高中数学不等式的综合应用(提高)知识梳理
(完整版)高中数学知识汇总——不等式

必修 5 第 3 章不等式知识汇总一、常用的不等式的基天性质:( 1 )a b b a (反对称性)( 2 )a b,b c a c (传达性)( 3 )a b a c b c (可加性,也叫移项法例)( 4 )a b,c0ac bc (不等式两边乘同一个正数,不等号方向不变!)a b, c0ac bc (不等式两边乘同一个负数,不等号方向改变!)a ba cb d (同向不等式相加,不等号方向不变!)( 5 )cda b0ac bd0 (正数同向不等式相乘,不等号方向不变!)( 6 )cd0( 7 )a b0, n N , n1a n b n0 (正数乘方法例)( 8 )a b0, n N , n1n a n b0 (正数开方法例)二、一元二次不等式及其解法1 、三个“二次”间的关系(以下a> 0)△= b 2 - 4ac△> 0△=0△< 0二次函数y y yy=ax 2+bx+cx0x的图象x1x20x 一元二次方程有两个不等实根x1, x2有两个相等实根b无实根ax2+bx+c= 0的根x1< x2x1= x 2=2a一元二次不等式b{x|x < x1或x> x2 }R{x|x≠}2aax2+bx+c >0的解集一元二次不等式{x|x1< x < x2 }ΦΦax2+bx+c <0的解集2 、一元二次不等式的一般解法:一看二次项的系数,二算△,三绘图并据图写解集;3、含参数不等式的解法:分类议论;4 、不等式恒建立问题的解决:即不等式解集为R;5 、高次不等式的解法:数轴标根法(也叫穿针引线法)用曲线自右往左、自上往下挨次穿过,遇偶次重根穿而可是,遇奇次重根一次穿过。
三、基本不等式1 、关于随意两个正数a bab 。
a, b ,它们的算术均匀数是,几何均匀数是22 、基本不等式:关于随意 a 0, b 0 ,都有a b2 ab )此中等号建立的条件是 a b 。
高中数学不等式知识点总结

高中数学不等式知识点总结不等式是数学中重要的概念之一,也是解决实际问题的重要工具。
在高中数学中,学习不等式的知识是非常必要的。
本文将对高中数学不等式的知识点进行总结。
一、不等式的基本概念不等式是数学中描述两个数或两个式子大小关系的一种表示方法。
常见的不等式包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号。
二、一元一次不等式一元一次不等式是指只有一个未知数、次数为1的不等式。
解一元一次不等式的方法和解一元一次方程类似,可以通过加减法、乘除法进行变形。
三、一元二次不等式一元二次不等式是指只有一个未知数、次数为2的不等式。
由于一元二次不等式的图像是一个抛物线,并且可以通过求函数的最值来解决不等式,所以解一元二次不等式的方法较为灵活。
四、绝对值不等式绝对值不等式是指包含绝对值的不等式。
解绝对值不等式时,需要对绝对值进行分类讨论,并利用绝对值的性质进行求解。
另外,当绝对值中含有未知数时,还需要根据未知数所在的范围进行讨论。
五、有理不等式有理不等式是指不等式中含有有理式(即有理数和代数式)的不等式。
对于有理不等式的解集求解,需要借助分式的性质和一元一次不等式的解法。
六、不等式的性质不等式有许多重要的性质,这些性质在求解不等式时起到非常重要的作用。
常见的不等式性质包括:1. 加减法性质:对不等式的两边同时加减一个数,不等号方向不变;2. 乘除法性质:对不等式的两边同时乘除一个正数,不等号方向不变;但对一个负数进行乘除操作时,需要改变不等号的方向;3. 倒数性质:如果两个数的倒数大小关系相反,那么这两个数的大小关系也相反;4. 平方性质:对非负实数的平方操作,不改变它们的大小关系;5. 倒数平方性质:对正实数的倒数平方操作,改变它们的大小关系;6. 同底指数性质:对于正实数的指数幂操作,不改变它们的大小关系。
七、不等式的应用不等式在实际生活中有广泛的应用,尤其在解决数学建模问题时起到关键作用。
高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
高中数学基本不等式及其应用知识归纳+经典例题+变式+习题巩固(带解析)

基本不等式及其应用一、知识梳理1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22. 3.21a +1b ≤ab ≤a +b2≤a 2+b 22(a >0,b >0). 4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错. 5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.二、基础演练1.若x >0,y >0,且x +y =18,则xy 的最大值为( ) A.9 B.18 C.36 D.81答案 A解析 因为x +y =18,所以xy ≤x +y 2=9,当且仅当x =y =9时,等号成立.2.(2021·滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A.1+2B.1+3C.3D.4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C.3.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2·2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.