第10章室内气流分布

合集下载

建筑环境学

建筑环境学

1、通过非透光围护结构热传导和通过非透光围护结构得热前者是考虑在内外扰动以及整个房间所有围护结构相互作用下通过一堵墙体的实际传热量后者是把一堵墙体割裂开来,仅考虑在内外扰动作用下通过一堵墙体的传热量目的在于把房间每一堵墙体的得热求出来,然后进行叠加,以求得通过整个房间围护结构的总得热量。

是一些简化手工工程算法的需要。

2各种得热进入空气的途径潜热得热、渗透空气得热,得热立刻成为瞬时冷负荷通过围护结构导热、通过玻璃窗日射得热、室内显热源散热对流得热部分立刻成为瞬时冷负荷辐射得热部分先传到各内表面,再以对流形式进入空气成为瞬时冷负荷,因此负荷与得热在时间上存在延迟。

3、得热与冷负荷的关系冷负荷与得热有关,但不一定相等决定因素:1、空调形式送风:负荷=对流部分辐射:负荷=对流部分+辐射部分热源特性:对流与辐射的比例是多少?围护结构热工性能:蓄热能力如何?如果内表面完全绝热呢?房间的构造(角系数)注意:辐射的存在是延迟和衰减的根源!4、室外空气综合温度人们常说的太阳下的“体感温度”是什么?室外空气综合温度与什么因素有关?高反射率镜面外墙和红砖外墙的室外空气综合温度是否相同?请试算一下盛夏太阳下的室外空气综合温度比空气温度高多少?5、两种积分变换法总结谐波反应法的简化算法与冷负荷系数法形式一致。

为了便于手工计算,均把内外扰通过一个板壁形成的冷负荷分离出来,作为一个孤立的过程处理,不考虑与其它墙面和热源之间的相互影响。

只是在一定程度上反应了得热和冷负荷之间的区别,对辐射的影响作了很多简化。

如果房间与简化假定相差较远,则结果的误差较大,如内表面温度差别大、房间形状不规则、室内空气控制温度随时间变化等。

6、影响人体与外界热交换的因素环境空气温度:对流换热环境表面温度:辐射换热水蒸汽分压力(空气湿度):对流质交换高温环境:增加热感低温环境:增加冷感!风速:对流热交换和对流质交换吹风感:Draught,冷感和对皮肤的压力冲击服装热阻:影响所有换热式7、热舒适方程与PMV指标特点总结舒适程度由对热中性的偏移程度确定,与偏移的时间长短没有关系,与人体原有的热状态无关,与人体热状态的变化无关。

通风气流

通风气流

第一章·绪论一、通风把建筑物室内污浊的空气直接或净化后排至室外,再把新鲜的空气补充进来,从而保持室内的空气环境符合卫生标准。

建筑物内部与外部的空气交换、混合的过程和现象,是影响室内空气品质的主要因素。

通风的目的:保证排除室内污染物保证室内人员的热舒适满足室内人员对新鲜空气的需要通风方式(按动力):自然通风:依靠自然风压、热压作用进行通风风压通风:依靠自然风力作用在建筑上造成的压差浮力通风:借助空气温度差异造成的浮力(热压通风)通风方式(按动力):机械通风:利用风机等机械设备进行通风适用于自然通风量不足、室内有可燃、有害气体的场合优点:风量稳定,可控制调节缺点:消耗能量通风方式(按排除污染物方式):混合通风:干净空气顶部送入,与空气充分混合,污染物浓度一致置换通风:新鲜空气底部送入、顶部排出,室内空气分层流动,垂直方向形成温度梯度和浓度梯度。

