《概率论》PPT课件
合集下载
概率论课件之随机事件PPT课件

(4)德 摩根律 : A B A B, A B A B.
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)
《概率论基础》PPT课件

6
销售部经理认为,为减少决策风险,应根据对用户试用 反馈情况进行分析后再作是否投资生产该洗衣机的决定。 销售部经理还提供了过去许多企业在产品正式投产之前采 用类似试用或试销方法的用户反馈结果与产品正式生产上 市后销售状况之间的统计数据,见表1
表1 销售状况与试用结果间的统计资料
销售状况 试用结果
滞销
5
销售部经理的建议
为使对该新产品项目的投资决策更具科学性,总经理 召开了有销售、生产、财务、技术等部门负责人参加的 会议。会上销售部经理建议,为减小决策风险,应在决 定是否投资生产前先利用原有设备进行少量试生产(100 台),并将试生产的洗衣机免费赠送给不同地区的一些 用户进行为期3个月的试用,以取得用户的反馈信息。为 此,销售部经理还设计了用户试用后的信息反馈表,包 括功能、使用效果、方便程度、外观、可靠性五大类共 25个指标,每项指标都由用户按1~5分打分,加权平均 后的满分为100分。根据用户试用后反馈结果的总平均分, 可 将 用 户 对 该 洗 衣 机 的 评 价 分 为 ” 不 满 意 ” ( 低 于 60 分)、”尚可”(60~90分)和”满意”(高于90分) 三种可能结果。
C,… 表示。 3.样本空间——由试验E所有基本事件组成的集合,称为
E的样本空间,常用字母S表示。 4.必然事件——每次试验中必然发生的事件;样本空间S
是必然事件。 5.不可能事件——试验中不可能发生的事件;不含任何
基本事件的空集是不可能事件;记为φ。
11
【例1】掷一枚骰子,观察出现的点数.
利用概率论的知识,可以帮助决策者进行风险型决策分析, 利用所能获得的各种信息,还可以大大降低决策的风险程度, 尽可能避免重大的经济损失,并为企业带来可观的经济效益 和良好的发展机遇。
销售部经理认为,为减少决策风险,应根据对用户试用 反馈情况进行分析后再作是否投资生产该洗衣机的决定。 销售部经理还提供了过去许多企业在产品正式投产之前采 用类似试用或试销方法的用户反馈结果与产品正式生产上 市后销售状况之间的统计数据,见表1
表1 销售状况与试用结果间的统计资料
销售状况 试用结果
滞销
5
销售部经理的建议
为使对该新产品项目的投资决策更具科学性,总经理 召开了有销售、生产、财务、技术等部门负责人参加的 会议。会上销售部经理建议,为减小决策风险,应在决 定是否投资生产前先利用原有设备进行少量试生产(100 台),并将试生产的洗衣机免费赠送给不同地区的一些 用户进行为期3个月的试用,以取得用户的反馈信息。为 此,销售部经理还设计了用户试用后的信息反馈表,包 括功能、使用效果、方便程度、外观、可靠性五大类共 25个指标,每项指标都由用户按1~5分打分,加权平均 后的满分为100分。根据用户试用后反馈结果的总平均分, 可 将 用 户 对 该 洗 衣 机 的 评 价 分 为 ” 不 满 意 ” ( 低 于 60 分)、”尚可”(60~90分)和”满意”(高于90分) 三种可能结果。
C,… 表示。 3.样本空间——由试验E所有基本事件组成的集合,称为
E的样本空间,常用字母S表示。 4.必然事件——每次试验中必然发生的事件;样本空间S
是必然事件。 5.不可能事件——试验中不可能发生的事件;不含任何
基本事件的空集是不可能事件;记为φ。
11
【例1】掷一枚骰子,观察出现的点数.
