(完整版)因式分解平方差完全平方公式法练习题一

合集下载

(完整版)平方差、完全平方公式专项练习题(精品)

(完整版)平方差、完全平方公式专项练习题(精品)

平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)初中数学平方差完全平方公式练题一、单选题1.下列各式添括号正确的是(。

)A.x y(y x)B.x y(x y)C.10m5(2m)D.32a(2a3)2.(1y)(1y)(。

)A.1+y2B.1y2C.1y2D.1y23.下列计算结果为2ab a2b2的是(。

)A.(a b)2B.(a b)2C.(a b)2D.(a b)24.5a24b2=()25a416b4,括号内应填(。

)A.5a24b2B.5a24b2C.5a24b2D.5a24b25.下列计算正确的是(。

)A.(x y)2x22xy y2B.(m2n)2m24n2C.(3x y)2=9x2-6xy+y2D.x5x25x25/46.多项式15m3n25m2n20m2n3各项的公因式是(。

)A.5mnB.5m2n2C.5m2nD.5mn27.下列多项式中,能用平方差公式分解因式的是(。

)A.a2b 2B.5m220mnC.x2y2D.x298.化简(x3)2x(x6)的结果为(。

)A.6x9B.12x9C.9D.3x99.下列多项式能用完全平方公式分解的是(。

)A.x2x 1B.12x x2C.a2a1/2D.a2b22ab10.计算(3a bc)(bc3a)的结果是(。

)A.b2c29a2B.b2c23a2C.b2c29a2D.9a2b2c211.如果x2(m1)x9是一个完全平方式,那么m的值是(。

)A.7B.7C.5或7D.5或512.若a,b,c是三角形的三边之长,则代数式a22bc c2b2的值(。

)A.小于0B.大于0C.等于0D.以上三种情况均有可能二、解答题13.计算:1)-3x2-5y/(x2-5y);2)9x2+1(1-3x)(-3x-1)。

解:(1)-3x2-5y/(x2-5y)= -3x2/(x2-5y) - 5y/(x2-5y) = -3 - 5y/(x2-5y)。

2)9x2+1(1-3x)(-3x-1) = 9x2+1(9x2+3x-x-1) = (3x+1)(3x-1)。

平方差、完全平方公式练习题

平方差、完全平方公式练习题

整式的除法1 a m -a n= _______ (a z 0, m n 都是正整数,并且m >n ).即同底数幕相除,底数 ________ , 指数 _____ .1— ___________________________________ 1 (天津中考)计算x 5宁x 2的结果等于 ______________________________________________ .2规定a = _______ (a z 0),即任何不等于o 的数的0次幕都等于1. 2— 1若(a — 2)0=1,则a 的取值范围是() >2=2 <2 Z23单项式相除,把 _______ 与 ____ 别相除作为商的 ______,对于只在被除式里含有 的字母,则连同它的 _____ ■乍为商的一个因式.23— 1 (扬州中考)若口^彳乂丫二彳乂丫,则□内应填的单项式是()4多项式除以单项式,先把这个多项式的每一项除以 ________ 再把所得的商 _____ .4— 1 计算(6 x 2y 3— 2x 3y 2+xy ) + xy 的结果是()2 2 2 2—2x y +1 — 2x y — 2xy +1— 2x y +11. 计算:(1)(— a )6—( — a)1 (2)(— ab )5—( — ab )3; (3)( x — y )5—(y—(4)2 x 2y 3-( — 3xy ) ;(5)10 x 2y 3-2x 2y ;2、.(娄底中考)先化简,再求值:(x +y )(x — y ) — (4x 3y — 8xy 3) +2xy ,其中 x =1,y = —3.平方差、完全平方公式练习题(6 ) x 109) -( — 5X 106).(7)( x 5y 3— 2x 4y 2+3x 3y 5) +( — j xy ); (8)(6 x 3y 4z — 4x 2y 3z +2xy 3) +2 xy 3.1.下列多项式乘法,能用平方差公式进行计算的是()A.(x+y)( — x — y)B.(2x+3y)(2x — 3z)C.( — a — b)(a — b)D.(m— n)(n — m) 2. 下列多项式乘法,不能用平方差公式计算的是()A.( — a — b)( — b+a)B.(xy+z)(xy — z)C.( — 2a — b)(2a+b)D. — y)( — y — +(1 — a)(1+a)(1+a 2)的计算结果是() A. — 1— 1— 2a 44. 下列各式运算结果是x 2 — 25y 2的是()A.(x+5y)( — x+5y)B.( — x — 5y)( — x+5y)C.(x — y)(x+25y)D.(x — 5y)(5y — x)5. ( )(5a +1)=1-25a 2,(-2 a 2-5b)()=4 a 4-25b 22 26. a(a — 5) — (a+6)(a — 6) ( x+y)( x— y)( x +y)8. 计算.2 2 2(1)( a +b) -( a -b) (2)(3x-4y) -(3x+y) (3)(2x+3y) 9. 如果(2a +2b+1)(2 a +2b-1)=63,求 a +b 的值.10. 已知x 2 y2 24, x y 6,求代数式5x 3y 的值7. 998 2— 42003 X 2001 — 200222-(4x-9y)(4x+9y)+(2x-11 若(a b c)(a b c) (A B)(A B),贝y A _____________________________________2 2 2 2 2 21.( a+b) =(a-b) + _____________ a +b=[( a+b) +(a-b) ]( ____________ ) _______2 2 2 2 2 2a +b =( a+b) + ___ , a +b =( a-b) + __ .2、 (a+b+cf 3 、(3a+4b — c)24、已知(a+b) ■=7, (a — b)"=3,求 a+b和 ab 的值。