三、典型例题与变式训练考点一 利用基本不等式求最值 角度1 配凑法求最值【例1】 (1)(2021·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)已知函数f (x )=-x 2x +1(x <-1),则( )A.f (x )有最小值4B.f (x )有最小值-4C.f (x )有最大值4D.f (x )有最大值-4答案 (1)92(2)1 (3)A解析 (1)y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎡⎦⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝⎛⎭⎫0,32,∴函数y =4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92. (2)因为x <54,所以5-4x >0,则f (x )=4x -5+14x -5+3=-⎝⎛⎭⎫5-4x +15-4x +3≤-2(5-4x )·15-4x+3=-2+3=1,当且仅当5-4x =15-4x ,即x =1时,取等号.故f (x )=4x -2+14x -5的最大值为1.(3)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎫x -1+1x +1=-⎝⎛⎭⎫x +1+1x +1-2=-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0,所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立.故f (x )有最小值4.角度2 常数代换法求最值【例2】(2021·武汉模拟)已知正数m ,n 满足m +2n =8,则2m +1n 的最小值为________,等号成立时m ,n 满足的等量关系是________. 答案 1 m =2n解析 因为m +2n =8,所以2m +1n =⎝⎛⎭⎫2m +1n ×m +2n 8=18⎝⎛⎭⎫4+4n m +m n ≥18⎝⎛⎭⎫4+24n m ×m n =18(4+4)=1,当且仅当4n m =mn ,即m =4,n =2时等号成立.角度3 消元法求最值【例3】(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝⎛⎭⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45. 感悟升华 利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点: ①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.【训练1】 已知实数x ,y >0,且x 2-xy =2,则x +6x +1x -y 的最小值为( )A.6B.62C.3D.32答案 A 解析 由x ,y >0,x 2-xy =2得x -y =2x ,则1x -y =x 2,所以x +6x +1x -y =x +6x +x2=3⎝⎛⎭⎫x 2+2x ≥3×2x 2×2x=6, 当且仅当x 2=2x ,即x =2,y =1时等号成立,所以x +6x +1x -y 的最小值为6.考点二 基本不等式的综合应用【例4】 (1) (多选题)(2021·烟台模拟)下列说法正确的是( ) A.若x ,y >0,x +y =2,则2x +2y 的最大值为4 B.若x <12,则函数y =2x +12x -1的最大值为-1C.若x ,y >0,x +y +xy =3,则xy 的最小值为1D.函数y =1sin 2x +4cos 2x的最小值为9(2)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)BD (2)B解析 (1)对于A ,取x =32,y =12,可得2x +2y =32>4,A 错误;对于B ,y =2x +12x -1=-⎝⎛⎭⎫1-2x +11-2x +1≤-2+1=-1,当且仅当x =0时等号成立,B 正确;对于C ,易知x =2,y =13满足等式x +y +xy =3,此时xy =23<1,C 错误;对于D ,y =1sin 2x +4cos 2x =⎝⎛⎭⎫1sin 2x +4cos 2x (sin 2x +cos 2x )=cos 2x sin 2x +4sin 2x cos 2x +5≥24+5=9.当且仅当cos 2x =23,sin 2x =13时等号成立,D 正确.故选BD.(2)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝⎛⎭⎫1x +ay 的最小值大于或等于9,∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立,∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.感悟升华 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.【训练2】 (1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B +sin Bsin C 的最小值为( )A.32B.334C.32D.53(2) 已知x >0,y >0,x +3y +xy =9,求x +3y 的最小值.答案 (1)C解析 (1)由△ABC 的面积为2,所以S △ABC =12bc sin A =12bc sin π6=2,得bc =8,在△ABC 中,由正弦定理得2sin C sin C +2sin B +sin B sin C =2c c +2b +bc=2·8b8b +2b +b 8b =168+2b 2+b 28=84+b 2+b 2+48-12≥284+b2·b 2+48-12=2-12=32, 当且仅当b =2,c =4时,等号成立,故选C.四、练习巩固 一、选择题1.