电位器

合集下载

电位器作用和用途工作原理

电位器作用和用途工作原理

电位器作用和用途工作原理
电位器是一种能在电流、电压的变化过程中,通过改变它的电阻值而使输出电压发生变化的元件。

电位器的作用和用途很广泛,在音响设备中常常用到。

电位器按其结构分为两大类:一类是在轴上式(又称轴瓦式)电位器,它是靠机械传动使两轴瓦发生相对移动而改变电阻值;另一类是通过电子控制元件实现电位器的功能,这种电位器有电子控制元件来驱动。

在音响设备中常用的是后者,它由两片金属片组成,中间有一根金属丝穿过,另一端与有阻值变化的电位器座相连。

当输入信号电流通过阻值变化的电位器时,在金属丝上产生一定的电压,这些电压通过电阻丝传给两个金属片,从而使它们之间产生相对移动,改变了原来阻值;当输出信号电流发生变化时,这个相对移动的电压也随之发生变化。

在金属片两端产生一定电压形成稳定的电位差。

在这两个电位差中,一个是输入端(通常为直流电)的电压,另一个是输出端(通常为交流电)的电压。

当输入端与输出端之间产生一定电压差时,就会在金属片上产生电流。

—— 1 —1 —。

第二章-电位器

第二章-电位器

6 、8 、10mm。 轴端结构:
4. 几种常用电位器 ①线绕电位器(型号:WX) 结构:用合金电阻线在绝缘骨架上绕制成电阻体,中 心抽头的簧片在电阻丝上滑动。
分类: ◆线绕电位器按用途可分为普通线绕电位器、精密线 绕电位器、功率线绕电位器和微调线绕电位器。 ◆按照阻值变化规律可分为线性和非线性两种。 ◆按照结构可分为单圈、多圈、多联等几种。 特点: ◆线绕电位器具有接触电阻低、噪声小、功率大、 精度高、耐热性强、稳定性好、温度系数小。 ◆绕组具有分布电容和分布电感,不宜用于高频。 ◆适用于高温、大功率以及精密调节电路,精密线 绕电位器的精度可达0.1%,大功率电位器的功率 可达100W以上。
1.5
2.2
4.7
6.8
②额定功率 额定功率是指两个固定端之间允许耗散的最大功率。
一般电位器的额定功率系列为:
功率 系列 0.063 0.125 线绕 非线绕 √ √ 功率 系列 1.0 1.6 线绕 √ √ 非线绕 √ 功率 系列 10 16 线绕 √ √ 非线绕
0.25
0.5 0.75 √ √
◆在自控装置中与伺服电机配合使用的电位器要求起动
力矩小,转动灵活。 ◆用于电路调节的电位器则要求起动力矩和转动力矩都 不能太小。
⑦电位器的轴长与轴端结构 轴长:从安装基准面到轴端的尺寸。(如图)
◆轴长尺寸系列有:6、10 、12 、
16 、25 、30 、40 、50 、 63 、 80mm。
◆轴的直径系列有: 2 、3 、4 、
二、电位器(可调电阻) 概念:电位器是一种连续可调的电阻器,对外有三个 引出端,其中两个为固定端,一个为滑动端(亦称中 间抽头),滑动端在两个固定端之间的电阻体上做机 械运动,使其与固定端之间的电阻发生变化。 1. 电位器的命名

电位器检测方法

电位器检测方法

电位器检测方法电位器是一种用于调节电阻值的元件,常用于电子设备中的音量控制、亮度调节等功能。

为了确保电位器的质量和性能,需要进行适当的检测方法。

下面是一些电位器检测的方法及相关参考内容。

1. 视觉检测- 检查电位器外观是否平整、无划痕、裂纹等表面缺陷。

- 检查电位器材质是否均匀、无明显氧化、脱色等问题。

- 检查电位器旋钮是否顺畅、无卡滞现象。

参考内容:根据电位器的外观质量标准进行检查,如无明确标准,则可以参考相关电位器制造商的产品规格说明书。

2. 电阻值检测- 使用万用表或电阻测量仪器测量电位器的电阻值。

- 分别测量电位器的最大和最小阻值,并检查其是否在额定范围内。

- 进行多次测量并计算平均值,以提高测量精度。

参考内容:电位器的额定阻值及其允许偏差范围可以参考电位器的产品规格说明书或相关的电气标准,如GB/T 14048.25-2018《低压开关设备和控制设备第5-1部分:控制和保护开关设备》。