初中数学提取公因数完全平方公式平方差公式综合练习题(附答案)

初中数学提取公因数完全平方公式平方差公式综合练习题(附答案)

初中数学提取公因数完全平方公式平方差公式综合练习题一、单选题1.下列多项式中,能用平方差公式分解因式的是( )A.()22a b +-B.2520m mn -C.22x y --D.29x -+2.下列分解因式正确的是( )A.()244x x x x -+=-+B.()2x xy x x x y ++=+C. ()()()2x x y y y x x y -+-=-D.()()24422x x x x -+=+- 3.下列各因式分解正确的是( )A.()288x x x x -+=-+B.()22211x x x +-=-C.()2244121x x x -+=-D.()()24222x x x x -=+- 4.下列各式能用完全平方公式进行因式分解的是( )A.21x x ++B.221x x +-C.21x -D.21025x x -+5.已知216x x k ++是完全平方式,则常数k 等于( )A.64B.48C.32D.166.下列各式中,不能用公式法分解因式的是( )A.269x x -+B.22x y -+C.224x x ++D.222x xy y -+-7.分解因式244a a -+正确的是( )A.()22a -B.()22a +C.()()22a a -+D.()241a a -+ 8.把多项式2816x x -+因式分解,结果正确的是( )A.()24x -B.()28x - C.()()44x x +- D.()()88x x +- 9.下列多项式能用完全平方公式进行因式分解的是( )A.21a -B.24a +C.221a a ++D.244a a --10.分解因式:42816a a -+.11.分解因式:1.2232128x xy xy -+;2.()()211x a x a -+-.14.分解因式:()()143p p p +-+= .15.若22425x axy y ++是一个完全平方式,则a =________.16.若225x kx ++是一个完全平方式,则k = .17.若()22316x m x +-+是关于x 的完全平方式,则m = . 18.分解因式:322x y x y xy -+= . 参考答案1.答案:D解析:A 选项,2a 与()2b -符号相同,不能用平方差公式分解因式,故A 选项错误;B 选项,2520m mn -()54m m n =-,不能用平方差公式分解因式,故B 选项错误;C 选项,2x 与2y 符号相同,不能用平方差公式分解因式,故C 选项错误;D 选项,22293x x -+=-+,两项符号相反,能用平方差公式分解因式,故D 选项正确.故选D.2.答案:C解析:A.()244x x x x -+=--,故此选项错误;B.()21x xy x x x y ++=++,故此选项错误;C.()()()2x x y y y x x y -+-=-,故此选项正确;D.()22442x x x -+=-,故此选项错误.故选C3.答案:C解析:()288x x x x -+=--,故选项A 错误;原式不能分解因式,故选项B 错误;()2244121x x x -+=-,故选项C 正确;()244x x x x -=-,故选项D 错误.故选C 4.答案:D解析:A ,B 两项不能分解因式,故A ,错误;选项C 可用平方差公式分解因式,()()2111x x x -=-+;选项D 符合套用完全平方公式的式子特点,()2210255x x x -+=-.故C 错误;D 符合完全平方公式的特征,故D 正确解析:1628x x =,2864k ∴==.故选A6.答案:C 解析:选项A 中,原式()23x =-,不符合题意;选项B 中,原式()()y x y x =+-,不符合题意;选项C中,原式不能用公式法分解因式,符合题意;选项D 中,原式()2x y =--,不符合题意.7.答案:A解析:()22442a a a -+=-.8.答案:A解析:()228164x x x -+=-.9.答案:C解析:A 选项,21a -不符合完全平方公式分解因式的特点,故错误;B 选项,24a +不符合完全平方公式分解因式的特点,故错误;C 选项,()22211a a a ++=+,故正确;D 选项,()224428a a a --=--,不符合完全平方公式分解因式的特点,故错误.故选C.10.答案:()()()2222422a a a =-=+-原式 解析:11.答案:1.()223232128264x xy xy x x y y -+=-+2.()()211x a x a -+-()()211x a x a =---()()11x a x =--.解析:12.答案:()231x -解析:()()22236332131x x x x x -+=-+=- 13.答案:()29a -解析:()29a =-原式14.答案:()()22p p +-解析:()()143p p p +-+2343p p p =--+24p =-()()22p p =+-. 15.答案:20±解析:因为222(25)42025x y x xy y ±=±+,所以20a =±.16.答案:10±解析:225x kx ++是一个完全平方式,10k ∴=±.17.答案:1m =-或7解析:()22316x m x +-+是关于x 的完全平方式,()238m ∴-=±,解得1m =-或7.18.答案:()21xy x -解析:原式()()22211xy x x xy x =-+=-.。