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.42C.2D.22答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x+2y=4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.故选A.2.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A.3B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝⎛⎭⎫1x +1+1y (x +1+y )=2⎝ ⎛⎭⎪⎫1+1+y x +1+x +1y ≥2⎝ ⎛⎭⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,∴x +y ≥7,故x +y 的最小值为7.3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是( )A.6B.233C.4D.23答案 B解析 x 2+y 2+xy =1⇒(x +y )2-xy =1, ∵xy ≤⎝⎛⎭⎫x +y 22,当且仅当x =y 时取等号, ∴(x +y )2-⎝⎛⎭⎫x +y 22≤1,即34(x +y )2≤1,∴-233≤x +y ≤233, ∴x +y 的最大值是233.故选B.4.(2021·沈阳一模)若log 2x +log 4y =1,则x 2+y 的最小值为( ) A.2 B.23C.4D.22答案 C解析 因为log 2x +log 4y =log 4x 2+log 4y =log 4(x 2y )=1,所以x 2y =4(x >0,y >0),则x 2+y ≥2x 2y =4,当且仅当x 2=y =2时等号成立,即x 2+y 的最小值为4.故选C.5.(2020·重庆联考)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A.2 B.22C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2n m 恒成立,∵m n +2n m≥2m n ·2n m =22,当且仅当m n =2nm即m =2n 时取等号,∴a ≤22,故a 的最大值为22,故选B.6.(2020·山东名校联考)正实数a ,b 满足a +3b -6=0,则1a +1+43b +2的最小值为( )A.13B.1C.2D.59答案 B解析 由题意可得a +3b =6,所以1a +1+43b +2=19[(a +1)+(3b +2)]⎝⎛⎭⎫1a +1+43b +2=19⎣⎢⎡⎦⎥⎤5+3b +2a +1+4(a +1)3b +2≥1,当且仅当⎩⎪⎨⎪⎧2(a +1)=3b +2,a +3b =6,即a =2,b =43时等号成立.故1a +1+43b +2的最小值为1,选B.二、填空题7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.答案 8解析 由题设可得1a +2b =1,∵a >0,b >0,∴2a +b =(2a +b )⎝⎛⎭⎫1a +2b =4+b a +4ab≥4+2b a ·4ab=8⎝⎛⎭⎫当且仅当b a =4ab ,即b =2a =4时,等号成立.故2a +b 的最小值为8. 8.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法)由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22, 当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0, 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6. 法二 (代入消元法)由x +3y +xy =9,得x =9-3y 1+y,所以x +3y =9-3y 1+y +3y =9+3y 21+y =3(1+y )2-6(1+y )+121+y=3(1+y )+121+y-6≥23(1+y )·121+y-6=12-6=6,当且仅当3(1+y )=121+y ,即y =1,x =3时取等号,所以x +3y 的最小值为6.9.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________.答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2·8a +b=4,当且仅当a +b 2=8a +b ,即a +b =4时,等号成立.故12a +12b +8a +b 的最小值为4.10.函数y =x 2+2x -1(x >1)的最小值为________.答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.11.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎨⎧a 2=22,b 2=24时取得等号. 12.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________. 答案 ⎣⎡⎭⎫-83,+∞ 解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝⎛⎭⎫x +8x +3. 设g (x )=x +8x ,x ∈N *,则g (x )=x +8x ≥42,当且仅当x =22时等号成立,又g (2)=6,g (3)=173,∵g (2)>g (3),∴g (x )min =173.∴-⎝⎛⎭⎫x +8x +3≤-83, ∴a ≥-83,故a 的取值范围是⎣⎡⎭⎫-83,+∞.。
高中不等式知识点

高中不等式知识点高中阶段,不等式是数学中的重要内容之一。