利用概率论的知识,可以帮助决策者进行风险型决策分析, 利用所能获得的各种信息,还可以大大降低决策的风险程度, 尽可能避免重大的经济损失,并为企业带来可观的经济效益 和良好的发展机遇。
《概率论与数理统计》全套课件PPT(完整版)

m?????若对于一随机试验每个样本点出现是等可能的样本空间所含的样本点个数为无穷多个且具有非零的有限的几何度量即则称这一随机试验是一几何概型的20义定义当随机试验的样本空间是某个区域并且任量意一点落在度量长度面积体积相同的子区域是等可能的则事件a的概率可定义为?mamap??说明当古典概型的试验结果为连续无穷多个时就归结为几何概率
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
概率论绪论PPT课件

也可以按某种标准把支出分为高、 中、低三档. 这时,样本点有(高,高), (高,中),…,(低,低)等9种,样本空 间就由这9个样本点构成 .
引入样本空间后,事件便可以表示为 样本空间的子集 .
例如,掷一颗骰子,观察出现的点数
样本空间:
Ω = { i :i=1,2,3,4,5,6}
B = {1,3,5}
计学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科. —— 其起源与博弈问题 有关.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
A1, A2,..., An 构成一个完备事件组.
举例
例1:掷一颗骰子的试验,观察其出现的点 数:事件A表示{出现奇数点};事件B表示 {出现点数小于5};事件C表示{出现小于5 的偶数点}。用列举法表_示_ 事件:
Ω ,A+B,A-B,B-A,AB,AC, A B
例2:设A、B、C为三个随机事件,表示下列 事件:
序论
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的 问题作出推断或预测,直至为采取一定的决策 和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:《概率论》是数理统计学的基础,数理统
引入样本空间后,事件便可以表示为 样本空间的子集 .
例如,掷一颗骰子,观察出现的点数
样本空间:
Ω = { i :i=1,2,3,4,5,6}
B = {1,3,5}
计学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科. —— 其起源与博弈问题 有关.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
A1, A2,..., An 构成一个完备事件组.
举例
例1:掷一颗骰子的试验,观察其出现的点 数:事件A表示{出现奇数点};事件B表示 {出现点数小于5};事件C表示{出现小于5 的偶数点}。用列举法表_示_ 事件:
Ω ,A+B,A-B,B-A,AB,AC, A B
例2:设A、B、C为三个随机事件,表示下列 事件:
序论
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的 问题作出推断或预测,直至为采取一定的决策 和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:《概率论》是数理统计学的基础,数理统
概率论课件

例3 盒中有3个红球,2个白球,,每次从袋中任 取一只,观察其颜色后放回,并再放入一只与所 取之球颜色相同的球,若从合中连续取球4次,试 求第1、2次取得白球、第3、4次取得红球的概率 。
解:设Ai为第i次取球时取到白球,则
1.7 全概率公式
例:市场上有甲、乙、丙三家工厂生产的同一品牌产品, 已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三 家工厂的次品率分别为 2%、1%、3%,试求市场上该品 牌产品的次品率。
古典概型中的概率: 设事件A中所含样本点个数为M ,以N记样 本空间S中样本点总数,则有
M P ( A) N
P(A)具有如下性质: (1) 0 P(A) 1;
(2) P()=1; P( )=0
(3) AB=,则 P( A B )= P(A) +P(B)
例1:有三个子女的家庭,设每个孩子是男是女的概
1.6 条件概率和乘法定理
袋中有十只球,其中九只白球,一只红球,十
人依次从袋中各取一球(不放回),问
第一个人取得红球的概率是多少?
第二个人取得红球的概率是多少?