初中数学:因式分解强化练习(含答案)

初中数学:因式分解强化练习(含答案)

因式分解知识讲解1、因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解.注:因式分解和整式乘法互为逆运算.2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法: 平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法;(4)最后考虑用分组分解法.4、因式分解的原则(1)分解因式必须要分解到不能分解为止.(2)有公因式的一定要先提取公因式.(一)提公因式法提取公因式法:)(c b a m mc mb ma ++=++公因式:一个多项式每一项都含有的相同的因式,叫做这个多项式各项的公因式;找公因式的方法:1、系数为各系数的最大公约数;2、字母是相同字母;3、字母的次数:相同字母的最低次数.总结:把公有的因式提出来,剩下的照着抄下来.一、填空题(1)因式分解:am-3a= a (m-3) .(2)因式分解:ax ²-ax= ax (x-1) .(3)因式分解:3ab ²+a ²b= ab (3b+a ) .(4)因式分解:x 2﹣xy= x (x ﹣y ) .(5)因式分解:(x+y )²-(x+y )= (x+y )(x+y-1) .(6)因式分解:a (a-b )-a+b= (a-b )(a-1) .(7)因式分解:2m(a -b)-3n(b -a)= (a -b)(2m +3n) .二、因式分解的解答题1、直接提取公因式(1)3ab 2+a 2b ; (2)2a 2-4a ; (3)20x ³y-15x ²y 解:原式=ab(3b +a) 解:原式=2a(a -2) 解:原式=)34(52-x y x(4)x 4+x 3+x ; (5)3x 3+6x 4; (6)4a 3b 2-10ab 3c ;解:原式=x(x 3+x 2+1). 解:原式=3x 3(1+2x). 解:原式=2ab 2(2a 2-5bc).(7)-3ma 3+6ma 2-12ma ; (8)ab b a b a 264222-+- (9) y x y x y x 332232-- 解:原式=-3ma(a 2-2a +4) 解:原式=-2ab (2ab-3a+1) 解:原式=)321(22x y y x --2、变符号,再提取公因式(1)a (3-b )+3(b-3) (2)2a (x-y )-3b (y-x ) (3)x(x -y)+y(y -x) 解:原式=(3-b )(a-3) 解:原式=(x-y )(2a+3b ) 解:原式=(x -y)2.(4)m(5-m)+2(m -5); (5))93()3(2-+-x x解:原式=(m -2)(5-m). 解:原式=x (x-3);3、稍微复杂的提取公因式(1)6x (a-b )+4y (b-a ) (2)6p(p +q)-4q(p +q).解:原式=2(a-b )(3x-2y ) 解:原式=2(p +q)(3p -2q).(3)4q(1-p)3+2(p -1)2. (4)5x(x -2y)3-20y(2y -x)3.解:原式=2(1-p)2(2q -2pq +1) 解:原式=5(x -2y)3(x +4y).(5)(a 2-ab)+c(a -b); (6)22)2(20)2(5a b b b a a --- 解:原式=(a +c)(a -b). 解:原式=5(a-2b )2(a-4b )4、用简便方法计算:(1)213×255-213×55. (2)1571215711576⨯-⨯-⨯. 解:(1)原式=42600; 解:(2)原式=-15.(二)平方差公式因式分解1、平方差公式 ))((22b a b a b a -+=-2、平方减平方等于平方差,等于两个数的和乘以两个数的差.3、有公因式的,先提公因式,再因式分解.一、填空题(1)因式分解:a ³-a= a (a+1)(a-1) .(2)因式分解:x 2﹣4= (x+2)(x ﹣2) .(3)因式分解:16x 2-64= 16(x +2)(x -2) .(4)因式分解:a 3﹣ab 2= a (a+b )(a ﹣b ) .二、在实数范围内分解因式:1、(1)4x 2-y 2 (2)-16+a 2b 2 (3)100x 2-9y 2解:(2x +y)(2x -y) 解:(ab +4)(ab -4) 解:(10x +3y)(10x -3y)(4)4x ²-9y ² (5)x 2-3解:原式=(2x+3y )(2x-3y ) 解:原式=(x -3)(x +3)(6)4x 2-25 (7)(x 2+9)2-36x 2解:原式=(2x +5)(2x -5) 解:原式=(x +3)2(x -3)22、将下列式子因式分解.