初一数学一元一次方程优秀教案
七年级数学《一元一次方程》教学设计

人教版七上第三章一元一次方程3.1从算式到方程“一元一次方程”教学设计一、内容和内容解析“一元一次方程”是新人教版《义务教育教科书数学》七年级上册,第三章“一元一次方程”第一节“从算式到方程”的第一节内容.主要是让学生初步体会从算式到方程是数学的进步;了解一元一次方程的基本概念;重点是学会找出实际问题中的相等关系,设未知数,并把相关的量用含未知数的式子表示出来,列出方程.本节内容既是小学方程的延续,又是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程及函数等的基础.同时一元一次方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材.本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭.二、目标和目标解析根据《义务教育数学课程标准》(2011年版),依据教材内容和本班学生的实际情况,确定本节课的学习目标如下.(1)通过“老师年龄与学生年龄的几次对话和思考”,让学生初步感知到方程在处理某些相对复杂问题时的简便和进步.(2)通过学生自学,初步形成一元一次方程的概念;同时通过辨析练习,加强学生对概念的理解.(3)通过解决故事中的几个生活问题,让学生体会方程是刻画现实世界的一种有效的数学模型;“能够找出实际问题中的相等关系、设未知数、用数学式子列出方程”,体会用方程来建立数学模型的思想.(4)通过贴近生活的看似随意的引入以及解决故事中的生活问题,让学生充分感知数学是为应用而生,感受到数学的应用价值,培养学生获取信息,分析问题,解决问题的能力;以及通过处理孙子算经的经典问题和介绍《九章算术》的数学成就,让学生感受上数学文化的源远流长;感受古人智慧的结晶,在增强民族自豪感的同时,继续保持探索数学奥秘的好奇和热情.针对本节课的学习目标,设计了如下的评价任务评价任务1:学生通过思考几年后老师的年龄是孩子的2倍,感觉列算式解决这个问题相当棘手,部分学生自然联想到用方程来处理.此时,学生感受到继续学习方程的必要性及方程的简便和进步.评价任务2:学生通过自学,锻炼学生的独立思考能力,初步形成一元一次方程的概念;通过辨析练习,让学生体验自学的成就感,同时在纠错中体会到数学概念的严谨性,逐步培养学生的自学能力.评价任务3:在突破重难点的教学中,本节课主要是通过填空的形式以及精心设置的问题,让学生在自主思考,小组讨论、合作探究,小组竞争,成果展示,反思质疑等过程中,逐步总结和完善列方程处理实际问题的步骤,并让学生体会从多角度去思考问题,解决问题的思维方式.极大地激发了学生的学习积极性和热情,充分地体验到了成功的乐趣,增强了克服困难的决心和勇气。
七年级《一元一次方程》教学设计(最终5篇)

七年级《一元一次方程》教学设计(最终5篇)第一篇:七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计作为一位杰出的教职工,总不可避免地需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。
怎样写教学设计才更能起到其作用呢?下面是小编收集整理的七年级《一元一次方程》教学设计,欢迎阅读,希望大家能够喜欢。
教学目标:进一步认识方程,理解一元一次方程的概念,会根据题意列简单的一元一次方程。
认识方程的解的概念。
掌握验根的方法。
体验用尝试法解一元一次方程的思想方法。
重点:一元一次方程的概念难点:尝试检验法教学过程:1、温故方程是含有xx的xx.归纳:判断方程的两要素:①有未知数②是等式(通过填空让学生简单回顾方程概念,并总结方程两要素)2、知新根据题意列方程:(1)一件衣服按8折销售的售价为72元,这件衣服的原价是多少元?设这件衣服的原价为x元,8折后售价为xx可列出方程、(2)有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?设x年后树高为5m,可列出方程_______(3)物体在水下,水深每增加10.33米承受的压力就会增加1个大气压、当“蛟龙”号下潜至3500米时,它承受的压力约为340个大气压、问当它承受压力增加到500个大气压时,它又继续下潜了多少米?设它又继续下潜了x米,x米增加大气压个。
可列出方程、(教师引导学生列出方程)80%x=72观察比较方程:(学生根据方程特点填空)等式的两边的代数式都是xx___;每个方程都只含有___个未知数;且未知数的指数是_____(教师总结)这样的方程叫做一元一次方程.(教师提问:需满足几个特点,学生回答后总结一元一次方程概念)1、两边都是整式2、只含有一个未知数3、未知数的指数是一次、(教师引出课题——5.1一元一次方程)3、(接下来一起将前面所学新知与旧知融会贯通)1、下列各式中,哪些是方程?哪些是一元一次方程?(1)5x=0(2)1+3x(3)y2=4+y(4)x+y=5(5)(6)3m+2=1–m(这里需要让学生较快的先找出方程(1)、(3)、(4)、(5)、(6),并说说为什么剩下的不是方程。
初一数学解一元一次方程优秀教案范本