若已知第一个人取到的是白球,则第二个人取 到红球的概率是多少? 若已知第一个人取到的是红球,则第二个人取到 红球的概率又是多少? 已知事件A发生的条件下,事件B发生的概率称为 A条件下B的条件概率,记作P(B|A)
• 随机事件
定义 试验中可能出现或可能不出现的情况叫“随 机事件”, 简称“事件”.记作A、B、C等. 在每次试验的结果中某事件一定发生,则该事件称 为必然事件,记作U。 在每次试验的结果中某事件一定不发生,则该事件 称为不可能事件,记作V。
频率:
设随机事件A在n次试验中发生了m次
m f n ( A) n
概率论与数理统计完整ppt课件

化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论高等院校概率论课件

应用场景
强大数定律在统计学中用于 估计极端事件发生的概率和 风险,在决策理论中用于评 估最优策略和期望收益,在 可靠性工程中用于分析系统 的可靠性和寿命。
注意事项
强大数定律的应用有一定的 限制条件,例如随机序列必 须是独立同分布的。此外, 强大数定律并不能保证每个 随机事件的绝对正确性,而 只是给出了最大值分布的稳 定性。
连续随机过程
如布朗运动,每一步都是连续 的,每一步的状态都是连续的
。
随机游走与布朗运动
随机游走
一个随机过程,其中每一步都是随机的,通 常用来描述粒子的无规则运动。
布朗运动
一种连续随机过程,由大量微小粒子在流体 中无规则运动产生,通常用来描述微观粒子 的运动。
马尔科夫链与马尔科夫过程
马尔科夫链
一个随机过程,其中下一个状态只依赖于当前状态,与过去状态 无关。
注意事项
大数定律的前提是试验次数必须足够多,并且随 机事件之间必须是独立的。此外,大数定律并不 能保证每个随机事件的绝对正确性,而只是给出 了频率趋于概率的稳定性。
强大数定律
总结词
强大数定律是概率论中的重 要定理之一,它描述了随机 序列中最大值的分布性质。
详细描述
强大数定律指出,对于任意 给定的正整数序列$a_n$和 $b_n$,有$lim_{n to infty} frac{a_n}{b_n} = 1$的概率 为1。这个定理说明了随机 序列中最大值的分布具有很 强的稳定性。
随机变量的性质
随机变量具有可测性、可加性和有限 可加性。
离散型随机变量及其分布
离散型随机变量的定义
离散型随机变量是在样本空间中取有 限个或可数个值的随机变量。
离散型随机变量的分布
《概率论讲义》课件

线性回归
介绍线性回归模型的基本原理和应用案例。
多元非线性回归
探讨多元非线性回归分析的方法和实际应用。
蒙特卡罗方法
1
简介和基本概念
介绍蒙特卡罗方法的基本思想和使用领域。
2
模拟方法
说明蒙特卡罗方法的模拟过程和实际应用。
3
抽样方法
讨论蒙特卡罗方法中的抽样技术和抽样步骤。
应用案例
金融风险管理
探讨概率论在金融风险管理中的应用和重要性。
2
弱大数定律
探讨具体的弱大数定律和其适用性。
3
中心极限定理
详细解释中心极限定理及其在概率论中的重要性。
统计推断
1 点估计
介绍点估计的概念和方法,以及其在概率论中的应用。
2 区间估计
说明区间估计的原理和步骤,并讨论其实际应用。
3 假设检验
讲解假设检验的基本思想和步骤,以及其在统计学中的作用。
回归分析
《概率论讲义》PPT课件
概率论讲义PPT课件大纲
简介
介绍概率论的基本概念和应 用领域,初步了解概率论的 历史和发展。
随机变量
定义随机变量,离散型和连 续型随机变量及其概率分布。
概率分布
二项分布,泊松分布和正态 分布。
大数定律与中心极限定理
1
定义大数定律和中心极限定理
深入了解大数定律和中心极限定理的概念和应用。
人口统计学
展示概率论如何应用于人口统计学数据的分析和预测。
物理学和天文学
介绍概率论在物理学和天文学研究中的关键作用。
结论
总结所学内容,展望概率论的未来发展和应用前景。
参考文献
推荐阅读经典著作和相关文献
提供经典著作和相关文献,供学习和研究参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④ C X ( s, t ) Cov( X ( s), X (t ))
E[ X ( s) X ( s)][X (t ) X (t )]
为{X(t),tT}的自协方差函数.
⑤ RX (t , s) E[ X (t ) X (s)] 为{X(t),tT}的自相关函数.
p
1 1 2
0
1 2
1 X( ) 4
p
1 2
2 2
1 4
1 2
0, x 0, 1 F ( x , 0) , 0 x 1, 2 1, x 1.
1 ( X (0), X ( )) 4
1 0, x , 4 1 1 2 1 F ( x, ) , x , 4 2 2 4 2 . 1, x 2
第七章 随机过程及其统计描述
在概率论中主要研究一个或有限个随机 变量,即一维或者n维随机变量(随机向量), 随着科学技术的发展,往往需要接连不断的 观察或研究随机变量的变化过程,这就要同 时考虑无穷多个随机变量,或者说一族随机 变量,随机过程这是在这种要求下,于上世纪 产生并发展起来的一个数学分支,它是研究 随机现象变化过程的规律性的理论.目前以 广泛应用于许多现代科学技术领域之中.