3. 轴向偏差检测- 固定电位器,使其旋钮在中间位置。

- 以一定的力度移动电位器旋钮,观察其是否有正常的手感和轴向偏差现象。

- 观察旋钮是否返回中心位置时是否准确。

参考内容:可以参考电位器的产品规格说明书或相关的行业标准,如IES RP-16-10《颜色控制器性能规范》。

4. 温度稳定性检测- 将电位器放置在不同温度下(如高温和低温)暴露一段时间。

- 测量电位器在不同温度下的电阻值,并与原始值进行比较。

- 检查电位器在不同温度下是否稳定,是否存在温度漂移现象。

参考内容:可以参考电位器的产品规格说明书或相关的行业标准,如IEC 60512-10-1《连接器第10-1部分:接线柱和插座的电性能的测量》。

5. 耐久性检测- 进行多次旋钮操作,观察电位器是否保持正常功能。

- 检查旋钮是否顺畅,是否有卡滞或阻塞现象。

- 检查电位器的机械强度,是否能承受正常的使用条件。

参考内容:可以参考电位器的产品规格说明书或相关的行业标准,如ISO 13037《机械振动和冲击特性的要求和试验方法》。

电位器内部结构

电位器内部结构

电位器内部结构1. 什么是电位器?电位器(Potentiometer)是一种用来调节电阻值的装置,它通常由一个可移动的滑动触点和一个固定的电阻组成。

通过改变滑动触点在电阻上的位置,可以改变电位器的有效长度,从而改变电阻值。

2. 电位器的分类根据结构和工作原理的不同,电位器可以分为以下几类:2.1 可变电阻式电位器可变电阻式电位器是最常见的一种类型。

它由一个可调节的旋钮和一个固定的线性或非线性电阻组成。

旋钮可以通过手动操作来改变滑动触点在固定电阻上的位置,从而改变整个电位器的有效长度和总体阻值。

2.2 光学编码式电位器光学编码式电位器是一种利用光学原理进行测量和调节的装置。

它由一个固定光源、一个透明圆盘和一个光敏元件组成。

透明圆盘上有很多刻有光栅或条纹图案的区域,当圆盘转动时,光源会透过这些图案照射到光敏元件上,根据照射到光敏元件上的光强变化来计算出旋钮的位置。

2.3 电容式电位器电容式电位器是一种利用电容变化来进行测量和调节的装置。

它由一个固定的电容和一个可移动的金属片或触点组成。

当金属片或触点移动时,与之相邻的电容值会发生变化,通过测量这个变化可以确定旋钮的位置。

3. 可变电阻式电位器的内部结构可变电阻式电位器是最常见、应用最广泛的一种类型,下面将详细介绍它的内部结构:3.1 固定电阻可变电阻式电位器内部有一个固定的线性或非线性电阻。