层流通风:风口均匀布置在整个地板、墙面、顶棚,空气品质好,运行费用高。

注意:通风与空气调节的区别空调:用人为的方法处理室内空气的温度、湿度、洁净度和气流速度的技术。

可使某些场所获得具有一定温度和一定湿度的空气,以满足使用者及生产过程的要求和改善劳动卫生和室内气候条件。

空气调节:使房间或封闭空间空气温度、湿度、洁净度和空气速度等参数,达到给定要求的技术。

一个特定空间内的空气环境,一般既要受到来自空间内部产生的热湿量和其他有害的干扰,同时还要受到来自空间外部的气候变化‘太阳辐射和外部空气中有害的干扰。

为了保证特定空间内空气的温度、湿度、洁净度、气流速度等处于限定的变化范围,必须对这些干扰采取技术的手段来消除它们的影响。

通常采用的技术手段主要有采用热湿交换技术以保证特定空间内的温湿度;采用气流组织技术以保证特定空间内的空气合理流动并有合适的流速。

气流组织:在空调房间内合理地布置送风口和回风口,使得经过净化和热湿处理的空气,由送风口送入室内后,在扩散与混合的过程中,均匀地消除室内余热和余湿,从而使工作区形成比较均匀而稳定的温度、湿度、气流速度和洁净度,以满足生产工艺和人体舒适的要求。

09级:《建筑环境学》(第三版)教学大纲与复习要点

09级:《建筑环境学》(第三版)教学大纲与复习要点

《建筑环境学》课程教学大纲一、课程的基本情况课程中文名称:建筑环境学课程英文名称:Built Environment课程代码:0811010课程类别:专业基础课课程性质:必修课总学时:36 讲课学时:34 实验学时: 2 课程学分:2分授课对象:建筑环境与设备工程专业的本科生前导课程:工程热力学,流体力学,传热学二、教学目的本课程是建筑环境与设备工程专业的一门主干专业基础课。

课程目的在于使学生了解和掌握:人和生产过程需要的室内物理环境;各种外部和内部的因素如何影响建筑环境;改变或控制建筑环境的基本方法及原理。

同时通过本课程的学习,为今后学习各门专业课程以及研究生课程打下理论基础。

另外,由于这是一门非常前沿的课程,因此在课程中除了采用了国内外公认的成熟的定论以外,还大量介绍了国内外最新的有关研究成果。

通过本课程的学习,使学生正确掌握有关建筑物理环境的基本概念,掌握构建、分析、评价建筑环境的基本理论与方法,了解建筑环境学科研究的最新发展动态。

三、教学基本要求第一章绪论基本要求:1.了解建筑环境学在人类生产、生活以及可持续发展中的地位和作用。

2.了解建筑环境学的主要研究内容及研究方法。

重点与难点:本章重点是了解建筑环境学的主要研究内容及研究方法。

本章无难点。

复习要点:1建筑环境学的概念,面临的两个急待解决的问题。

2建筑环境学研究的主要内容。

第二章建筑外环境基本要求:1.了解太阳与地球运动的基本规律。

熟悉室外气候的基本特性。

2.掌握太阳辐射的规律(包括太阳常数与太阳辐射的电磁波谱、大气层对太阳辐射的吸收、臭氧层与太阳辐射的关系影响、日照的作用与效果)。

3.了解室外气候(温湿度的年和日变动,风、雨、雪等)。

4.了解城市微气候的特点。

5.掌握我国气候分区的方法与各气候区的特点。

重点与难点:本章重点是太阳辐射的规律与我国气候分区。

本章无难点。

复习要点:1太阳辐射:大气层对太阳辐射的吸收,日照的作用。

2室外气候:1)室外气温的定义,变化规律,有效天空温度。

《大气污染控制工程》第10章 集气罩(60P)

《大气污染控制工程》第10章 集气罩(60P)

图 点汇气流流动情况
实际上,吸气口是有一定大小的,气体流动也是有阻力的。所以,吸气 区气体流动的等速面不是球面而是椭球面。 吸气口气流速度分布特点: ①在吸气口附近的等速面近似与吸气口平行,随离吸气口距离x的增大, 逐渐变成椭圆面,而在1倍吸气口直径d处已接近为球面。因此,当x/d > 1时,可近似当作点汇,吸气量Q可按式1、3计算。当x/d<1时,应根 据有关气流衰减公式计算。 ②吸气口气流速度衰减较快。如图所示,当x/d=1时,该点气流速度已 大约降至吸气口流速的7.5%。