诸数字特征的关系:
2 X (t ) RX (t , t ),
C X ( s, t ) RX ( s, t ) X ( s) X (t )
2 2 X (t ) CX (t , t ) RX (t , t ) X (t )
2.二个随机过程的情况
① ②
RXY (t , s) E[ X (t )Y (s)], t , s T
图7-1
它在任一确定时刻的值是随机变量.显然这 个随机过程的状态空间为 (, )。
我们称这种随时间的进展而变化与发展的随 机现象为随机过程。
定义 1 设 E 是一随机实验 ,样本空间为 {} , 参数 T (, ) ,如果对每个 ,总有一个确 定的时间函数 X (, t ) 与之对应 , 这样对于所有的 ,就得到一族时间 t 的函数 ,我们称此族时 间 t 的函数为随机过程 ,而族中每一个函数称为这 个随机过程的样本函数。 定义 2:设 E 是一随机实验,样本空间 {} ,参 数 T (, ) , 如果对任意 t T ,有一定义在Ω上 的随机变量 X (, t ) 与之对应,则称 {X (, t ), t T } 为随 机过程,简记为 { X (t ), t T } 或 { X (t )} ,也可记为 X (t ) .
) y1 , Y (tm ) ym} P{X (t1 ) x1,, X (tn ) xn , Y (t1
为 {( X (t ), Y (t )), t T } 的 n m 维分布函数或随机过程 X (t ) 与 Y (t ) 的 n m 维联合分布函数。 类似的可定义 有限维分布函数族。
另一方面,做一次试验,若出现 H ,样本函数 x1 (t ) cos t ;若出现 T ,样本函数为 x2 (t ) t ,
所以该随机过程对应的一族样本函数仅含 两个函数:{cos t, t} 。显然这个随机过程的 状态空间为 (, ) .
例 2 一醉汉在路上作随机游动, 以 p 的概率向右迈 一步,以 q 的概率向左迈一步,以1 p q 的概率 在原地不动,选定某个初始时刻,若以 X n 记他在 时刻 n 的位置,则 X n 就是直线上的随机序列。
(二)二维随机过程的联合分布函数
1.定义:
设 X (t ), Y (t ) 为定义在同一样本空间Ω和同一参 数集 T 上的随机过程,对于任意 t T ,若 ( X (t ), Y (t )) 是 二维随机变量,则称 {( X (t ), Y (t )), t T } 为二维随机过 程。
2.有限维分布函数和独立性
例 5 英国植物学家 Brown 发现漂浮在液面上的微 小粒子不断地进行大量无规则运动,这种运动是 分子大量随机碰撞的结果,称为 Brown 运动,以
X (t ) 表示粒子在平面上的横坐标的位置,则它是
平面上的 Brown 运动。
二 随机过程的概率分布
(一)随机过程的分布函数族
1.一维分布函数族
给定随机过程 { X (t ), t T } 对 于每一个固定的 t T , 随机变量 X (t ) 的分布函数一般与 t 有关, 记为
为 X (t ) 和 Y (t ) 的互相关函数
CXY (t, s) E{[ X (t ) X (t )][Y (s) Y (s)]}
RXY (t, s) X (t )Y (s)
t , s T
为 X (t ) 和 Y (t ) 的互协方差函数 ③ 若对于任意的 s, t T , RXY (t , s) 0 称 X (t ) 和Y (t ) 正交
(3)随机过程就是一族随机变量。随机过程 可以看成是多维随机变量的延伸。
(4) 随机过程 { X (t ), t T } 中参数 t 通常解释 为时间集。但参数 t 可以表示为其它的量, 例如序号,距离等等. 一般常用的参数有: ( i )T N0 {0,1,2,} ; ( ii )T {0,1,2,} ; ( iii )T [a, b] ,其中 a 可以取 0 或 ,b 可 以取 。当参数取可列集时,一般称随机 过 程 为 随 机 序 列 。 此 时 常 记 成 { X n , n 0,1, 2,} 。
如何描述这样的变化过程?