这个固定电阻通常由一条螺旋形或直线形排列的导体组成,导体材料可以是碳膜、金属膜或者导线。

固定电阻通常被安装在一个陶瓷或塑料基板上,并且具有两个引脚用于连接外部电路。

3.2 滑动触点滑动触点是可变电阻式电位器中最关键的部件之一。

它是一个可移动的金属片或碳滑动条,通常通过一个旋钮或杆子与外部操作机构相连。

滑动触点可以在固定电阻上沿着一条导轨或螺旋线移动,从而改变电位器的有效长度和总体阻值。

3.3 弹簧接触为了保证滑动触点与固定电阻之间有良好的接触,可变电阻式电位器内部通常还会有一个弹簧接触装置。

电位器知识

电位器知识
对数尺度式:电阻值的变化与旋转角度或移动距离呈对数关系,此种电位器主要用途是音量控制,其中常用的是 A 型电位器,适合顺时针方向为大音量、逆时针方向为小音量的场合;此外,另有对数尺度的变化方向相反的 C 型电位器。
其他特别型式
附开关电位器:通常用于将音量开关与电源开关合一,即逆时针旋转至底使开关切断而关闭电源。
常见的碳膜或陶瓷膜电位器可以透过铜箔或铜片与印刷膜接触旋转或滑动产生于输出、输入端的不同电阻。较大功率的电位器则是使用线绕式。
电位器有时会合并附带其他功能,例如某些音量控制用的电位器附开关,可兼作音量与电源开关的功能,此时通常是在音量最小的一端附带关闭电源。
可变电阻器,顾名思义,就是可以调整电阻的大小。电路接在该电阻的中间时,电阻只有原来的一半,接到最边缘时,则是该电阻的原来大小。看需要来选择接的地方,就是可变电阻。 电位器<可变电阻>为电阻值可以调整改变的电阻。在类比电路中,为符合所谓设计值规格的调整作业非常麻烦。但为考虑精确度,必须对各定数的偏差作局部限制,而在这调整作业中就必须用到可变电阻。 小型电位器又称为半固定电阻器,为随着年代而渐渐小型化的一种可变电阻。
第一 :串联电路同一条路线上是电流不变如果把上一题代入就是V=IR , I是电流不变但R可变电阻调整越大则V电压越降大
第二 :并联电路刚好相反也就是说再分枝电路是电压不变同样代入第二题目I=V/R则V是电压不变但R可变电阻调整越大则电流越小
电位器的分类
绕线式电位器的构造
电阻材质分类
碳膜式(Carbon Film):使用碳膜作为电阻膜。
瓷金膜(Metal Film):使用以陶瓷(ceramic)与金属(metal)材质混合制成的特殊瓷金(cermet)膜作为电阻膜。

电位器阻值范围

电位器阻值范围

电位器阻值范围摘要:一、电位器的基本概念与作用二、电位器的阻值范围含义与选择三、电位器阻值与实际应用关系的探讨正文:一、电位器的基本概念与作用电位器,又称为可调电阻,是一种电子元件,具有可调阻值特性。