不等式不仅在数学中有广泛的应用,也在生活中有很多实际意义。
下面我将重点介绍高中阶段学习不等式的一些重要知识点。
1. 不等式的基本性质:(1) 加减性质:对于不等式两边同时加减同一个数,不等号的方向保持不变;(2) 乘除性质:如果同一个正数或同一个负数同时乘或除不等式两边,不等号方向不变,如果同一个正数乘或除不等式两边,不等号的方向保持不变,如果同一个负数乘或除不等式两边,不等号的方向发生改变;(3) 倒置性质:不等号两边同时倒置,不等号的方向也要倒置。
2. 不等式的解集表示法:(1) 常用解集表示法:使用不等号来表示解集,如x>2表示x 大于2;(2) 区间表示法:使用数轴上的区间来表示解集,如[2, +∞)表示大于或等于2的所有实数。
3. 一元一次不等式:一元一次不等式指的是只含有一个未知数(一元)和一次方程的不等式。
对于一元一次不等式的求解,可以进行类似于方程的运算,通过移项和化简得出解集。
4. 一元二次不等式:一元二次不等式指的是含有一个未知数(一元)以及二次项(平方项)的不等式。
对于一元二次不等式的求解,可以通过变换成二次方程,求出方程的解集,再用数轴上的区间来表示解集。
5. 系统不等式:系统不等式指的是多个不等式组成的一个问题。
对于系统不等式的求解,可以通过图像法,通过画出各个不等式的直线图像,找出满足全部条件的交集部分来表示解集。
6. 约束条件的不等式:在一些实际问题中,不仅有不等式的限制条件,还有其他的约束条件。
对于这种情况,需要将不等式的解集与其他条件进行比较来确定最终的解集。
不等式作为数学中的重要内容,不仅仅是应试的一部分,更是对学生逻辑思维和数学思考能力的考验。
通过学习不等式,可以培养学生的分析问题和解决问题的能力,使他们在解决实际问题时能够灵活运用数学知识。
在生活中,不等式也有很多实际应用,如求解最大值、最小值问题、经济学中的供求关系等等。
高中数学不等式知识点梳理

不等式知识点梳理1.两个实数比较大小的方法(1)作差法⎩⎨⎧a -b >0⇔a > ba -b =0⇔a = ba -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab >1⇔a > bab =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).2.不等式的基本性质3.(1)倒数的性质 ①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b . ③a >b >0,0<c <d ⇒a c >bd .④0<a <x <b 或a <x <b <0⇒1b <1x <1a .1.a >b ⇒ac >bc 或a <b ⇒ac <bc ,当c ≤0时不成立. 2.a >b ⇒1a <1b 或a <b ⇒1a >1b ,当ab ≤0时不成立. 3.a >b ⇒a n >b n 对于正数a 、b 才成立. 4.ab >1⇔a >b ,对于正数a 、b 才成立.5.注意不等式性质中“⇒”与“⇔”的区别,如: a >b ,b >c ⇒a >c ,其中a >c 不能推出⎩⎨⎧a >b ,b >c .6.比商法比较大小时,要注意两式的符号.1.“三个二次”的关系(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论; (2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集. 2.常用结论(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解法1.“三个二次”的关系是解一元二次不等式的理论基础,一般可把a <0时的情形转化为a >0时的情形.2.f (x )>0的解集即为函数y =f (x )的图像在x 轴上方的点的横坐标的集合,充分利用数形结合思想.3.简单的分式不等式可以等价转化,利用一元二次不等式解法进行求解. 二元一次不等式组与简单的线性规划 1.二元一次不等式表示的平面区域一般地,直线l :ax +by +c =0把直角坐标平面分成了三个部分: (1)直线l 上的点(x ,y )的坐标满足_________;(2)直线l 一侧的平面区域内的点(x ,y )的坐标满足ax +by +c >0; (3)直线l 另一侧的平面区域内的点(x ,y )的坐标满足ax +by +c <0.所以,只需在直线l 的某一侧的平面区域内,任取一特殊点(x 0,y 0),从ax 0+by 0+c 值的正负,即可判断不等式表示的平面区域. 2.线性规划相关概念(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax+By+C>0或Ax+By+C<0,则有①当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;②当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.(3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z=ax+by(ab≠0)的最值,将函数z=ax+by转化为直线的斜截式:y=-ab x+zb,通过求直线的截距zb的最值间接求出z的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题.[失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化. 2.在通过求直线的截距zb 的最值间接求出z 的最值时,要注意:当b >0时,截距z b 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距z b 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数(1)设a ≥0,b ≥0,则a ,b 的算术平均数为a +b2,几何平均数为ab .