(1)(m+n )²-(m-n )² (2)(x +2y)2-(x -y)2 (3)(a +3)2-(a +b)2 解:原式=4mn 解:原式=3y(2x +y) 解:原式=(2a +b +3)(3-b)3、先提公因式再因式分解.(1)a 3-9a (2)2416x x - (3)224364b a a -解:原式=a(a +3)(a -3) (2)原式=x ²(x+4)(x-4) (3)原式=4a ²(a+3b )(a-3b )(4)3m(2x -y)2-3mn 2 (5)(a -b)b 2-4(a -b) 解:原式=3m(2x -y +n)(2x -y -n) 解:原式=(a -b)(b +2)(b -2)4、四次的因式分解.(1)16-b 4 (2)x 4-4解:原式=(2+b)(2-b)(4+b 2) 解:原式=(x 2+2)(x +2)(x -2) (三)完全平方公式因式分解完全平方式 222)(2b a b ab a ±=+± 等于(首-尾)2或者(首+尾)2一、填空题(1)因式分解:x 2y 2-2xy +1= (xy -1)2 .(2)因式分解:-4a 2+24a -36= -4(a -3)2 .(3)因式分解:x 2﹣6x+9= (x ﹣3)2 .(4)因式分解:ab 2﹣4ab+4a= a (b ﹣2)2 .(5)因式分解:= ﹣(3x ﹣1)2 .二、解答题1、分解因式.(1)a 2+4a +4 (2)4x 2+y 2-4xy (3)9-12a +4a 2 解:原式=(a +2)2 解:原式=(2x -y)2 解:原式=(3-2a)22、因式分解.(1)9)1(6)1(222+---x x (2)16)4(8)4(222+-+-m m m m 解:原式=(x+2)²(x-2)² 解:原式=4)2(-m(4)(a +b)2-4(a +b)+4 (3)(m +n)2-6(m +n)+9解:原式=(a +b -2)2 解:原式=(m +n -3)23、利用因式分解计算.(1)202²+98²+202×196 (2)800²-1600×798+798²解:(1)原式=90000; 解:(2)原式=4.4、利用因式分解计算:992+198+1.解:原式=992+2×99×1+1=(99+1)2=1002=10000. (四)十字相乘法方法步骤:第一步:拆分,拆分二次项次数和常数项.第二步:交叉相乘,然后相加,加出来的得数若等于中间的一次项系数则配对成功,可以横着写.十字相乘法专项练习题(1)=--1522x x (x-5)(x+3) (2)=+-652x x (x-2)(x-3)(2)=--3522x x (2x+1)(x-3) (4)=-+3832x x (3x-1)(x+3)(5)=+-672x x (x-1)(x-6) (6)=-+1232x x (3x-1)(x+1)(7)=--9542x x (4x-9)(x+1) (8)=--2142x x (x-7)(x+3)(9)2x 2+3x+1= (2x+1)(x+1) (10)=-+22x x (x-1)(x+2)(11)20-9y -20y 2 =-(4y+5)(5y-4) (12)=-+1872m m (m-2)(m+9)(13)=--3652p p (p-9)(p+4) (14)=--822t t (t-4)(t+2)(15)=++342x x (x+1)(x+3) (16)=++1072a a (a+2)(a+5)(17)=+-1272y y (y-3)(y-4) (18)q 2-6q+8=(q-2)(q-4)(19)=-+202x x (x-4)(x+5) (20)=++232x x (x+1)(x+2)(21)18x 2-21x+5=(3x-1)(6x-5) (22)=-+1522x x (x-3)(x+5)(23)2y 2+y -6= (2y-3)(y+2) (24)6x 2-13x+6= (2x-3)(3x-2)(25)3a 2-7a -6= (3a+2)(a-3) (26)6x 2-11x+3= (2x-3)(3x-1)(27)4m 2+8m+3= (2m+3)(2m+1) (28)10x 2-21x+2= (10x-1)(x-2)(29)8m 2-22m+15= (2m-3)(4m-5) (30)4n 2+4n -15= (2n+5)(2n-3)(31)6a 2+a -35= (2a+5)(3a-7) (32)5x 2-8x -13= (5a-13)(a+1)(33)4x 2+15x+9=(4x+3)(x+3) (34)8x 2+6x -35=(4x-7)(2x+5)因式分解中考真题专项练习(一)1、(云南)因式分解:3x 2﹣6x+3= 3(x-1)2 .2、(宜宾)分解因式:3m 2﹣6mn+3n 2= 3(m-n)2 .3、(仙桃天门潜江江汉)分解因式:3a 2b+6ab 2= 3ab(a+b) .4、(湘潭)因式分解:m 2﹣mn= m(m-n) .5、(绥化)分解因式:a 3b ﹣2a 2b 2+ab 3= ab(a-b)2 .6、(潍坊)分解因式:x 3﹣4x 2﹣12x= x(x-6)(x+2) .7、(威海)分解因式:3x 2y+12xy 2+12y 3= 3y(x+2y)2 .8、(沈阳)分解因式:m 2﹣6m+9= (m-3)2 .9、(黔西南州)分解因式:a 4﹣16a 2= a 2(a+4)(a-4) .10、(南充)分解因式:x 2﹣4x ﹣12= (x-6)(x+2) . 11、(六盘水)分解因式:2x 2+4x+2= 2(x+1)2 . 12、(临沂)分解因式:a ﹣6ab+9ab 2= a(1-3b)2 .13、(呼伦贝尔)分解因式:27x 2﹣18x+3= 3(3x-1)2 . 14、(黄石)分解因式:x 2+x ﹣2= (x+2)(x-1) .15、(哈尔滨)把多项式a 3﹣2a 2+a 分解因式的结果是 a(a-1)2 .16、(乐山)下列因式分解:①x 3﹣4x=x (x 2﹣4);②a 2﹣3a+2=(a ﹣2)(a ﹣1);③a 2﹣2a ﹣2=a (a ﹣2)﹣ 2;④.其中正确的是 ②④ (只填序号). 17、(江津区)把多项式x 2﹣x ﹣2分解因式得 (x-2)(x+1) .18、(荆州)分解因式:x (x ﹣1)﹣3x+4= (x-2)2 .19、(莱芜)分解因式:﹣x 3+2x 2﹣x= -x(x-1)2 .20、(菏泽)将多项式a 3﹣6a 2b+9ab 2分解因式得 a(a-3b)2 .21、(抚顺)分解因式:ax 2﹣4ax+4a= a(a-2)2 .22、(巴中)把多项式3x 2+3x ﹣6分解因式的结果是 3(x+2)(x-1) .23、(鞍山)因式分解:ab 2﹣a= a(b+1)(b-1) .24、(中山)分解因式:x 2﹣y 2﹣3x ﹣3y= (x+y)(x-y-3) .25、(安顺)将x ﹣x 2+x 3分解因式的结果为 x(1-0.5x)2 .26、(湘潭)已知m+n=5,mn=3,则m 2n+mn 2= 15 .27、(潍坊)分解因式:27x 2+18x+3= 3(3x+1)2 .28、(威海)分解因式:(x+3)2﹣(x+3)= (x+3)(x+2) .29、(陕西)分解因式:a 3﹣2a 2b+ab 2= a(a-b)2 .30、(泉州)因式分解:x 2﹣6x+9= (x-3)2 .31、(攀枝花)因式分解:ab 2﹣6ab+9a= a(b-3)2 .32、(内江)分解因式:﹣x 3﹣2x 2﹣x= -x(x+1)2.33、(临沂)分解因式:xy 2﹣2xy+x= x(y-1)2 .34、(嘉兴)因式分解:(x+y )2﹣3(x+y )= (x+y)(x+y-3) .35、(赤峰)分解因式:3x 3﹣6x 2+3x= 3x(x-1)2 .36、(泰安)将x+x 3﹣x 2分解因式的结果是 x(x-21)2 . 37、(绍兴)分解因式:x 3y ﹣2x 2y 2+xy 3= xy(x-y)2 .38、(黔东南州)分解因式:x3+4x2+4x= x(x+2)2.39、(聊城)分解因式:ax3y+axy3﹣2ax2y2= axy(x-y)2.40、(莱芜)分解因式:(2a+b)2﹣8ab= (2a-b)2.41、(巴中)把多项式x3﹣4x2y+4xy2分解因式,结果为 x(x-2y)2.42、(潍坊)在实数范围内分解因式:4m2+8m﹣4= 4(m2+2m-1) .43、(雅安)分解因式:2x2﹣3x+1= (2x-1)(x-1) .44、(芜湖)因式分解:(x+2)(x+3)+x2﹣4= (2x+1)(x+2) .45、(深圳)分解因式:﹣y2+2y﹣1= -(y-1)2.46、(广元)分解因式:3m3﹣18m2n+27mn2= 3m(m-3n)2.47、(广东)分解因式:2x2﹣10x= 2x(x-5) .48、(大庆)分解因式:ab﹣ac+bc﹣b2= (a-b)(b-c) .49、(广西)分解因式:2xy﹣4x2= 2x(y-2x) .50、(本溪)分解因式:9ax2﹣6ax+a= a(3a-1)2.51、(北京)分解因式:mn2+6mn+9m= m(n+3)2.52、(珠海)分解因式:ax2﹣4a= a(x+2)(x-2) .53、(张家界)因式分解:x3y2﹣x5= x3(y+x)(y-x) .54、(宜宾)分解因式:4x2﹣1= (2x-1)(2x+1) .55、(岳阳)分解因式:a4﹣1= (a+1)(a-1)(a2+1) .56、(扬州)因式分解:x3﹣4x2+4x= x(x-2)2.57、(潍坊)分解因式:a3+a2﹣a﹣1= (a+1)2(a-1) .58、(威海)分解因式:16﹣8(x﹣y)+(x﹣y)2= (4-x+y)2.59、(淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.60、(遵义)分解因式:x3﹣x=x(x+1)(x﹣1).