它的工作原理是通过改变电阻丝的长度来调整阻值,从而实现对电路中电流、电压等参数的调节。

电位器广泛应用于各种电子设备中,如音响、仪器、电风扇等,以满足不同场合对电阻需求的变化。

二、电位器的阻值范围含义与选择电位器的阻值范围是指电阻丝在调整到最大和最小阻值时所覆盖的阻值区间。

例如,一款标称值为100K的电位器,其阻值范围理论上为0~100K。

在实际应用中,电位器的阻值选择需根据电路需求和设备性能来确定。

对于可调电位器的阻值选择,一般原则是:阻值应小于或等于负载设备的阻值,功率要大于负载设备的功率。

以电风扇为例,如果电位器的阻值过大,会导致电风扇转速过低;阻值过小,则可能导致电风扇转速过高。

因此,在选择电位器时,应根据负载设备的实际需求来确定合适的阻值。

三、电位器阻值与实际应用关系的探讨在实际应用中,电位器的阻值选择直接影响到电路的性能。

以音响设备为例,如果电位器的阻值选择不当,可能导致音质受损、设备容易过热等问题。

因此,在音响设备中,一般会选择阻值范围在27-30欧姆的电位器,以保证音响设备的性能和稳定性。

此外,在某些特定场合,如高精度仪器、传感器等,电位器的阻值选择尤为重要。

因为这些设备对电阻的稳定性、线性度等指标有较高要求,选用合适的电位器有助于提高测量精度、减少误差。

总之,电位器的阻值选择应根据实际应用需求和设备性能来确定,以实现最佳的使用效果。

电位器正负极

电位器正负极

电位器正负极全文共四篇示例,供读者参考第一篇示例:电位器是一种电子元件,用于调节电路中的电压、电流和功率。

它是一种用来调节电路中信号大小的器件,可以控制电路中电信号的大小,使电路工作在合适的工作状态下,起到调节电压、电流、功率的作用。

电位器分为旋钮型和直线型两种,旋钮型是通过旋转电位器旋钮来调节电路中的信号大小,而直线型是通过滑动电位器的滑动来实现。

电位器由三个端子组成,即正极、负极和中间端子。

其中正极和负极是连接电路的两个极,中间端子则用来连接电源和负载,起到调节信号大小的作用。

在实际应用中,电位器的正极和负极承担着非常重要的作用,影响着电路中信号的大小和稳定性。

电位器的正极是连接电路的正极端子,通常用来接入电源,通过电源提供电流和电压给电路中的负载。

正极的连接方式包括直接连接和间接连接两种,直接连接是将正极端子直接连接到电源端子,间接连接是通过其他电路元件来连接电源。

正极的连接方式会影响电路中的信号大小和稳定性,要根据实际情况选择适合的连接方式。

在电路设计和调试中,正确连接电位器的正负极是非常关键的。

如果连接错误,可能导致电路无法正常工作,甚至损坏电路元件。

在连接电位器时要仔细查看正负极的标识,确保正确连接。

电位器的正负极在电路中起着非常重要的作用,影响着电路中信号的大小和稳定性。

正确连接正负极是电路设计和调试的关键之一,要注意标识和连接方式,确保电路正常工作。

希望本文对读者了解电位器正负极有所帮助。

【字数:488】第二篇示例:电位器是一种电子元件,主要用来调节电路中的电压、电流和功率。

它由一个可旋转的旋钮和一个固定电阻组成,旋钮移动时可以改变电阻值,从而控制电路中的电压或电流。

电位器的正负极是指电位器两端的接线端子,其中一个为正极,另一个为负极,在电路中起着连接和控制电压的作用。

电位器的正极通常标有一个加号或正号的符号,而负极则标有减号或负号的符号。

正极通常连接到电源的正极或其他电路元件的正极,而负极则连接到电源的负极或其他电路元件的负极。

电位器基础知识资料

电位器基础知识资料

电位器基础知识资料
电位器(potentiometer)是一种电阻器。

具有一个可调节的旋钮或滑块,可以通过调整旋钮或滑块的位置来改变电路中的电阻值。

在电子电路中,电位器常用于精确地控制电压、电流或信号的变化。

电位器由一个固定电阻和一个可变电阻组成。

固定电阻一般是一个均匀的电阻片,可变电阻则是一个导电滑片或旋转电阻。

通过滑片或旋转电阻的位置,可以改变电阻器的有效电阻长度,进而控制电路中的电流和电压。

电位器有很多种不同的类型,常见的包括旋钮式电位器、滑动式电位器和多圈电位器等。

旋钮式电位器通过旋转旋钮来改变电阻值,滑动式电位器通过滑动滑块来改变电阻值,而多圈电位器则允许多圈旋转以获得更高的分辨率和精度。

在电路中,电位器被广泛应用于各种功能和应用中。

它们可以用作电压分压器,通过控制电位器的电阻值,可以调整输出电压的大小。

电位器还可以用作可变电阻,通过调整电位器的电阻值,可以控制电路中的电流大小。

此外,电位器还常用于调光器和音量控制器等应用。

电位器也常用于测量和调试电路。

通过将电位器连接到电路中,可以在电路中引入可变电阻,以研究电路的工作方式和性能。

此外,电位器还可用于校准仪器和设备,确保其输出与期望值匹配。

总之,电位器是一种常见的电子元件,用于调节电压、电流和信号的变化。

通过调整电位器的位置,可以改变电路中的电阻值,从而实现对电路的控制和调节。

电位器在领域广泛应用,具有重要的意义和价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电位器相连,引脚2与单片机的P1.1相连。

当脉冲电位器左旋或右旋时,P1.0和P1.1就会周期性地产生所示的波形,如果是12点的脉冲电位器旋转一圈就会产生12组这样的波形,24点的脉冲电位器就会产生24组这样的波形;一组波形(或一个周期)包含了4个工作状态。

