重庆一中2019级初三下第一次月考定稿

合集下载

九年级下第一次月考.定稿doc

九年级下第一次月考.定稿doc

九年级下第一次月考(考试时间120分钟,满分150分)5—8页为答题卷,请将全部答案写在答题卷上。

2.答题之前,请先将“学校”、“姓名”、“考号”等内容按要求填写在答题卷相应的位置上。

温馨寄语:亲爱的同学,三年难忘的初中语文之旅即将结束,让我们在此驻足,调整一下思绪,整理好行囊,准备“更上一层楼”吧!阅读卷(第1—4页)一、积累与应用(40分)(一)选择题(请将下面各小题正确选项的序号按要求填在答题卡上)(14分)1.下列词语中,有错别字的一项是( )(2分) BA.滥竽充数随波而逝明察秋毫宫阙B.余音绕梁俯首贴耳秋风箫瑟精采C.抑扬顿挫声色俱厉关关雎鸠嶙峋D.腐草为萤锲而不舍静影沉璧珠帘2.下列画线词语在句子中的意思解释不当的一项是()CA.可以这样说,在今天,我们国家每一个人的工作岗位都有一条通向成才的阳光大道。

(这里比喻成才的途径非常宽广)B.韬奋先生生前尽瘁国事,不治生产。

(这里指家庭经济生活)C.用这些成语打击敌人,讽刺社会上的不良现象,鞭笞那些行为不轨的人,是有力的武器。

(这里是用鞭子或板子打的意思)D.她不是不想去救球,可她实在太累了,即使站起来,也追不上那刁钻的来球。

(这里形容来球变化莫测,难以捉摸)3.下列句子用语得体的一项是( )(2分) DA.班长带同学们参观了新建的汽车站后,对站长说:“真不好意思,我们的光临给您带来了不少的麻烦!”B.我相信你读了我的文章后,一定会受益匪浅。