(2)基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们正的等比中项. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 24; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 不等式选讲1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集:①|ax+b|≤c⇔_________;②|ax+b|≥c⇔_________;(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则_____≤|a±b|≤____,当且仅当______时,等号成立.(2)如果a,b,c是实数,那么______,当且仅当________时,等号成立.1.不等式证明的方法(1)比较法:①求差比较法:知道a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证明______即可,这种方法称为求差比较法.②求商比较法:由a>b>0⇔ab>1且a>0,b>0,因此当a>0,b>0时,要证明a>b,只要证明ab>1即可,这种方法称为求商比较法.。
高中数学高考总复习----不等式与不等关系知识梳理及考点梳理

高中数学高考总复习----不等式与不等关系知识梳理及考点梳理【考纲要求】1.了解不等关系、不等式(组)的实际背景;2.理解并掌握不等式的性质,理解不等关系;3.能用不等式的基本性质解决某些数学问题.【知识网络】、【考点梳理】要点一、符号法则与比较大小1.实数的符号任意,则(为正数)、或(为负数)三种情况有且只有一种成立。
2.两实数的加、乘运算结果的符号具有以下符号性质:①两个同号实数相加,和的符号不变符号语言:;②两个同号实数相乘,积是正数符号语言:;③两个异号实数相乘,积是负数符号语言:④任何实数的平方为非负数,0的平方为0符号语言:,.3、比较两个实数大小的法则:对任意两个实数、①;②;③。
对于任意实数、,,,三种关系有且只有一种成立。
不等式与不等关系不等式的性质基本性质的应用实际背景要点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依据。
要点二、不等式的基本性质1.不等式的基本性质(1)(2)(3)(4)2.不等式的运算性质(1)加法法则:(2)减法法则:(3)乘法法则:(4)除法法则:(5)乘方法则:(6)开方法则:要点诠释:不等式的概念和性质是进行不等式的变换,证明不等式和解不等式的依据,应正确理解和运用不等式的性质,弄清每条性质的条件与结论,注意条件与结论之间的关系。
基本不等式可以在解题时直接应用。
要点三、比较大小的方法1、作差法:任意两个代数式、,可以作差后比较与0的关系,进一步比较与的大小。
2、作商法:任意两个值为正的代数式、,可以作商后比较与1的关系,进一步比较与的大小。
3、中间量法:若且,则(实质是不等式的传递性).一般选择0或1为中间量.4、利用函数的单调性比较大小:若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小.【典型例题】类型一:比较代数式(值)的大小例1.已知:,比较和的大小.【解析】∵,,∴∴.【总结升华】作差比较法基本步骤:作差,变形,判断差的符号,结论,其中判断差的符号为目的,变形是关键,常用变形技巧有因式分解,配方,拆、拼项等方法.举一反三:【高清课堂:不等式与不等关系394833典型例题一】【变式1】若,则下列不等式中,不能成立的是()A. B. C. D.【解析】取特殊值,代入验证即可【答案】B【变式2】已知,试比较和的大小.【解析】∵,又∵即∴当时,;当时,.【变式3】且,比较与的大小.【解析】作差:(1)当,即时,,此时.(2)当,即(3)当,,此时,其中时取等号.(4)当即时,,此时例2.已知:、,且,比较的大小.【解析】∵、,∴,作商:(*)(1)若a>b>0,则,a-b>0,,此时成立;(2)若b>a>0,则,a-b<0,,此时成立。
不等式的综合应用提高。知识梳理

不等式的综合应用【考纲要求】1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识..【知识网络】【考点梳理】考点一:不等式问题中相关方法1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相不等式的综合应用 解不等式问题实际应用问题 不等式中的含参问题 不等式证明成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.考点二:不等式与相关知识的渗透1.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的综合应用【考纲要求】1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识..【知识网络】【考点梳理】考点一:不等式问题中相关方法1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形 →判断符号(值).5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相不等式的综合应用 解不等式问题实际应用问题 不等式中的含参问题 不等式证明成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.考点二:不等式与相关知识的渗透1.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