因式分解中考真题专项练习(二)1、(泸州)分解因式:3a2﹣3=3(a+1)(a﹣1).2、(泸州)分解因式:2m2﹣8=2(m+2)(m﹣2).3、(泸州)分解因式:2a2+4a+2=2(a+1)2.4、(泸州)分解因式:2m2﹣2=2(m+1)(m﹣1).5、(泸州)分解因式:3a2+6a+3= 3(a+1)2.6、(泸州)分解因式:x2y﹣4y=y(x+2)(x﹣2).7、(泸州)分解因式:x3﹣6x2+9x=x(x﹣3)2.8、(泸州)分解因式:3x 2+6x+3= 3(x+1)2 .9、(泸州)分解因式:ax ﹣ay= a (x ﹣y ) .10、(泸州)分解因式:3a 2﹣6a+3= 3(a ﹣1)2 .11、(泸州)分解因式:ax 2﹣4ax+4a= a (x 2﹣4x+4)=a (x ﹣2)2 .12、(南充)分解因式:2a 3﹣8a = 2a (a+2)(a ﹣2) .13、(德阳)分解因式:2xy 2+4xy+2x = 2x (y+1)2 .14、(眉山)分解因式:x 3﹣9x = x (x+3)(x ﹣3) .15、(绵阳)因式分解:x 2y ﹣4y 3= y (x ﹣2y )(x+2y ) .16、(内江)分解因式:a 3b ﹣ab 3= ab (a+b )(a ﹣b ) .17、(攀枝花)分解因式:x 3y ﹣2x 2y+xy = xy (x ﹣1)2 .18、(遂宁)分解因式3a 2﹣3b 2= 3(a+b )(a ﹣b ) .19、(宜宾)分解因式:2a 3b ﹣4a 2b 2+2ab 3= 2ab (a ﹣b )2 .20、(自贡)分解因式:ax 2+2axy+ay 2= a (x+y )2 .21、(广安)因式分解:3a 4﹣3b 4= 3(a 2+b 2)(a+b )(a ﹣b ) .22、(广元)分解因式:a 3﹣4a = a (a+2)(a ﹣2) .23、(眉山)分解因式:3a 3﹣6a 2+3a = 3a (a ﹣1)2 .24、(绵阳)因式分解:m 2n+2mn 2+n 3= n (m+n )2 .25、(内江)分解因式:xy 2﹣2xy+x = x (y ﹣1)2 .26、(攀枝花)分解因式:a 2b ﹣b = b (a+1)(a ﹣1) .27、(宜宾)分解因式:b 2+c 2+2bc ﹣a 2= (b+c+a )(b+c ﹣a ) .28、(泸州冲刺卷)(1)分解因式:2=-m m 83 2m(m+2)(m-2) .(2)分解因式:=-222m ()()112-+m m .(3)分解因式:=+-962x x ()23-x 29、(泸州模拟)(1)分解因式:2a 2﹣2= 2(a+1)(a ﹣1) .(2)分解因式:x 2﹣2x+1= ()21-x . 30、(泸州冲刺卷)(1)分解因式:3x 3﹣12x = 3x (x ﹣2)(x+2) .(2)分解因式:2x 2﹣8= 2(x+2)(x ﹣2) .(3)分解因式:3m 2﹣12= 3(m+2)(m ﹣2) .(4)分解因式:2m 2+4m+2= 2(m+1)2 .(5)分解因式:x 2﹣6x+9= (x ﹣3)2 .31、(南充)分解因式:x 2﹣4(x ﹣1)= (x ﹣2)2 .32、(巴中)分解因式:2a2﹣8=2(a+2)(a﹣2).33、(达州)分解因式:x3﹣9x=x(x+3)(x﹣3).34、(乐山)把多项式分解因式:ax2﹣ay2=a(x+y)(x﹣y).35、(绵阳)因式分解:x2y4﹣x4y2=x2y2(y﹣x)(y+x).36、(宜宾)分解因式:am2﹣4an2=a(m+2n)(m﹣2n).37、(广安)分解因式:my2﹣9m=m(y+3)(y﹣3).38、(株洲)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).39、(眉山)分解因式:xy2﹣25x=x(y+5)(y﹣5).40、(宜宾)分解因式:x3﹣x=x(x+1)(x-1).41、(深圳)分解因式:2x2﹣8=2(x+2)(x﹣2).42、(绵阳)在实数范围内因式分解:x2y﹣3y=y(x﹣)(x+).。