因此只要检测出P1.0和P1.1的波形,就能识别脉冲电位器是否旋转是左旋还是右旋。

编辑本段识别进一步分析右的波形并按时间轴展开可以看出,虽然脉冲电位器左旋和右旋的波形都相同。

但左旋时,在第1状态,脚1先比脚2变为低电平;在第2状态,脚2也变为低电平;在第3状态,脚1先比脚2变为高电平;在第4状态,脚2也变为高电平;脉冲电位器右旋时,脚1和脚2输出波形的变化规律正好与左旋相反。

故可根据时间识别法(比较P1.0与P1.1低电平出现和结束的时差)来识别脉冲电位器是左旋还是右旋。

在动态扫描中,因采样频率操作速度等因素的影响,实际上很难测出P1.0和P1.1的波形;也很难测准P1.0与P1.1低电平出现和结束的时差,只能快速地对P1.0和P1.1电平采样。

对应图1所示波形按时间轴展开,每当P1.0和P1.1的组合电平依次为01 00 10 11四种状态码组成一个字节即4BH 时,就表示左旋一位音量减1。

而每当P1.0和P1.1的组合电平依次为10 00 01 11四种状态码组成一个字节即87H时;就表示右旋一位音量加1。

这里将“4BH”称为左旋一位的特征码,“87H”称为右旋一位的特征码。

编程的任务就是要在脉冲电位器旋转过程中识别出这两种特征码,并以此为依据,对音量进行增减控制。

实际编程时可以用不同的方法识别出这两种特征码。

但我们在实践中经过比较,用状态(位置)采样法实现编程是较为理想的一种方法。

这种方法对采样频率和操作速度没有特别要求,也可不用定时器和中断资源,只需在主程序里面就能完成,而且具有编程简单抗干扰能力强工作可靠的优点。

由于脉冲电位器在工作过程中有三种情形:一是没有被旋转而停留在某一状态(位置);二是虽然被旋转但没有完成一个周期(4个状态)而停留在某一状态;三是不停地被旋转而超过一个周期。

状态(位置)采样法就是要准确地跟踪识别和记录脉冲电位器变化的每一个状态值(包括位置值和它对应的特征码)。

程序一开始就要识别出脉冲电位器所处的现态位置和其对应的特征码;随后不断跟踪扫描记录脉冲电位器的每一变化过程。

显然,脉冲电位器只有旋转到第4个状态才有一个我们所需要的特征码出现,程序根据这个特征码的性质再对音量进行加减控制。

电位器编辑本段特性参数符合度符合度又叫符合性,它是指电位器的实际输出函数特性和所要求的理论函数特性之间的符合程度。

它用实际特性和理论特性之间的最大偏差对外加总电压的百分数表示,可以代表电位器的精度。

分辨力分辨力决定于电位器的理论精度。

对于线绕电位器和线性电位器来说,分辨力是用动触点在绕组上每移动一匝所引起的电阻变化量与总电阻的百分比表示。

对于具有函数特性的电位器来说,由于绕组上每一匝的电阻不同,故分辨力是个变量。

此时,电位器的分辨力一般是指函数特性曲线上斜率最大一段的平均分辨力。

滑动噪声滑动噪声是电位器特有的噪声。

在改变电阻值时,由于电位器电阻分配不当、转动系统配合不当以及电位器存在接触电阻等原因,会使动触点在电阻体表面移动时,输出端除有有用信号外,还伴有随着信号起伏不定的噪声。

对于线绕电位器来说,除了上述的动触点与绕组之目的接触噪声外,还有分辨力噪声和短接噪声。

分辨力噪声是由电阻变化的阶梯性所引起的,而短接噪声则是当动触点在绕组上移动而短接相邻线匝时产生的,它与流过绕组的电流、线匝的电阻以及动触点与绕组间的接触电阻成正比。