用范围,吸气式集气罩分为: 密闭
气 罩
吹吸式
罩、排气柜、外部集气罩、接受式 集气罩等
1、密闭罩
将污染源的局部或整体密闭起来,在罩内保持一定负压,可防止污 染物的任意扩散。特点:所需排风量最小,控制效果最好,且不受 室内气流干扰,设计中应优先选用。 按照结构形式分为: 局部密闭罩 特点:体积小,材料消耗少,操作与检修方便; 适用:产尘点固定、产尘气流速度较小且连续产尘的地点。 整体密闭罩 特点:容积大,密闭性好。 适用:多点尘源、携气流速大或有振动的产尘设备。 大容积密闭罩 特点:容积大,可缓冲产尘气流,减少局部正压,设备检修可在罩 内进行。 适用:多点源、阵发性、气流速度大的设备和污染源。
4、吹吸气流
由两股气流组合而成的气 流。在集气罩设计中,利 用吹出气流与吸入气流联 合作用来提高所需“控制 风速”的形成,称为吹吸 式集气罩。
三、集气罩的基本类型
集气罩是烟气净化系统污染源的收集装置,可将粉尘及气体 污染源导入净化系统,同时防止其向生产车间及大气扩散, 造成污染。
吸气式
按集气罩与污染源的相对位置及适
其他:根据处理对象不同(如含尘气体、有毒高温易燃易爆气体等) 还应增设必要的设备,如清灰孔、冷却装置、余热利用装置、防爆 装置、消音器、各种阀门仪表等。

中央空调运行管理第十章中央空调风系统的运行

中央空调运行管理第十章中央空调风系统的运行


空调系统尚未正式投入使用,实测空气状态与设计空气状态 相差较大。但仍能使一次回风混合点调整到与设计点焓值相 同,将风量、水量、进口水温调整到与设计工况相同的条件。 若空气处理的焓差接近设计值,则说明冷却装置的冷却能力 达到了设计要求。
三、室内空调效果的测定
1、气流分布的测定 检测工作区内的气流流速、流向是否满足设计要求。 划分横向或竖向测量断面,测点间的水平面间距为0.5~2m, 竖向间距为0.5~1m。
元,造成了没有必要的浪费
问题实例 4

某写字楼采用变风量空调系统,实际运行过程中,某些房间 的客户投诉夏季偏热,为满足这些房间的温度要求,不得不 降低送风温度,最低时候设定为14℃。偏热的投诉减少了, 但是相邻房间的其他客户反映过冷,而且房间有噪声。
末端软管风道变形导致空调送风温度过低

检查投诉偏热房间的变风量箱,发现连接变风量箱出口和末 端风口之间的软管风道在写字楼的客户对房间进行二次装修 时遭到破坏:
三、风量调整的原理
由流体力学知:
ΔH≌kL2
风道的阻力特性系数 S ,取决于管道的几何尺寸和结
构状况。
两并联管路阻力相等,只要两者的阻力特性系数k不变,
两者的流量比例关系就不变。
ΔHC-B=ΔHC-A kC-B/kC-A =(LA/LB)2
四、风量调整的方法
调整过程 1)测送风量: 首先用风速仪初测全部风口的送风量,并计算每个风口的 实测风量与设计风量的比值并列于表中; 图中的系统中共有三条支干管,其中支干管Ⅰ有1~4号风 口,Ⅱ有5~8号风口,Ⅳ有9~12号风口。
(二)风管内风量的测量
测量步骤:选择测定断面,测量断面尺寸,确定测点及测 定各点风速,进而求各点平均风速。 (1)选择测定断面:气流均匀而稳定的直管段

建筑环境学课后习题答案

建筑环境学课后习题答案

《建筑环境学》课后习题答案第一章:绪论1.所谓建筑环境学就是指在建筑空间内,在满足使用功能的前提下,如何让人们在使用过程中感到舒适和健康的一门科学。

根据使用功能的不同,从使用者的角度出发,研究室内的温度、湿度、气流组织的分布、空气品质、采光性能、照明、噪声和音响效果等及其相互间组合后产生的效果,并对此作出科学评价,为营造一个舒、健康的室内环境提供理论依据。

有等解决问题是:①如何解决满足室内环境舒适性与能源消耗和环境保护之间的矛盾;②如何解决“建筑病综合症”(Sick Building Syndrome –“SBS”)的问题。

2.研究的主要内容包括:建筑外环境、室内空气品质、室内热湿环境与气流环境,建筑声环境和光环境(即包含了建筑、传热、声、光、材料及生理学、心理学和生物学等多门学科的内容。