C.晚上十二点,宿舍里还有几个开灯看书的同学,黄兰不满地说:“大学生们,谁看坏了眼睛,请到我处拿眼药水。

”D.老师叫同学们互改作文,张扬对李明抄袭的作文写下一句评语:似曾相识燕归来。

4.下列说法错误的一项是() CA、《醉翁亭记》以"醉""乐"二字提挈全篇,表达了作者与民间同乐的思想。

B、《紫藤萝瀑布》是一篇构思精巧、情景交融又富有哲理的散文,题目中"瀑布"一词,用比喻手法既描写出紫藤盛开的壮观,又暗示生命长河的伟大。

重庆一中2018-2019学年九年级(下)第一次定时作业数学试卷

重庆一中2018-2019学年九年级(下)第一次定时作业数学试卷

2018-2019学年重庆一中九年级(下)第一次定时作业数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)1.(4分)﹣2的倒数是()A.﹣B.C.2 D.﹣22.(4分)如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是()A.80°B.65°C.45°D.30°3.(4分)如图,数轴上表示的解集是()A.x>1 B.x≥1C.x<1 D.x≤14.(4分)如图,空心圆柱在指定方向上的主视图是()A.B.C.D.5.(4分)直线y=2x﹣4,向()平移2个单位将经过点(4,0).A.上B.下C.左D.右6.(4分)将若干个菱形按如图的规律排列:第1个图形有5个菱形,第2个图形有8个菱形,第3个图形有11个菱形,…,则第10个图形有()个菱形.A.30 B.31 C.32 D.337.(4分)下列说法中正确的是()A.两条对角线互相垂直的四边形是菱形B.两条对角线互相平分的四边形是平行四边形C.两条对角线相等的四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形8.(4分)根据以下程序,当输入x=﹣1时,输出结果为()A.﹣5 B.﹣1 C.0 D.39.(4分)如图,在边长为2的正方形ABCD中,以B为圆心,AB为半径作扇形ABC,交对角线BD于点E,过点E作⊙B的切线分别交AD,CD于G,F两点,则图中阴影部分的面积为()A.8﹣8﹣πB.4﹣2﹣πC.8﹣8﹣2πD.8+8﹣2π10.(4分)为了方便学生在上下学期间安全过马路,南岸区政府决定在南开(融侨)中学校门口修建人行天桥(如图1),其平面图如图2所示,初三(8)班的学生小刘想利用所学知识测量天桥顶棚距地面的高度.天桥入口A点有一台阶AB=2m,其坡角为30°,在AB上方有两段平层BC=DE=1.5m,且BC,DE与地面平行,BC,DE上方又紧接台阶CD,EF,其长度相等且坡度均为i=4:3,顶棚距天桥距离FG=2m,且小刘从入口A 点测得顶棚顶端G的仰角为37°,请根据以上数据,帮小刘计算出顶端G点距地面高度为()m.(结果保留一位小数,参考数据:≈1.73,sin37°≈,cos37°≈,tan37°≈)A.5.8 B.5.0 C.4.3 D.3.911.(4分)如图,菱形ABCD的顶点A在x轴的正半轴上,边CD所在直线过点O,对角线BD∥x轴交AC于点M,双曲线y=过点B且与AC交于点N,如果AN=3CN,S△NBC =,那么k的值为()A.8 B.9 C.10 D.1212.(4分)若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.2二、填空题:(本大题共6个小题,每小题4分,共24分)13.(4分)化学从初三加入学生的课程,同学们对这个新学科非常感兴趣.化学元素中的二价镁离子Mg2+的半径为0.000000000072m,将数据0.000000000072用科学记数法表示为.14.(4分)如图,AB为⊙O的直径,点C为上的一点,且∠BAC=30°,点B为的中点,则∠ABD的度数为.15.(4分)如图,甲、乙两个转盘分别被平均分成4份与3份,每个转盘分别标有不同的数字.转动两个转盘,当转盘停止后,甲转盘指针指向的数字作为m,乙转盘指针指向的数字作为n,则为非负整数的概率为.16.(4分)如图,E为矩形ABCD边AD上一点,连接BE,将△ABE沿BE翻折得到△FBE,连接AF,过F作FH⊥BC于F,若AB=3,FH=1,则AF的长度为.17.(4分)A,C,B三地依次在一条笔直的道路上,甲、乙两车同时分别从A,B两地出发,相向而行,甲车从A地行驶到B地就停止,乙车从B地行驶到A地后立即以相同的速度返回B地,在整个行驶的过程中,甲、乙两车均保持匀速行驶,甲、乙两车距C地的距离之和y(km)与甲车出发的时间t(h)之间的函数关系如图所示,则乙车第二次到达C地时,甲车距B地的距离为km.18.