初一数学解一元一次方程优秀教案范本【教案名称】:初一数学解一元一次方程【教学目标】:1.了解一元一次方程的概念及特点;2.掌握解一元一次方程的基本方法;3.能够在实际问题中灵活运用解一元一次方程。
【教学内容】:1.一元一次方程的定义和基本形式;2.解一元一次方程的方法:平衡法和等式转化法;3.实际问题中的一元一次方程应用。
【教学准备】:1.教师:黑板、彩色粉笔、教学课件;2.学生:课本、笔记本。
【教学过程】:【导入】教师利用教学课件引导学生回顾前一节课所学的解一元一次方程的平衡法。
【讲解】1. 介绍一元一次方程的定义和基本形式,解释方程中未知数和系数的含义。
2. 详细讲解解一元一次方程的平衡法和等式转化法。
a) 平衡法:以平衡法为例,通过示例演示如何使用平衡法解一元一次方程,并解释思路和步骤。
b) 等式转化法:以等式转化法为例,通过示例演示如何使用等式转化法解一元一次方程,并解释思路和步骤。
【练习】1. 学生独立或小组合作完成教师布置的练习题。
2. 教师巡回指导,对学生在练习过程中的疑惑进行解答,同时鼓励学生之间互相合作,共同解决问题。
【拓展】1. 教师提出一些实际问题,并引导学生将问题转化为一元一次方程。
2. 学生尝试解答实际问题,并进行讨论与分享。
【归纳总结】教师引导学生总结解一元一次方程的方法和注意事项,并将重点内容记录在黑板上。
【作业布置】教师布置相关的练习题作为课后作业,要求学生按照所学方法解答,并积极思考如何将一元一次方程应用于日常生活中。
【教学资源】1.教学课件:包括一元一次方程的定义、解法和实际应用示例等内容;2.练习题:为学生提供足够的练习机会,巩固所学知识。
【教学评价】通过课堂练习、课堂讨论、学生作业和每堂课的互动交流,对学生的掌握程度进行评价。
【教学反思】教师根据本堂课的教学情况和学生的反应,进行教学反思,并对下一堂课的教学做出调整和改进。
【延伸拓展】1. 鼓励学生自主学习,通过参阅相关资料和网上资源,进一步了解一元一次方程的应用。
初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。
符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。
同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。
学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。
二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。
为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。
教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。
本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。
教学方法是“引导分类归纳”。
本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
七年级《一元一次方程》教学设计(通用6篇)

七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计(通用6篇)作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
教学设计应该怎么写才好呢?以下是小编整理的七年级《一元一次方程》教学设计,欢迎大家分享。
七年级《一元一次方程》教学设计篇1一、教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法讲练结合、注重师生互动。
四、教学准备课件五、教学过程(师生活动)(一)情境引入教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:问题3:能否用方程的知识来解决这个问题呢?(二)学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.2、教师引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母);(2)根据问题中的相等关系,列出方程.(三)举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。
初一数学优秀教案范本解一元一次方程

初一数学优秀教案范本解一元一次方程解一元一次方程优秀教案范本教案一:一元一次方程的引入一、教学目标1. 理解一元一次方程的定义和基本概念;2. 掌握解一元一次方程的基本方法;3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重难点1. 教学重点:一元一次方程的定义和基本概念;2. 教学难点:解一元一次方程的基本方法。
三、教学过程步骤一:导入新课1. 引入问题:小明和小红的年龄之和是30岁,小明比小红大5岁,求他们各自的年龄。
2. 让学生思考并尝试解答问题。