基于建筑环境学内容的多样性,相对独立性和应用的广泛性,人们是从各个不同学科的角度对其内容进行研究,研究室内各种微气候环境所形成的机理及其与人的生活环境、工作环境等相互间的关系。

第二章:建筑外环境1.与太阳的光辐射,气温、湿度,风和降水等因素有关。

2.以太阳通过某地区的子午线时为正午12点来计算一天的时间为平均太阳时;以本初子午线处的平均太阳时作为世界标准时(世界时);以东经120℃的平均太阳时为中国标准(称为北京时间)。

3.相对位置可用纬度,太阳赤纬d,时角h,太阳高度角和方位角A表示,其中前三个参数、d、h是直接影响和A的因素,因为是表明观察点所在位置,d表明季节(日期)的变化;h是表明时间的变化。

当太阳离地球最远时,太阳光是垂直于直射地面的,具有很高的辐射强度,所以最热而形成了夏至,当太阳距地球最近时,太阳光是斜射地球表面的,其辐射强度很弱,因此最寒冷导致了冬至。

4.一部分为太阳直接照射到地面(即直射辐射);另一部分是经过大气层散射后到达地面成为散射辐射,直射辐射与散射辐射之和称为太阳对地面的总辐射。

辐射能量的强弱取决于太阳辐射通过大气层时天空中各种气体分子、尘埃、微粒水粒对阳光的反射,散射和吸收共同影响。

建环答案

建环答案

建筑工程申请认证!财富值双倍检索优先专属展现同行交流答:不是,虽然红外线和紫外线有很大一部分被玻璃窗反射回去了,可是,还是会有一部分红外线或紫外线透过玻璃窗4.透过玻璃的太阳辐射是否等于建筑物的瞬时冷负荷?答:冷负荷是维持室内空气热湿参数为某恒定值时,在单位时间内需要从室内除去的热量。

渗透空气的得热直接进入室内成为瞬时冷负荷。

对流部分的也会直接传递给室内空气成为冷负荷。

而辐射部分进入到室内后,并不直接进入到空气中,而会通过对流换热方式逐步释放到空气中,形成冷负荷。

5.室内照明和设备散热是否直接转变的瞬时冷负荷?答:不是,因为这些散热部分要与室内各表面产生热交换,从而产生衰减和延迟。

6.为什么冬季往往可以采用稳态算法计算采暖负荷而夏天却一定要采用动态算法计算空调负荷?答:如果室内外温差的平均值远远大于室内外温差的波动值时。

采用平均温差的稳态计算带来的误差比较小,在工程设计中最是可以接受的,冬季室内外温差大,但室外空气温度与室内气温却基本恒定,可以采用稳态计算法莱计算,但计算夏天冷负荷不能采用日平均温差的稳态算法,否则可能导致完全错误的结果,这是因为尽管夏季日间瞬时室外温度可能要比室内气温高许多,但夜间却有可能低于室内气温,室内外平均温差不大,波动幅度却相对较大,这就会导致较大偏差,故计算夏季空调负荷不能用稳态计算法8.夜间建筑物可通过玻璃窗以长波辐射形式把热量散出去吗?可以将部分热量以长波辐射的方式散出去。

具体数值与玻璃的厚度和有无镀膜有关。

对于普通玻璃,其热量散失包括传导和长波辐射部分。

普通玻璃对室内长波辐射的透射率很低,但吸收率较高,在加上室内空气与玻璃的温差传热,会造成玻璃本身温度的升高,从而自身发射长波辐射,散失热量。

而对于镀膜low-e玻璃,室内长波辐射的透射率极低,吸收率也极低,只能通过温差传热的作用散失热量,而通过长波辐射的造成的热量散失极低。

第四章1.人的代谢率主要是由什么因素决定的?人的发热量和出汗率是否随环境空气温度的改变而改变?答:人体的代谢率受多种因素的影响,如肌肉活动强度,环境、温度、性别、年龄、神经紧张程度、进食后时间的长短。

流体力学第8、10、11章课后习题

流体力学第8、10、11章课后习题

第八章 边界层理论基础一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。

2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大; (3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。