(4分)由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x名(其中x>5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,且将机器人每天工作时间延长至12小时,并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工个包裹.三、解答题:(本大题共7个小题,每小题10分,共70分)19.(10分)(1)计算:|3﹣2|﹣(﹣)﹣2+(π﹣3.14)0+(2)解方程:2x2﹣3x﹣1=020.(10分)化简:(1)(﹣a﹣2b)2﹣a(a+4b)(2)÷(﹣)21.(10分)“学而时习之,不亦乐乎!”,古人把经常复习当作是一种乐趣,能达到这种境界是非常不容易的.复习可以让遗忘的知识得到补拾,零散的知识变得系统,薄弱的知识有所强化,掌握的知识更加巩固,生疏的技能得到训练.为了了解初一学生每周的复习情况,教务处对初一(1)班学生一周复习的时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,一周复习2小时的女生人数占全班人数的16%,一周复习4小时的男女生人数相等.根据调查结果,制作了两幅不完整的统计图(表):初一(1)班女生的复习时间数据(单位:小时)如下:0.9,1.3,1.7,1.8,1.9,2.2,2.2,2.2,2.3,2.4,3.2,3.2,3.2,3.3,3.8,3.9,3.9,4.1,4.2,4.3.女生一周复习时间频数分布表(1)四舍五入前,女生一周复习时间的众数为小时,中位数为小时;(2)统计图表中a=,c=,初一(1)班男生人数为人,根据扇形统计图估算初一(1)班男生一周的平均复习时间为小时;(3)为了激励学生养成良好的复习习惯,教务处决定对一周复习时间四舍五入后达到3小时及以上的全年级学生进行表扬,每人奖励1个笔记本,初一年级共有1000名学生,请问教务处应该准备大约多少个笔记本?22.(10分)初三某班同学小戴想根据学习函数的经验,通过研究一个未学过的函数的图象,从而探究其各方面性质.下表是函数y与自变量x的几组对应值:(1)在平面直角坐标系xOy中,每个小正方形的边长为一个单位长度,描出了以上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象.(2)请根据画出的函数图象,直接写出该函数的关系式y=(请写出自变量的取值范围),并写出该函数的一条性质:.(3)当直线y=﹣x+b与该函数图象有3个交点时,求b的取值范围.23.(10分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?2018-2019学年重庆一中九年级(下)第一次定时作业数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)1.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.【解答】解:如图,∵BE⊥EF,∴∠E=90°,∵∠B=25°,∴∠1=65°,∵AB∥CD,∴∠EFD=∠1=65°,故选:B.3.【解答】解:该数轴表示的解集是x<1,故选:C.4.【解答】解:圆柱的主视图是矩形,里面有两条用虚线表示的看不到的棱,故选:C.5.【解答】解:设平移后直线的解析式为y=2x+b.把(4,0)代入直线解析式得0=2×4+b,解得b=﹣8.所以平移后直线的解析式为y=2x﹣8=2(x﹣2)﹣4,则需要将直线向右平移2个单位,或向下平移4个单位,可使平移后直线过点(4,0),故选:D.6.【解答】解:设第n个图形有a n个菱形(n为正整数).观察图形,可知:a1=5=3+2,a2=8=3×2+2,a3=11=3×3+2,a4=14=3×4+2,∴a n=3n+2(n为正整数),∴a10=3×10+2=32.故选:C.7.【解答】解:∵两条对角线互相垂直的平行四边形是菱形,∴A选项错误∵两条对角线互相平分的四边形是平行四边形∴B选项正确∵两条对角线相等的平行四边形是矩形∴C选项错误∵两条对角线互相垂直且相等的平行四边形是正方形∴D选项错误故选:B.8.【解答】解:把x=﹣1代入得:4﹣(﹣1)2=4﹣1=3>1,把x=3代入得:4﹣32=4﹣9=﹣5<1,则输出结果为﹣5.故选:A.9.【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠GDE=∠FDE=45°,∵GF是⊙B的切线,∴BD⊥GF,∴∠DEG=∠DEF=90°,∴∠DGE=45°,∠DFE=45°,∴DG=DF,GF=2DE,∴DG=DF=DE,∵BD=AB=2,∴DE=BD﹣BE=2﹣2,∴DG=DF=(2﹣2)=4﹣2,S阴影=S正方形ABCD﹣S扇形BAC﹣S△DGF=2×2﹣﹣(4﹣2)2=8﹣8﹣π.故选:A.10.【解答】解:如图,延长GF交过点A的水平线于J,作BH⊥AJ于H,CK⊥GJ于K,EM⊥GJ于M,DN⊥CK于K.