步骤二:学习新知1. 引入一元一次方程的定义和基本概念;2. 提供一元一次方程的解法,如倒代法、平衡法等;3. 通过练习例题,引导学生掌握解一元一次方程的基本方法。
步骤三:拓展练习1. 给出一些实际问题,让学生自行建立一元一次方程并求解;2. 鼓励学生在解题过程中灵活运用所学的知识。
步骤四:归纳总结1. 整理一元一次方程的解法和常见问题;2. 强调解题的步骤和要点。
四、教学反思此教案设计合理,通过引入问题的方式激发了学生的学习兴趣,提供了多种解一元一次方程的方法,有助于培养学生的逻辑思维能力和解决问题的能力。
在拓展练习环节,可以增加一些更具挑战性的问题,以进一步提高学生的解题能力。
教案二:一元一次方程的解法和应用一、教学目标1. 理解一元一次方程的解法和应用;2. 掌握解一元一次方程的常用方法;3. 培养学生的数学建模能力和解决实际问题的能力。
二、教学重难点1. 教学重点:解一元一次方程的常用方法;2. 教学难点:应用一元一次方程解决实际问题。
三、教学过程步骤一:导入新课1. 引入问题:一块矩形花坛的长比宽多4米,周长为42米,求花坛的长和宽。
2. 让学生思考并尝试解答问题。
步骤二:学习新知1. 复习一元一次方程的基本概念;2. 提供解一元一次方程的常用方法,如代入法、消元法等;3. 通过练习例题,引导学生掌握解一元一次方程的常用方法。
步骤三:拓展练习1. 给出一些实际问题,让学生自行建立一元一次方程并求解;2. 引导学生思考如何将实际问题转化为方程,并分析解的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学一元一次方程优秀教案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998一元一次方程一、知识结构导入2元一次方程。
例如:1700+50x=1800,2(x+=5等都是一元一次方程。
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。
注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
(二)等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等。
等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c。
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么=。
(三)移项法则:把等式一边的某项变号后移到另一边,叫做移项。
(四)去括号法则1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。
2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。
(五)解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4.合并(把方程化成ax=b(a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=) 二、 知识点回顾+典型例题讲解+变式练习 知识点1:方程的有关概念⑴方程:含有未知数的叫做方程;使方程左右两边值相等的,叫做方程的解;求方程解的叫做解方程.方程的解与解方程不同.⑵一元一次方程:在整式方程中,只含有个未知数,并且未知数的次数是,系数不等于0的方程叫做一元一次方程;它的一般形式为()0≠a . 典型例题例1、下列方程中不是一元一次方程的是( ). A .x=1 =3x-5 =y-22x=5x 例2、如果(m-1)x |m|+5=0是一元一次方程,那么m =___.例3、一个一元一次方程的解为2,请写出这个一元一次方程.例4、根据实际问题列方程。
(1)世界上最大的动物是蓝鲸,一只鲸重124吨。
比一头大象体重的25倍少一吨,这头大象重几吨若已知大象的重量(如X 吨)如何求蓝鲸的重量(2)俄罗斯小说家契诃夫的小说《家庭教师》中,写了一位教师为一道算术题大伤脑筋。
我们来看看这道题。
问题(买布问题):顾客用540卢布买了两种布料共138尺,其中蓝布料每俄尺3卢布,黑布料每俄尺3卢布,黑布料每俄尺5卢布。
两种布料各买了多少(设蓝布料买了X 尺)例5、若关于x 的一元一次方程23132x k x k ---=的解是1x =-,则k 的值是()A .27B .1C .1311-D .0变式练习1、下列各式:①3x+2y=1②m-3=6③x/2+2/3=④x2+1=2⑤z/3-6=5z ⑥(3x-3)/3=4⑦5/x+2=1⑧x+5中,一元一次方程的个数是( )A、1 B、2 C、3D、4 2、若方程3(x-1)+8=2x+3与方程325xk x -=+的解相同,求k 的值. 3、已知2x 1-m +4=0是一元一次方程,则m=.4、若关于x 的方程2(x-1)-a=0的解是x=3,则a 的值是() A 、4B 、-4C 、5D 、-55、根据实际问题列方程。