(二)层流边界层的微分方程(普朗特边界层方程)22100y x x xy y x v pv v v v xy x y py v v x y νρ⎧∂∂∂∂+=-+⎪∂∂∂∂⎪⎪∂⎪=⎨∂⎪⎪∂∂⎪+=∂∂⎪⎩其边界条件为:在0y =处,0x y v v == 在δ=y 处,()x v v x =(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以δ表示。

边界层的厚度δ顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。

图8-1 平板边界层的厚度1、位移厚度或排挤厚度1δδδδ=-=-⎰⎰1001()(1)x x v v v dy dy v v2、动量损失厚度2δδρρ∞∞=-=-⎰⎰221()(1)x x x x v vv v v dy dy v v v(四)边界层的动量积分关系式δδρρδτ∂∂∂-=--∂∂∂⎰⎰200x x w Pv dy v v dy dx x x x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即P =常数。

这样,边界层的动量积分关系式变为δδτρ∞-=-⎰⎰200w x x d d v dy v v dy dx dx 二、本章难点(一)平板层流边界层的近似计算 根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章 室内气流分布10.1 对室内气流分布的要求与评价10.1.1 概述空气分布又称为气流组织。

室内气流组织设计的任务就是合理的组织室内空气的流动与分布,使室内工作区空气的温度、湿度、速度和洁净度能更好的满足工艺要求及人们舒适感的要求。

空调房间内的气流分布与送风口的型式、数量和位置,回风口的位置,送风参数,风口尺寸,空间的几何尺寸及污染源的位置和性质有关。

下面介绍对气流分布的主要要求和常用评价指标。

10.1.2 对温度梯度的要求在空调或通风房间内,送入与房间温度不同的空气,以及房间内有热源存在,在垂直方向通常有温度差异,即存在温度梯度。

在舒适的范围内,按照ISO7730标准,在工作区内的地面上方1.1m 和0.1m 之间的温差不应大于3℃(这实质上考虑了坐着工作情况);美国ASHRAE55-92标准建议1.8m 和0.1m 之间的温差不大于3℃(这是考虑人站立工作情况)。

10.1.3 工作区的风速工作区的风速也是影响热舒适的一个重要因素。

在温度较高的场所通常可以用提高风速来改善热舒适环境。

但大风速通常令人厌烦。

试验表明,风速<0.5m/s 时,人没有太明显的感觉。

我国规范规定:舒适性空调冬季室内风速≯0.2m/s ,夏季≯0.3m/s 。

工艺性空调冬季室内风速≯0.3m/s ,夏季宜采用0.2-0.5m/s 。

10.1.4 吹风感和气流分布性能指标吹风感是由于空气温度和风速(房间的湿度和辐射温度假定不变)引起人体的局部地方有冷感,从而导致不舒适的感觉。

1.有效吹风温度EDT美国ASHRAE 用有效吹风温度EDT(Effective Draft Temperature)来判断是否有吹风感,定义为)15.0(8.7)(EDT ---=x m x t t ν (10-1)式中 t x ,t m --室内某地点的温度和室内平均温度,℃;v x --室内某地点的风速,m/s 。

对于办公室,当EDT=-1.7~l ℃,v x <0.35m/s 时,大多数人感觉是舒适的,小于下限值时有冷吹风感。

EDT 用于判断工作区任何一点是否有吹风感。

2.气流分布性能指标ADPI气流分布性能指标ADPI (Air Diffusion Perfomance Index ),定义为工作区内各点满足EDT 和风速要求的点占总点数的百分比。

对整个工作区的气流分布的评价用ADPI 来判断。

对已有房间,ADPI 可以通过实测各点的空气温度和风速来确定。

在气流分布设计时,可以利用计算流体力学的办法进行预测;或参考有关文献、手册提供的数值。

10.1.5 通风效率E v通风效率E v (Ventilation efficiency)又称混合效率,定义为实际参与工作区内稀释污染物的风量与总送入风量之比,即VCV V V V V V E -= Ev 也表示通风或空调系统排出污染物的能力,因此Ev 也称为排污效率。