设CD=EF=5k,则FM=DN=4k,EM=CN=3k,BH=AB=1,AH=BH=,∴AJ=+1.5+1.5+6k=+3+6k,GJ=2+8k+1=3+8k,∵tan37°==,∴=,∴k≈0.156,∴GJ=3+8×0.156≈4.3(m),故选:C.11.【解答】解:设CN=a,BM=b,则AN=3a,设N(x,3a),B(x+b,2a),则,解得:ax=3,∵N在双曲线y=上,∴k=3ax=3×3=9,故选:B.12.【解答】解:不等式组整理得:,由不等式组有解且都是2x+6>0,即x>﹣3的解,得到﹣3<a﹣1≤3,即﹣2<a≤4,即a=﹣1,0,1,2,3,4,分式方程去分母得:5﹣y+3y﹣3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D.二、填空题:(本大题共6个小题,每小题4分,共24分)13.【解答】解:将0.000000000072用科学记数法表示为:7.2×10﹣11.故答案是:7.2×10﹣11.14.【解答】解:∵AB为⊙O的直径,∠BAC=30°,∴∠ABC=90°﹣30°=60°,∵点B为的中点,∴,∴∠ABD=∠ABC=60°,故答案为:60°15.【解答】解:根据题意画图如下:共有12种等情况数,为非负整数的4种情况数,则为非负整数的概率为=;故答案为:.16.【解答】解:设AF与BH交于G,∵将△ABE沿BE翻折得到△FBE,∴BF=AB=3,∵FH⊥BC,∴BH==2,∵四边形ABCD是矩形,∴∠ABC=90°,∴AB∥FH,∴△ABG∽△FHG,∴==3,∴BG=,HG=,∴AG==,∴FG=,∴AF=AG+GF=2,故答案为:2.17.【解答】解:由题意得:A地到C地甲走了2个小时,乙走了1个小时,设甲的速度为akm/h,则乙的速度为2akm/h,2a+3a﹣2a=180,a=60,则A、B两地的距离为:2a+4a=6a=360,A、C两地的距离为:2×60=120,乙第二次到达C地的时间为:=4h,360﹣4×60=120(千米),答:则乙车第二次到达C地时,甲车距B地的距离为120km.故答案为:120.18.【解答】解:设工人每小时加工y个包裹,则改造前机器人每小时加工2y个包裹,改造后机器人每小时加工(2y+x)个包裹,依题意,得:12(x+2)(2y+x)=6×8xy,∴x2+4y﹣2xy+2x=0,∴y===+=+=+3+,∵x是大于5的整数,y是整数,∴x=6,y=6,∴该仓库平时一天加工6×6×8+6×12×8=864(个),故答案为864.三、解答题:(本大题共7个小题,每小题10分,共70分)19.【解答】解:(1)原式=3﹣2﹣4+1+2=0;(2)∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17>0,则x=,即x1=,x2=.20.【解答】解:(1)原式=a2+4ab+4b2﹣a2﹣4ab=4b2.(2)原式=÷[﹣]=÷=•=.21.【解答】解:(1)2.2与3.2出现的次数都是3次,都是出现次数最多的数;=2.8.故答案为:2.2、3.2,2.8(2)初一(1)班一周复习2小时的女生人数共8人,即a=8;因为一周复习2小时的女生人数占全班人数的16%,所以该班人数为:8÷16%=50(人)因为该班有女生20人,所以有男生50﹣20=30(人).一周复习4小时的女生有:b=20﹣2﹣8﹣4=6(人)因为该班一周复习4小时的男女生人数相等.所以一周复习4小时的男生占男生人数的百分比为:=20%,即d=20,所以c=100﹣10﹣50﹣20=20.所以男生一周的平均复习时间为:2×50%+1×10%+4×20%+3×20%=2.5(小时)故答案为:8,20,2.5(3)初一(1)班复习时间在三小时及以上的人数有:4+6+6+30×20%=22(人)占该班人数的=44%,教务处该准备笔记本:1000×44%=440(个)答:教务处应该准备大约440个笔记本22.【解答】解:(1)(2)当x≤3时,函数为正比例函数,(1,4)带入y=kx,解得k=4,y=4x.当x>3时,函数为反比例函数,(6,6)代入y=,解得k=36,y=.∵当x≤3时,k=4>0,∴随着x增大,y值增大.故答案为:y=,当x≤3时,k=4>0,y随着x的增大而增大.(3)由图象可知:当4<b<9时,会有函数图象有3个交点.23.【解答】解:(1)设现场购买每张电影票为x元,网上购买每张电影票为y元.依题意列二元一次方程组∵经检验解得(2)设1月2日该电影院影票现场售价下调m元,那么会多卖出张电影票.依题意列一元二次方程:(45﹣m)[600×(1﹣)+]=19800﹣25×600(1﹣)整理得:8m2﹣120m=0m(8m﹣120)=0解得m1=0(舍去)m2=15答:(1)2018年在网上平台购票和现场购票的每张电影票的价格分别为25元和45元;(2)1月2日当天现场购票每张电影票的价格下调了15元.。