中考试题专题07完全平方公式、平方差和因式分解(解析版)-微研究之必考概念.docx

中考试题专题07完全平方公式、平方差和因式分解(解析版)-微研究之必考概念.docx

中考必考概念第七讲:完全平方公式、平方差和因式分解学易初中数学微精品团队1、(3分)(2013•枣庄)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2C.(a-b)2D.a2-b22、(3分)(2013•锦州)下列运算正确的是( )A .(a+b )2=a 2+b 2B .x 3+x 3=x 6C .(a 3)2=a 5D .(2x 2)(-3x 3)=-6x 53、(3分)(2013•德阳)若 132+-a a +b 2+2b +1=0,则a 2+21a−|b |=1、(2013•昭通)下列各式计算正确的是( )A .(a+b )2=a 2+b 2B .a 2+a 3=a 5C .a 8÷a 2=a 4D .a •a 2=a 32、(2013•湛江)下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)4=a 6C .a 4÷a=a 3D .(x+y )2=x 2+y 23、(2013•云南)下列运算,结果正确的是( )A .m 6÷m 3=m 2B .3mn 2•m 2n=3m 3n 3C .(m+n )2=m 2+n 2D .2mn+3mn=5m 2n 24、(2013•烟台)下列各运算中,正确的是( )A .3a+2a=5a 2B .(-3a 3)2=9a 6C .a 4÷a 2=a 3D .(a+2)2=a 2+45、(2013•湘西州)下列运算正确的是( )A .a 2-a 4=a 8B .(x-2)(x-3)=x 2-6C .(x-2)2=x 2-4D .2a+3a=5a6、(2013•咸宁)下列运算正确的是( )A .a 6÷a 2=a 3B .3a 2b-a 2b=2C .(-2a 3)2=4a 6D .(a+b )2=a 2+b 27、(2013•天水)下列计算正确的是( )A .a 3+a 2=2a 5B .(-2a 3)2=4a 6C .(a+b )2=a 2+b 2D .a 6÷a 2=a 38、(2013•深圳)下列计算正确的是( )A .(a+b )2=a 2+b 2B .(ab )2=ab 2C .(a 3)2=a 5D .a •a 2=a 39、(2013•黔东南州)下列运算正确的是( )A .(a 2)3=a 6B .a 2+a=a 5C .(x-y )2=x 2-y 2D .38 +2=22 10、(2013•莆田)下列运算正确的是( )A .(a+b )2=a 2+b 2B .3a 2-2a 2=a 2C .-2(a-1)=-2a-1D .a 6÷a 3=a 211、(2013•六盘水)下列运算正确的是( )A .a 3•a 3=a 9B .(-3a 3)2=9a 6C .5a+3b=8abD .(a+b )2=a 2+b 212、(2013•临沂)下列运算正确的是( )A .x 2+x 3=x 5B .(x-2)2=x 2-4C .2x 2•x 3=2x 5D .(x 3)4=x 713、(2013•呼伦贝尔)下列各式计算正确的是( )A .(a-b )2=a 2-b 2B .(-a 4)3=a 7C .2a •(-3b )=6abD .a 5÷a 4=a (a ≠0)14、(2013•杭州)若a+b=3,a-b=7,则ab=( )A .-10B .-40C .10D .4015、(2013•崇左)下列运算正确的是( )A .a-2a=aB .(-2a 2)3=-8a 6C .a 6+a 3=a 2D .(a+b )2=a 2+b 216、(2013•长沙)下列计算正确的是( )A .a 6÷a 3=a 3B .(a 2)3=a 8C .(a-b )2=a 2-b 2D .a 2+a 2=a 417、(2013•安徽)下列运算正确的是( )A .2x+3y=5xyB .5m 2•m 3=5m 5C .(a-b )2=a 2-b 2D .m 2•m 3=m 618、(2013•珠海)已知a 、b 满足a+b=3,ab=2,则a 2+b 2=19、(2013•枣庄)若a 2−b 2=61,a −b =31,则a+b 的值为 20、(2013•徐州)当m+n=3时,式子m 2+2mn+n 2的值为 21、(2013•泰州)若m=2n+1,则m 2-4mn+4n 2的值是22、(2013•晋江市)若a+b=5,ab=6,则a-b=23、(2013•郴州)已知a+b=4,a-b=3,则a 2-b 2=(作者原创2014年中考模拟)共4小题,共15分,时间:5分钟1、(2014原创)(3分)请写出一个能得用右图进行验证的整式乘法公式 。

平方差完全平方公式专项练习题

名师推荐精心整理学习必备平方差公式专项练习题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个 C.3个 D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-55.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.6.利用平方差公式计算:2009×2007-20082.(1)一变:22007200720082006-⨯.(2)二变:22007 200820061⨯+.7.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4 ……(1)观察以上各式并猜想:(1-x)(1+x+x2+……+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.② 2+22+23+……+2n=______(n为正整数).③(x-1)(x99+x98+x97+……+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.名师推荐 精心整理 学习必备完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