1. 如果对其变化过程的全过程做一次观察,得到 一个位置与时间关系的函数x1(t ),若再次观察, 又得到函数x2(t ),… ,因而得到一族时间函数. 2. 如果在时刻t观察质点的位置x(t ),则x(t )是一 个随机变量,这样对于每个时刻t便得到一个随 机变量X(t ),于是我们就得到一族随机变量 {X(t),t≥0},(最初始时刻为t=0),它描述了此随 机的运动过程。
引例:(热噪声电压)电子元件或器件由于内 部微观粒子(如电子)的随机热骚动所引起的端 电压称为热噪声电压,在无线电通讯技术中,接 收机在接收信号时, 机内的热噪声电压要对信号 产生持续的干扰,为要消除这种干扰(假设没有 其他干扰因素) ,就必须考虑热噪声电压随时间 变化的过程, 现以电阻的热噪声电压为例说明这 种变化过程的描述方法, 我们通过某种装置对电 阻两端的热噪声电压进行长时间的测量, 并把结 果记录下来,作为一次试验结果,便得到一个电 V1 (t ) , 压-时间函数 (即电压关于时间 t 的函数) 如图
( 2 ) 如 果 对 任 意 的 正 整 数 n, m , 任 意 的 数 组 , t2 ,, tm T , n 维 随 机 变 量 t1 , t2 ,, tn T ; t1 ( X (t1 ), X (t2 ),, X (tn )) 与 m 维 随 机 变 量
), Y (t2 ),, Y (tm )) 相互 独立, 则称 随机过 程 (Y (t1 X (t ) 和 Y (t ) 是相互独立的。
随机过程及其统计描述
随机过程的基本概念
随机过程的分类 泊松过程
7.1 随机过程的基本概念
一 引言 现实世界中的许多现象是随时间的进展而变化 与发展的,这些现象通常称为过程。可分为两类: (1)确定性的变化过程: (2)不确定的变化过程: 如果质点在一个随机的力(它由各种随机因 素形成)的作用下,那么质点的运动也是随机的。
FX ( x, t ) P{X (t ) x}, x R
称他为随机过程 { X (t ), t T } 的一维分布函数,而 {Fx ( x, t ), t T} 称为一维分布函数族。
2. n维分布函数族
对 任 意 正 整 数 n 可 取 定 t1 , t2 ,, tn T 则 ( X (t1 ), X (t2 ),, X (tn )) 是一个 n 维随机变量,他的分 布函数为 FX ( x1 , x2 , , xn ; t1 , t2 , , tn )
例 6 求例1中的随机过程的一维分布函数
1 F ( x , 0), F ( x , ) 4
和二维分布函数
cos t
1 2
1 F ( x , y , 0, ) 4
解:对任意实数 t R, 有
X (t )
t
1 2
1 X( ) 4
p
特别的
X (0)
p
1 1 2
0
1 2
p
1 2
2 2
1 4
1 2
X (0)
(1) {( X (t ),(Y (t )), t T } 为二维随机过程 ,对于任意的 , t2 ,, tm T , 正整数 n 和 m ,以及任意的 t1 , t2 ,, tn ; t1 称 n m 元函数
, t2 ,, tm ) F ( x1, x2 , xn ; t1, t2 ,, tn : y1, y2 ,, ym ; t1
注释: (1) 随机过程 { X (t ), t T } 是定义在Ω×T上的二元函 数,因此可以从两个角度去理解, 因而有如上的两 个定义。 在理论分析往往用随机变量族的描述方式,在 实际测量和处理中往往采用样本函数族的描述方式
(2) 通常将随机过程 { X (t ), t T } 解释为一个物理系 统 , X (t ) 表示系统在时刻 t 所处的状态 , X (t ) 的所 有可能状态所构成的集合称为状态空间,记为 I, 对于给定的 t0 T ,及 x I , X (t0 ) x 说成是在时 刻 t 0 ,系统处于状态 x 。
例 4 在时间 [0,t] 内某地段出现的交通事故次数
X (t ) ,它是一个随机变量, 且对于不同的 t 0 ,X (t )
是不同的随机变量。于是, { X (t ), t 0} 是一个随机 过程,且他的状态空间是 I {0,1, 2,} 。记 Wn 是第 n 次事故发生的时间,则 Wn 也是一个随机过程。