重庆一中初2020级2019-2020学年初三下第一次定时作业(3月月考)化学试卷(含答案)

重庆一中初2020级2019-2020学年初三下第一次定时作业(3月月考)化学试卷(含答案)

重庆一中初2020级19—20学年度下期第一次定时作业化学试题(全卷共四个大题,满分70分,与物理共用120分钟)注意事项:1.试题的答案书写在答题卡(卷)上,不得在试题卷上直接作答。

2.作答前认真阅读答题卡(卷)上的注意事项。

3.考试结束,由监考人员将试题和答题卡(卷)一并收回。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 S 32 Cl 35.5 Fe 56 一、选择题(本题包括16小题,每小题2分,共32分。

每小题只有一个正确答案)1.下列变化不属于化学变化的是A.海水晒盐B.葡萄糖的氧化C.一氧化碳使人中毒D.除去海水中的氯化镁等可溶性杂质2.下列哪种物质最适宜做食品干燥剂A.烧碱B.生石灰C.纯碱D.浓硫酸3.下列化肥中,从外观即可与其他化肥相区别的是A.磷矿粉B.硫酸钾C.尿素D.硝酸铵4.下列关于酸和碱的叙述正确的是A.浓硫酸可使有机物发生炭化现象,体现出吸水性B.浓盐酸瓶口可观察到白雾,具有挥发性C.熟石灰能参与中和反应,可用于治疗胃酸过多D.烧碱易潮解,可用于二氧化碳的干燥5.下列现象中,只和空气中的水蒸气有关的是A.牛奶变酸B.固体烧碱要密封存放C.浓硫酸露置于空气中会增重、变稀D.铁制品长期放在空气中会生锈6.下图所示实验操作,正确的是A.取固体药品B.加热液体C.测溶液pH D.稀释浓硫酸7.下列溶液中加入括号中的物质,能使溶液的pH明显增大的是A.稀盐酸(NaOH固体) B.稀硫酸(BaCl2固体)C.NaOH溶液(CuCl2固体) D.饱和石灰水(CO2气体)8.有关下列说法正确的是A.生活中用洗涤剂去油污和用汽油去油污的原理相同B.用硫酸除铁锈,是利用的中和反应原理C.酒精溶液不导电,是因为不存在自由移动的离子D.用肥皂水无法区分蒸馏水和硝酸镁溶液9.右图所示实验中,②、④为用紫色石蕊溶液润湿的棉球,①、③为用石蕊溶液染成紫色并干燥后的棉球。

2019-2020学年重庆一中九年级(下)第一次月考化学试卷(3月份)(含答案解析)

2019-2020学年重庆一中九年级(下)第一次月考化学试卷(3月份)(含答案解析)