⑴当送入房间空气与污染物混合均匀,排风的污染物浓度等于工作区浓度时,E v =1。

⑵一般的混合通风的气流分布形式,E V <1。

若清洁空气由下部直接送到工作区时,工作区的污染物浓度可能小于排风的浓度,Ev>1。

E V 不仅与气流分布有着密切关系,而且还与污染物分布有关。

污染源位于排风口处,Ev 增大。

以转移热量为目的的通风和空调系统,通风效率中浓度可以用温度来取代,并称之为温度效率E T ,或称为能量利用系数,表达式为ss e T t t t t E --= (10-2) 式中 t e 、t 、t s --分别为排风、工作区和送风的温度,℃。

10.1.6 空气龄⑴空气质点的空气龄:简称空气龄(Age of air),是指空气质点自进入房间至到达室内某点所经历的时间。

⑵局部平均空气龄:某一微小区域中各空气质点的空气龄的平均值。

空气龄的概念比较抽象,实际测量很困难,目前都是用测量示踪气体的浓度变化来确定局部平均空气龄。

由于测量方法不同,空气龄用示踪气体的浓度表达式也不同。

如用下降法(衰减法)测量,在房间内充以示踪气体,在A 点起始时的浓度为c(0),然后对房间进行送风(示踪气体的浓度为零),每隔一段时间,测量A 点的示踪气体浓度,由此获得A 点的示踪气体浓度的变化规律c(r),于是A 点的平均空气龄(单位为s)为)0()(0c dr c A ⎰∞=ττ (10-3)⑶全室平均空气龄:全室各点的局部平均空气龄的平均值⎰=VdV V ττ1 (10-4) 式中V 为房间的容积。

如用示踪气体衰减法测量,根据排风口示踪气体浓度的变化规律确定全室平均空气龄,即 ⎰⎰∞∞=00)()(dr c dr c e e A ττττ (10-5)式中c e (τ)即为排风的示踪气体浓度随时间的变化规律。

⑷局部平均滞留时间(Residence time):房间内某微小区域内气体离开房间前在室内的滞留时间,用τr 表示,单位为s 。

⑸空气流出室外的时间微小区域的空气流出室外的时间:某一微小区域平均滞留时间减去空气龄。

全室平均滞留时间:全室各点的局部平均滞留时间的平均值,用于r τ表示。

全室平均滞留时间等于全室平均空气龄的2倍,即ττ2=r (10-6)理论上空气在室内的最短的滞留时间为N VV n 1== τ (10-7)式中 V 为房间体积,m 3;V 为送入房间的空气量,m 3/s ;N 为以秒计的换气次数,1/s ;τn 又称为名义时间常数(Nominal time constant)。

空气从送风口进入室内后的流动过程中,不断掺混污染物,空气的清洁程度和新鲜程度将不断下降。

空气龄短,预示着到达该处的空气可能掺混的污染物少,排除污染物的能力愈强。

显然,空气龄可用来评价空气流动状态的合理性。

10.1.7 换气效率换气效率(Air exchange effciency)ηa 是评价换气效果优劣的一个指标,它是气流分布的特性参数,与污染物无关。

其定义为:空气最短的滞留时间ηn 与实际全室平均滞留时间于r τ之,即ττττη2n r n a == (10-8) 式中 τ--实际全室平均空气龄,s 。

τn /2--最理想的平均空气龄。

从式(10-8)可以看到:换气效率也可定义为最理想的平均空气龄τn /2与全室平均空气龄τ之比。

τa 是基于空气龄的指标,它反映了空气流动状态合理性。

最理想的气流分布τa =1,一般的气流分布τa <l 。

1O.2 送风口和回风口1.送风口的型式⑴按安装位置分为侧送风口、顶送风口(向下送)、地面风口(向上送)。

⑵按送出气流的流动状况分为扩散型风口、轴向型风口和孔板送风口。

扩散型风口:具有较大的诱导室内空气的作用,送风温度衰减快,但射程较短;轴向型风口:诱导室内气流的作用小,空气温度、速度的衰减慢,射程远;孔板送风口:在孔板上满布小孔的送风口,速度分布均匀,衰减快。