公式法分解因式经典练习题分类汇编

【基础知识】公式法分解因式(1)平方差公式: a 2-b 2= .(2)完全平方公式:a 2+2ab +b 2= . a 2-2ab +b 2= .(3)立方和公式:3322()()a b a b a ab b +=+-+.(4)立方差公式:3322()()a b a b a ab b -=-++.【题型1】利用平方差公式分解因式分解因式:(1)4x 2-y 2; (2)-16+a 2b 2; (3)x 2100-25y 2; (4)(x +2y)2-(x -y)2.【变式训练】 1.分解因式(1)4a 2-y 2; (2)x 2y 4-49; (3)4a 2-(3b -c)2; (4)(x +y)2-4x 2; (5)x 4-16;(6)(4x -3y)2-25y 2 (7)25(a +b)2-4(a -b)2; (8)9x 2-(2x -y)2;(9)(a +b)4-(a -b)4;(10)(2x +y)2-(x -2y)2; (11)9(a +b)2-16(a -b)2; (12)9(3a +2b)2-25(a -2b)2.2.分解因式(1)a 3-9a ; (2)3x 2-12; (3)8m 3-2m ; (4)12 m 2n 2-8; (5)31a 2b 2-3.(6)3m(2x -y)2-3mn 2; (7)(a -b)b 2-4(a -b); (8)x ²-y ²-3x-3y ; (9)a 2(a-b )+b 2(b-a ).【题型2】完全平方式已知x 2+kxy +16y 2是一个完全平方式,则k 的值是 .【变式训练】1.下列式子为完全平方式的是( )A.a 2+ab +b 2B.a 2+2a +2C.a 2-2b +b 2D.a 2+2a +12.若9a 2+6(k -3)a +1是完全平方式,则 k 的值是( )A.±4B.±2C.3D.4或23.已知a 2x 2±2x+b 2是完全平方式,且a ,b 都不为零,则a 与b 的关系为( )A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数4.下列各式能组成完全平方式的个数是 .①x 6-31128x ②x 8+4x 4+4 ③3m 2+2m+3 ④m 2-2m+4 5.若x 2+8x +k 是完全平方式,则k = .6.若x 2+mx +9是完全平方式,则m 的值是 .【题型3】利用完全平方公式分解因式分解因式: (1)a 2+4a +4; (2)x 2+4y 2-4xy ; (3)9+12a +4a 2; (4)a 2-2a +1.【变式训练】1.因式分解:(1)4x 2+y 2-4xy ; (2)9-12a +4a 2; (3)(m +n)2-6(m +n)+9.2.分解因式:(1)ab2-4ab+4a;(2)-3x+12x-12;(3)4x2-8x+4;(4)2a3-8a2+8a; (5)-2x2y+12xy-18y; (6)3x2-6x+3; (7)-4a2+24a-36.(8)2a3b-8a2b+8ab; (9)4x3y-24x2y+39xy; (10)-3x2y+6xy-3y; (11)4a2b2+24ab+36.3.分解因式(1)x(x-1)-3x+4; (2)(x-2y)2+8xy;(3)(2a+b)2-4ab;(4)(x-y)2-z2+4xy;(5)ab(ab+2)+2ab+4; (6)(x+2y)2-8xy;(7)(x-y)2+4xy;(8)(2a-b)2-c2+8ab.。

14.3.2公式法分解因式--完全平方公式---

= (m+n-3)2
通过解这两题,你得到什么启示?
第11页,共26页。
解例2可以发现:
在因式分解过程中,先把多项式化成符合完全平
方公式: a2±2ab+b2 = (a±b)2的形式,
然后再根据公式分解因式.公式中的a , b可以
是单项式,也可以是多项式. ;
第12页,共26页。
例3把下列多项式分解因式
2、若有公因式,应提取公因式,再用公
式法分解因式。
3、分解因式后的每个因式应为不能再分
解了。 4、分解因式时,要灵活采用方法
第14页,共26页。
请运用完全平方公式把下列 各式分解因式:
1 x2 4x 4 原式 x 22
2 a2 6a 9
3 4a2 4a 1 原式 2a 12
4 9m2 6mn n2 原式 3m n2
第3页,共26页。
回忆完全平方公式
ab 2 a2 2abb2
ab 2 a2 2abb2
第4页,共26页。
下面的多项式能分解因式吗?
(1) a2+2ab+b2 (2) a2-2ab+b2
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
乘法公式——完全平方公式:
3.分解因式一直到不能分解为止.所以分解 后一定检查括号内是否能继续分解.
第2页,共26页。
我们前面学习了利用平方差公式来分解
因式即:
a2-b2=(a+b)(a-b)
例如:
4a2-9b2= (2a+3b)(2a-3b)
用平方差公式因式分解的多项式特征:
①有且只有两个平方项;
②两个平方项异号(一正一负);

(完整版)实用版平方差、完全平方公式专项练习题(精品)


其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(

(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072

2008 2006
20072

2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档