2019-2020学年重庆一中九年级(下)第一次月考化学试卷(3月份)一、单选题(本大题共16小题,共32.0分)1.下列变化中,属于化学变化的是()A. 一氧化碳中毒B. 干冰升华C. 浓盐酸挥发D. 轮胎爆炸2.下列物质能导电的是()A. 蒸馏水B. 食盐固体C. 蔗糖溶液D. 食盐水3.下列数据是一些物质的 pH,其中酸性最强的是()A. 蒸馏水7.0B. 矿泉水6.8−7.8C. 碳酸饮料5.5−6.5D. 米醋2.8−3.84.下列几组物质,按酸碱盐的顺序排列的是()A. HNO3、Na2CO3、BaSO4B. Na2SO4、KOH、NaClC. H2CO3、Ca(OH)2、MgOD. H2SO4、Ba(OH)2、Na2CO35.如图所示,将水分别滴人装有氢氧化钠固体和硝酸铵固体的两支试管中,下列说法错误的是()A. 硝酸铵固体溶解时会吸收热量B. 氢氧化钠固体溶解时会放出热量C. A、B两只烧杯的溶液中都有固体析出D. A、B两只烧杯中溶液的溶质质量分数都保持不变6.酸具有一些相似的化学性质,这是因为()A. 酸能使指示剂变色B. 酸能跟碱反应生成盐和水C. 酸溶液中含有H+D. 酸溶液能导电7.下列物质的名称、俗名、化学式及用途完全对称的是()名称俗名化学式用途A 氧化钙生石灰 CaO 干燥剂B碳酸氢钠纯碱Na2CO3发酵粉的主要成分厕所清洁剂的主要成 C氢氧化钠火碱NaOH分 D碳酸钠小苏打NaHCO3生产洗涤剂A. AB. BC. CD. D8.下列物质的化学式,俗名及所属类别的对应关系正确的是()A. NaOH烧碱盐B. CO2固体干冰氧化物C. NaHCO3小苏打酸D. Hg水银非金属9.下列实验操作正确的是()A. 点燃酒精灯B. 测溶液pHC. 闻气味D. 倾倒液体10.下列化学方程式书写正确的是()A. 2H2+O22H2OB. Mg+O2MgO2C. H2O H2↑+O2↑D. 4Fe+3O22Fe2O311.下列关于氢氧化钠溶液说法错误的是()A. 该溶液无色、均一、稳定B. 该溶液能导电C. 该溶液在空气中易吸收二氧化碳而变质D. 该溶液能使石蕊试液变红12.下列每组中的两种固体物质,只用水做试剂,不能将其鉴别出来的是()A. CuSO4、KNO3B. KCl、NaClC. AgCl、NaNO3D. NH4NO3、NaCl13.逻辑推理是一种重要的化学思维方法,以下推理合理的是()A. 因为酸的溶液都呈酸性,所以呈酸性的溶液一定都是酸B. 因为中和反应生成盐和水,所以生成盐和水的反应都是中和反应C. 因为NaOH溶液呈碱性,所以KOH溶液也呈碱性D. 因为CO是有毒气体,所以CO2也是有毒气体14.除去物质中混有的少量杂质(括号内的为杂质),选用的方法或试剂错误的有()A. 铜粉(铁粉)--磁铁B. 二氧化碳(一氧化碳)--点燃C. 氮气(氧气)--灼热的铜网D. 一氧化碳(二氧化碳)--足量澄清石灰水15.下列物质间的转化,不能一步实现的是()A. CuCl2→FeCl2B. Fe→Fe3O4C. BaSO4→BaCl2D. Cu(NO3)2→NaNO316.向一定质量CuCl2和HCl的混合溶液中逐滴加入NaOH溶液,反应过程中产生沉淀质量与加入的NaOH溶液的质量如图所示。

2019-2020学年重庆一中九年级(下)第一次定时作业数学试卷(解析版)

2019-2020学年重庆一中九年级(下)第一次定时作业数学试卷(解析版)