电位器的机械寿命电位器的机械寿命也称磨损寿命,常用机械耐久性表示。

机械耐久性是指电位器在规定的试验条件下,动触点可靠运动的总次数,常用 "周"表示。

机械寿命与电位器的种类、结构、材料及制作工艺有关,差异相当大。

可调绕线电位器合成碳膜电位器:具有阻值范围宽、分辨力较好、工艺简单、价格低廉等特点,但动噪声大、耐潮性差。

这类电位器宜作函数式电位器,在消费类电子产品中大量应用。

采用印刷工艺可使碳膜片的生产实现自动化。

碳膜电位器有机实芯电位器:阻值范围较宽、分辨力高、耐热性好、过载能力强、耐磨性较好、可靠性较高,但耐潮热性和动噪声较差。

这类电位器一般是制成小型半固定形式,在电路中作微调用。

金属玻璃釉电位器它既具有有机实芯电位器的优点,又具有较小的电阻温度系数(与线绕电位器相近),但动态接触电阻大、等效噪声电阻大,因此多用于半固定的阻值调节。

这类电位器发展很快,耐温、耐湿、耐负荷冲击的能力已得到改善,可在较苛刻的环境条件下可靠地工作。

导电塑料电位器:阻值范围宽、线性精度高、分辨力强,而且耐磨寿命特别长。

虽然它的温度系数和接触电阻较大,但仍能用于自动控制仪表中的模拟和伺服系统。

多圈精密可调电位器:在一些工控及仪表电路中,通常要求可调精度高。

为了适应生产需要。

现在这类电路采用一种多圈可调电位器。

这类电位器具有步进范围大!精度高等优点。

多圈精密可调电位器编辑本段作用电位器在电路中的主要作用有以下几个方面1.用作分压器电位器是一个连续可调的电阻器,当调节电位器的转柄或滑柄时,动触点在电阻体上滑动。

此时在电位器的输出端可获得与电位器外加电压和可动臂转角或行程成一定关系的输出电压。

2.用作变阻器电位器用作变阻器时,应把它接成两端器件,这样花电位器的行程范围内,便可获得一个平滑连续变化的电阻值。

3.用作电流控制器当电位器作为电流控制器使用时,其中一个选定的电流输出端必须是滑动触点引出端。

编辑本段注意事项1. 电位器之电阻体大多采用多碳酸类的合成树脂制成,应避免与以下物品接触:氨水,其它胺类,碱水溶液,芳香族碳氢化合物,酮类,脂类的碳氢化合物,强烈化学品(酸碱值过高)等,否则会影响其性能。

2. 电位器之端子在焊接时应避免使用水容性助焊剂,否则将助长金属氧化与材料发霉;避免使用劣质焊剂,焊锡不良可能造成上锡困难,导致接触不良或者断路。

3. 电位器之端子在焊接时若焊接温度过高或时间过长可能导致对电位器的损坏。

插脚式端子焊接时应在235℃±5℃,3秒钟内完成,焊接应离电位器本体1.5MM以上,焊接时勿使用焊锡流穿线路板;焊线式端子焊接时应在350℃±10℃,3秒钟内完成。

且端子应避免重压,否则易造成接触不良。

4. 焊接时,松香(助焊剂)进入印刷机板之高度调整恰当,应避免助焊剂侵入电位器内部,否则将造成电刷与电阻体接触不良,产生INT,杂音不良现象。

5.电位器最好应用于电压调整结构,且接线方式宜选择“1”脚接地;应避免使用电流调整式结构,因为电阻与接触片间的接触电阻不利于大电流的通过。

6.电位器表面应避免结露或有水滴存在,避免在潮湿地方使用,以防止绝缘劣化或造成短路。

7.安装“旋转型”电位器在固定螺母时,强度不宜过紧,以避免破坏螺牙或转动不良等; 安装“铁壳直滑式”电位器时,避免使用过长螺钉,否则有可能妨碍滑柄的运动,甚至直接损坏电位器本身。

