin 3sin AC BC βα=…………………7分(Ⅱ)因为π6α=,π2β=, 由(Ⅰ)得πsin32π23sin 6AC BC == …………………9分 设2,3,0AC k BC k k ==>,由余弦定理,2222cos AB AC BC AC BC ACB =+-⋅⋅∠ …………………11分代入,得到222π1949223cos 3k k k k =+-⋅⋅⋅, 解得1k =,所以3BC =. …………………13分(2015房山一模) 15. (本小题共13分) 解:(Ⅰ)∵x x x x x x f 2cos 2cos 212sin 231cos 2)62sin()(2+-=-+-=π………………2分x x 2cos 212sin 23+==)62sin(π+x ………………3分 由∈+≤+≤+-k k x k (226222πππππZ )得,∈+≤≤+-k k x k (63ππππZ ) 5分∴)(x f 的单调递增区间是∈++-k k k ](6,3[ππππZ ) ………………7分(Ⅱ)∵21)62sin()(=+=πA A f ,π<<A 0,62626ππππ+<+<A于是6562ππ=+A ∴3π=A ……………10分∵ABC ∆ 由正弦定理2sin aR A=,得2sin 3a R A ===, ……………13分(2013石景山一模)15.(本小题满分13分) 解:(Ⅰ)()sin(2)cos26f x x xπ=++sin 2coscos2sincos266x x x ππ=++32cos222x x =+ …………1分1sin 2cos2)22x x =+)3x π=+ …………3分令+22+2232k x k πππππ-≤+≤5++1212k x k ππππ-≤≤ …………5分函数()f x 的单调递增区间5++()1212k k k Z ππππ⎡⎤-∈⎢⎥⎣⎦,. …………6分(Ⅱ)由()2f A =,1sin(2)=32A π+, 因为A 为ABC ∆内角,由题意知203A π<<,所以52333A πππ<+<因此5236A ππ+=,解得4A π=. …………8分由正弦定理BbA a sin sin =,得b = …………10分由4A π=,由3π=B ,可得sinC =,…………12分∴113sin 22242s ab C +==⨯=. …………13分(2013朝阳二模)(15)(本小题满分13分) 解:(Ⅰ)因为22()2cos sin sin cos 2222A A A A f A =+-sin cos )4A A A π=-=-. 因为A 为三角形的内角,所以0A <<π, 所以444A ππ3π-<-<. 所以当42A ππ-=,即34A π=时,()f A. ………6分(Ⅱ)由题意知())04f A A π=-=,所以sin()04A π-=. 又因为444A ππ3π-<-<,所以04A π-=,所以4A π=. 又因为12C 5π=,所以3B π=. 由正弦定理sin sin a b A B =得,sin sin 33sin sin 4a Bb A π===π. …………13分(2014东城一模)15.(共13分)解:⑴因为sin sin =a b A B,sin A a ,所以sin B B,tan B因为(0π)B ∈,. 所以π=3B . ⑵因为π=3B , 所以2221cos 22a cb B ac +-==, 因为2b =, 所以22=42a c ac ac ++≥,所以4ac ≤(当且仅当a c =时,等号成立), 所以12ABC S ac =△,sin B ≤所以ABC △(2013东城一模)(15)(共13分)解:(Ⅰ)因为sin cos b A B =,由正弦定理可得sin sin cos B A A B =, 因为在△ABC 中,sin 0A ≠,所以tan B =又0B <<π, 所以3B π=. (Ⅱ)由余弦定理 2222cos b a c ac B =+-,因为3B π=,b = 所以2212a c ac =+-.因为222a c ac +≥,所以12ac ≤.当且仅当a c ==ac 取得最大值12.(2014丰台二模)。

相关文档
最新文档