⑶按形状分为格栅、活动百叶窗、喷口、散流器、旋流式喷口和置换送风口。

①格栅送风口叶片或空花图案的格栅,用于一般空调工程。

②活动百叶窗如图10-1所示。

通常装于侧墙上用作侧送风口。

双层百叶风口:有两层可调节角度的活动百叶,短叶片用于调节送风气流的扩散角,也可用于改变气流的方向;调节长叶片可以使送风气流贴附顶棚或下倾一定角度(当送热风时)。

单层百叶风口:只有一层可调节角度的活动百叶。

这两种风口也常用作回风口。

③喷口如图10-2所示,有固定式喷口和可调角度喷口。

用于远程送风,属于轴向型风口。

射程(末端速度0.5m/s处)一般可达到10-30m,甚至更远。

通常在大空间(如体育馆、候机大厅)中用作侧送风口;送热风时可用作顶送风口。

如风口既送冷风又送热风,应选用可调角喷口。

调角喷口的喷嘴镶嵌在球形壳中,该球形壳(与喷嘴)在风口的外壳中可转动,最大转动角度30º。

可人工调节,也可电动或气动调节。

在送冷风时,风口水平或上倾;送热风时,风口下倾。

图10-1 活动百叶风口(a)双层百叶风口 (b)单层百叶风口图10-2 喷口(a)固定式喷口 (b)可调角度喷口④散流器图10-3为三种比较典型的散流器。

直接装于顶棚上,是顶送风口。

✧平送流型的方形散流器如图(a)所示,有多层同心的平行导向叶片,使空气流出后贴附于顶棚流动。

可以做成方形,也可做成矩形;可四面出风、三面出风、两面出风或一面出风。

平送流型的圆形散流器与方形散流器相类似。

平送流型散流器适宜用于送冷风。

✧下送流型的圆形散流器图(b)所示,又称为流线型散流器。

叶片间的竖向间距是可调的。

增大叶片间的竖向间距,可以使气流边界与中心线的夹角减小。

送风气流夹角一般为20º-30º,在散流器下方形成向下的气流。

✧圆盘型散流器如图(c)所示,射流以45º夹角喷出,流型介于平送与下送之间。

适宜于送冷、热风。

各类散流器的规格都按颈部尺寸A×B或直径D来标定。

图10-3 方形和圆形散流器(a)平送流型方形散流器 (b)向下送流型的圆形散流器 (c)圆盘型散流器⑤可调式条形散流器如图10-4所示。

条缝宽19mm,长度500-3000mm,据需要选用。

调节叶片的位置,可改变出风方向或关闭;可多组组合(2、3、4组)在一起使用,如图所示。

条形散流器用作顶送风口,也可用于侧送口。

图10-4 可调式条形散流器(a)左出风 (b)下送风 (c)关闭 (d)多组左右出风 (e)多组右出风⑥固定叶片条形散流器如图10-5所示,颈宽50-150mm,长度500-3000mm。

根据叶片形状可有三种流型:直流式、单侧流和双侧流。

可以用于顶送、侧送和地板送风。

图10-5 固定叶片条形散流器(a)直流式 (b)单侧流 (c)双侧流⑦旋流式风口如图10-6所示,有顶送式风口和地板送风的旋流式风口。

✧顶送式风口如图(a),风口中有起旋器,空气通过风口后成为旋转气流,并贴附于顶棚流动。

特点:诱导室内空气能力大、温度和风速衰减快。

适宜在送风温差大、层高低的空间中应用。

旋流式风口的起旋器位置可以上下调节,当起旋器下移时,可使气流变为吹出型。

✧地板送风的旋流式风口如图(b),工作原理与顶送形式相同。

图10-6 旋流式风口1-起旋器 2-旋流叶片 3-集尘箱 4-出风格栅⑧置换送风口如图10-7所示。

风口靠墙置于地上,风口的周边开有条缝,空气以很低的速度送出,诱导室内空气的能力很低,从而形成置换送风的流型。

送风口角度:靠墙上放置时,在180º范围内送风;置于墙角处,在90º范围内送风;置于厅中央,在360º范围内送风。

图10-7所示为180º范围送风口。

图10-7 置换送风口图10-8 回风口(a)格栅式回风口 (b)为可开式百叶回风口1-铰链 2-过滤器挂钩2.回风口由于回风口的汇流流场对房间气流组织影响比较小,因此风口的形式比较简单。

相关文档
最新文档