8.在电位器套上旋钮的过程中,所用推力不能过大(不能超过《规格书》中轴的推拉力的参数指标),否则将可能造成对电位器的损坏。

9.电位器回转操作力(旋转或滑动)会随温度的升高而变轻,随温度降低而变紧。

若电位器在低温环境下使用时需说明,以便采用特制的耐低温油脂。

10 电位器的轴或滑柄使用设计时应尽量越短越好。

轴或滑柄长度越短手感越好且稳定。

反之越长晃动越大,手感易发生变化。

11 电位器碳膜的功率能承受周围的温度为70℃,当使用温度高于70℃时可能会丧失其功能。

热敏电阻器科技名词定义中文名称:热敏电阻器英文名称:thermistor定义:电阻值随其电阻体温度的变化而显著变化的热敏元件。

应用学科:机械工程(一级学科);仪器仪表元件(二级学科);仪器仪表机械元件-敏感元件(三级学科)以上内容由全国科学技术名词审定委员会审定公布热敏电阻器是电阻值对温度极为敏感的一种电阻器,也叫半导体热敏电阻器。

它可由单晶、多晶以及玻璃、塑料等半导体材料制成。

这种电阻器具有一系列特殊的电性能,最基本的特性是其阻值随温度的变化有极为显著的变化,以及伏安曲线呈非线性。

目录编辑本段简介电阻值随温度变化而变化的敏感元件。

在工作温度范围内,电阻值随温度上升而增加的是正温度系数(PTC)热敏电阻器;电阻值随温度上升而减小的是负温度系数(NTC)热敏电热敏电阻器阻器。

图中为四种常见的热敏电阻器的电阻-温度特性曲线。

曲线 1是金属热敏电阻器。

它的电阻值随温度上升而线性增加,电阻温度系数为+0.004K-1左右。

曲线2是普通负温度系数热敏电阻器。

它的电阻值随温度上升而呈指数减小,室温下的电阻温度系数为-0.02K-1~-0.06K-1。

曲线3是临界热敏电阻器(CTR)。

它的电阻值在某一特定温度附近随温度上升而急剧减小,变化量达到2~4个数量级。

曲线4A和4B是钛酸钡系正温度系数热敏电阻器。

前者为缓变型,室温下的电阻温度系数在+0.03~+0.08K-1之间;后者为开关型,在某一较小温度区间,电阻值急增几个数量级,电阻温度系数可达+0.10~+0.60K-1。

1871年西门子公司首先用纯铂制成测温用铂热敏电阻器,之后又出现纯铜和纯镍热敏电阻器。

这类纯金属热敏电阻器有极好的重复性和稳定性。

早在1834年以前,M.法拉第就发现硫化银等半导体材料具有很大的负电阻温度系数。

但直到20世纪30年代,才使用硫化银、二氧化铀等材料制成有实用价值的热敏电阻器。

1940年美国J.A.贝克等人发现某些过渡金属氧化物经混合烧结后,成为具有很大负温度系数的半导体,而且性能相当稳定。

1946年后生产的普通负温度系数热敏电阻器,绝大多数是用这种合成氧化物半导体制成的。

1954年P.W.哈依曼等人发现添加微量稀土元素的钛酸钡陶瓷具有较理想的正电阻温度系数,以后在此基础上制成了热敏电阻器,并发展成系列品种,应用范围日益扩大。

编辑本段种类热敏电阻器种类繁多,一般按阻值温度系数可分为负电阻温度系数(以下简称负温系热敏电阻器数)和正电阻温度系数(以下简称正温系数)热敏电阻器;按其阻值随温度变化的大小可分为缓变和突变型;按其受热方式可分为直热式和旁热式;按其工作温度范围可分为常温、高温和超低温热敏电阻器;按其结构分类有棒状、圆片、方片、垫圈状、球状、线管状、薄膜以及厚膜等热敏电阻器。

编辑本段主要特点是对温度灵敏度高,热惰性小,寿命长,体积小,结构简单,以及可制成各热敏电阻器种不同的外形结构。

因此,随着工农业生产以及科学技术的发展,这种元件已获得了广泛的应用,如温度测量、温度控制、温度补偿、液面测定、气压测定、火灾报警、气象探空、开关电路、过荷保护、脉动电压抑制、时间延迟、稳定振幅、自动增益调整、微波和激光功率测量等等。

相关文档
最新文档