(1)x 的2倍与3的差是5.(2)长方形的长比宽大5,周长为36,求长方形的宽.(设长方形的宽为x )(3)甲种铅笔每只元,乙种铅笔每支元,用9元钱买了两种共20支,两种铅笔各买了多少支(设甲种铅笔买了x 支)知识点2:等式及其性质⑴等式:用等号“=”来表示关系的式子叫等式. ⑵性质:等式的性质①如果b a =,那么=±c a ;等式的性质②如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 典型例题例1、已知等式523+=b a ,则下列等式中不一定...成立的是()(A );253b a =-(B );6213+=+b a(C );523+=bc ac (D ).3532+=b a例2、下列说法正确的是( )A 、在等式ab=ac 中,两边都除以a ,可得b=cB 、在等式a=b 两边都除以c 2+1可得1122+=+cbcaC 、在等式aca b =两边都除以a ,可得b=c D 、在等式2x=2a 一b 两边都除以2,可得x=a 一b变式练习1、将等式4x=2x+8变形为x=4,下列说法正确的是()A 运用了等式的性质1,没有运用等式的性质2B 运用了等式的性质2,没有运用等式的性质1C 既运用了等式的性质1,又运用等式的性质2D 等式的两条性质都没有运用2、(1)在等式3x-4=5的两边都得3x=9,依据是. (2)在等式x x =-213的两边都得2x-3=6x ,依据是. 知识点3:解一元一次方程解一元一次方程的步骤:(1)(2)(3)(4)(5) 典型例题例1、解方程4131312-+=--y y y . 例2、解方程:111623x x x ---+=. 例3、解方程{[(x-1)-3]-3}=3例4、如果2005200.520.05x -=-,那么x 等于() (A)(B)(C)(D)例5、要解方程(x+=9x,最简便的方法应该首先( )A、去括号 B、移项 C、方程两边同时乘以10 D、方程两边同时除以难点:熟练解方程变式练习1、已知A=2x-5,B=3x+3,求A 比B 大7时的x 的值.2、解下列方程:(1)2732+=-x x (2)x x 21423=-(3)1)4(3)1(2=---x x (4)223146y y +--= (5)562523+=+-x x (6)512(69)812()8323x x x ---=-三、课堂习题演练 1、下列结论正确的是()A .若x+3=y-7,则x+7=y-11;B .若7y-6=5-2y,则7y+6=17-2y;C .若=-4,则x=-1;D .若7x=-7x,则7=-7.2、列说法错误的是().A .若a ya x =,则x=y; B .若x 2=y 2,则-4x 2=-4y 2; C .若-41x=6,则x=-23;D .若6=-x,则x=-6.3、知等式ax=ay,下列变形不正确的是(). A .x=yB .ax+1=ay+1C .ay=axD .3-ax=3-ay4、列说法正确的是()A .等式两边都加上一个数或一个整式,所得结果仍是等式;B .等式两边都乘以一个数,所得结果仍是等式;C .等式两边都除以同一个数,所以结果仍是等式;D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式; 5、等式2-31-x =1变形,应得() A .6-x+1=3 B .6-x-1=3 C .2-x+1=3 D .2-x-1=36、在梯形面积公式S=21(a+b )h 中,如果a=5cm,b=3cm,S=16cm 2,那么h=() A .2cmB .5cmC .4cmD .1cm7、若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则(). A .a,b 为任意有理数B .a ≠0C .b ≠0D .b ≠38、方程12-x =4x+5的解是(). A .x=-3或x=-32 B .x=3或x=32 C .x=-32D .x=-39、下列方程①313262-=+x x ②4532xx =+③2(x+1)+3=x 1④3(2x+5)-2(x-1)=4x+6.一元一次方程共有()个.10、若关于x 的方程10-4)2(35)3(--=+x k x x k 与方程8-2x=3x-2的解相同,则k 的值为() 四、课后作业 1、将公式S=21(a+b )h 变形,得a=(其中字母都不等于0). 2、若23234+x a 与43152+x a 是同类项,则x=.3、当a= 时,方程14523-+=-ax a x 的解是x=0. 4、若(1-3x )2+mx -4=0,,则6+m 2= .5、a+b=0,可得a= ;由a-b=0,可得a= ;由ab=1,可得a=6、解方程(1)2(3)15(23)t t +-=-(2)54324x x -=(3)21101136x x ---= (4)12225x x x -+-=-(5)30.4110.50.3x x ---=(6)32[23(x-21)-3]-2=4x 7、有粗细不同的两支蜡烛,细蜡烛之长为粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时.有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停电的时间有多长。