2.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:①审题,②建立不等式模型,③解数学问题,④作答。
要点诠释:⑴解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解,。
⑵解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。
⑶不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。
如运用放缩法证明不等式时要注意调整放缩的度。
⑷根据题目结构特点,执果索因,往往是有效的思维方法。
【典型例题】类型一:不等式求解问题例1.解关于x 的不等式ax x >-12. 【思路点拨】考虑转化为整式不等式。
解:不等式ax x >-12可化为()a x x -+>-1202. 1)当a=1时,原不等式的解集为{|}x x >2; 2)当a >1时,原不等式的解集为{|}x x x a <->-221或; 3)若a -<10,则原不等式可化为x a x --<-2102, 故当a <<01时,原不等式的解集为{|}x x a<<-221; 当a =0时,原不等式的解集为ϕ;当a <0时,原不等式的解集为{|}x x a<<-221. 【总结升华】分式不等式应移项、通分,转化为整式不等式。
这是解决分式不等式的基本方法和思路。
举一反三:【变式1】己知三个不等式:①x x -<-542 ②12322≥+-+x x x ③0122<-+mx x (1)若同时满足①、②的x 值也满足③,求m 的取值范围;(2)若满足的③x 值至少满足①和②中的一个,求m 的取值范围。
解:记①的解集为A ,②的解集为B ,③的解集为C 。
解①得A=(-1,3);解②得B=][[)3,2()1,0B A ,4,2()1,0⋃=⋂∴⋃(1)因同时满足①、②的x 值也满足③,A ⋂B ⊆C设12)(2++=mx x x f ,由)(x f 的图象可知:方程的小根小于0,大根大于或等于3时,即可满足3170173010)3(0)0(-≤∴⎩⎨⎧≤+<-⎩⎨⎧≤<⊆∴⋂m m f f B A 即 (2)因满足③的x 值至少满足①和②中的一个,]4,1(,-=⋃⋃⊆∴B A B A C 而因此]0124,1(2=-+∴-⊆mx x C 方程小根大于或等于-1,大根小于或等于4,因而(1)1031(4)4310,14144f m f m m m ⎧⎪-=-≥⎪⎪=+≥-≤≤⎨⎪⎪-<-<⎪⎩解之得 【变式2】已知函数2()21()f x ax x a R =++∈(1)若()f x 的图像与x 轴恰有一个公共点,求a 的值;(2)若方程()0f x =至少有一个正跟,求a 的范围。
解:(1)当0a =时函数()f x 为一次函数,符合题意;当0a ≠时,函数()f x 为二次函数,则440a ∆=-=,所以1a =综上,01a =或.(2)当0a =时,()0f x =为一次方程,不符合题意;当0a ≠时, ()0f x =为二次方程,显然(0)1f =所以0a <时有一正一负根,符合题意;当0a >时,121210100020a x x x a x x aφ⎧⎪≤∆≥⎧⎪⎪⎪⋅>⇒>⇒∈⎨⎨⎪⎪+>⎩⎪->⎪⎩综上,a 的范围0a <.类型二:不等式证明例2.已知△ABC 的三边长是,,a b c ,且m 为正数,求证:a b c a m b m c m+>+++. 【思路点拨】寻找各项的统一性,可以从函数单调性方面来考虑。
证明:设()(0)x f x m x m=>+,易知(0,)+∞是()f x 的递增区间 ,()()a b c f a b f c +>∴+>,即a b c a b m c m+>+++而a b a b a b a m b m a b m a b m a b m++>+=++++++++ a b c a m b m c m ∴+>+++ 【总结升华】函数是高中数学的重要知识,很多问题都可以从函数的角度来思考和分析。
举一反三:【变式1】设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.(1)求证:f (0)=1,且当x <0时,f (x )>1;(2)求证:f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围.证明:令m >0,n =0得:f (m )=f (m )·f (0).∵f (m )≠0,∴f (0)=1取m =m ,n =-m ,(m <0),得f (0)=f (m )f (-m )∴f (m )=)(1m f -,∵m <0,∴-m >0,∴0<f (-m )<1,∴f (m )>1 (2)证明:任取x 1,x 2∈R ,则f (x 1)-f (x 2)=f (x 1)-f [(x 2-x 1)+x 1]=f (x 1)-f (x 2-x 1)·f (x 1)=f (x 1)[1-f (x 2-x 1)],∵f (x 1)>0,1-f (x 2-x 1)>0,∴f (x 1)>f (x 2),∴函数f (x )在R 上为单调减函数.(3)由⎩⎨⎧=+-<+⎩⎨⎧θ==+->+021)(1)2()1()(2222y ax y x f y ax f f y x f 得,由题意此不等式组无解, 数形结合得:1|2|2+a ≥1,解得a 2≤3∴a ∈[-3,3]类型三:不等式与相关知识的融合例3.己知2)(,0bx ax x f a -=>函数,(1)();2,10b a x f R x b ≤≤∈>证明:都有时,若对任意当(2)时当1>b ,证明:对任意]1,0[∈x ,1|)(|≤x f 的充要条件是b a b 21≤≤-; (3)时,当10≤<b 讨论:对任意]1,0[∈x ,1|)(|≤x f 的充要条件。