2019-2020学年重庆一中九年级(下)第一次定时作业数学试卷一.选择题(共12小题)1.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱2.若代数式有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠43.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.|a|>|b|D.b+c>04.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.185.在平面直角坐标系中,若点P(x﹣4,3﹣x)在第三象限,则x的取值范围为()A.x<3B.x<4C.3<x<4D.x>36.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9B.2:5C.2:3D.:7.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=28.按如图所示的运算程序,能使输出结果为﹣8的是()A.x=3,y=4B.x=4,y=3C.x=﹣4,y=2D.x=﹣2,y=4 9.如图,在△ABC中,AB=10,AC=8,BC=6.按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连结OC,则OC为()A.2B.2C.D.110.已知二次函数y=﹣x2+(a﹣2)x+3,当x>2时,y随x的增大而减小,并且关于x的方程ax2﹣2x+1=0无实数解.那么符合条件的所有整数a的和是()A.120B.20C.0D.无法确定11.如图,小明站在某广场一看台C处,从眼睛D处测得广场中心F的俯角为21°,若CD=1.6米,BC=1.5米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10米,则看台底端A点距离广场中心F点的距离约为(参考数据:sin2l°≈0.36,cos2l°≈0.93,tan21°≈0.38)()A.8.8米B.9.5米C.10.5米D.12米12.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.二.填空题(共6小题)13.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.从数﹣1、、0、2中任取一个数记为a,再从余下的三个数中任取一个数记为b,若k =a+b,则k<0的概率是.15.若关于x,y的方程组的解满足4x+3y=14,则n的值为.16.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.17.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.18.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D是斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为12,则k的值为.三.解答题(共8小题)19.(1)计算:4cos30°+(1﹣)0﹣+|﹣2|(2)解方程:+=320.如图,AB为⊙O的直径,且AB=4,点C是弧AB上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)若BD=8,求线段AC的长度;(2)求证:EC是⊙O的切线;(3)当∠D=30°时,求图中阴影部分面积.21.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:A B C D E F G H女生代码实心球8.17.77.57.57.37.27.0 6.5 *4247*4752*49一分钟仰卧起坐其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.22.对任意一个四位正整数数m,若其千位与百位上的数字之和为9,十位与个位上的数字之和也为9,那么称m为“重九数”,如:1827、3663.将“重九数”m的千位数字与十位数字对调,百位数字与个位数字对调,得到一个新的四位正整数数n,如:m=2718,则n=1827,记D(m,n)=m+n.(1)请写出两个四位“重九数”:,.(2)求证:对于任意一个四位“重九数”m,其D(m,n)可被101整除.(3)对于任意一个四位“重九数”m,记f(m,n)=,当f (m,n )是一个完全平方数时,且满足m>n,求满足条件的m的值.23.有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可).24.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(3,0),C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)设点M是直线l上的一个动点,当点M到点A,点C的距离之和最短时,求点M 的坐标;(3)在抛物线上是否存在点N,使S△ABN=S△ABC,若存在,求出点N的坐标,若不存在,说明理由.25.春临大地,学校决定给长12米,宽9米的一块长方形展示区进行种植改造现将其划分成如图两个区域:区域Ⅰ矩形ABCD部分和区域Ⅱ四周环形部分,其中区域Ⅰ用甲、乙、丙三种花卉种植,且EF平分BD,G,H分别为AB,CD中点.(1)若区域Ⅰ的面积为Sm2,种植均价为180元/m2,区域Ⅱ的草坪均价为40元/m2,且两区域的总价为16500元,求S的值.(2)若AB:BC=4:5,区域Ⅱ左右两侧草坪环宽相等,均为上、下草坪环宽的2倍①求AB,BC的长;②若甲、丙单价和为360元/m2,乙、丙单价比为13:12,三种花卉单价均为20的整数倍.当矩形ABCD中花卉的种植总价为14520元时,求种植乙花卉的总价.26.在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.(1)如图1,图2,若△ABC为等腰直角三角形,问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是,数量关系是;深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM=时,BP 的最大值为.参考答案与试题解析一.选择题(共12小题)1.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.2.若代数式有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠4【分析】根据分式有意义的条件即可求出x的范围;【解答】解:由代数式有意义可知:x﹣4≠0,∴x≠4,故选:D.3.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.|a|>|b|D.b+c>0【分析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.4.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.18【分析】根据多边形的内角和,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=150n,解得n=12,故选:B.5.在平面直角坐标系中,若点P(x﹣4,3﹣x)在第三象限,则x的取值范围为()A.x<3B.x<4C.3<x<4D.x>3【分析】根据第三象限内点的坐标符号特点列出关于m的不等式组,解之可得.【解答】解:∵点P(x﹣4,3﹣x)在第三象限,∴,解得3<x<4,故选:C.6.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9B.2:5C.2:3D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.7.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.8.按如图所示的运算程序,能使输出结果为﹣8的是()A.x=3,y=4B.x=4,y=3C.x=﹣4,y=2D.x=﹣2,y=4【分析】根据运算程序,结合输出结果确定输入的值即可.【解答】解:A.x=3,y=4时,输出的结果为3×3﹣42=﹣7,不符合题意;B.x=4,y=﹣3时,输出的结果为4×3﹣(﹣3)2=3,不符合题意;C.x=﹣4,y=2时,输出的结果为3×(﹣4)+22=﹣8,符合题意;D.x=﹣2,y=4时,输出结果为3×(﹣2)+42=10,不符合题意.故选:C.9.如图,在△ABC中,AB=10,AC=8,BC=6.按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连结OC,则OC为()A.2B.2C.D.1【分析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.【解答】解:过点O作OD⊥BC,OG⊥AC,垂足分别为D,G,由题意可得:O是△ACB的内心,∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四边形OGCD是正方形,∴DO=OG==2,∴CO=2.故选:A.10.已知二次函数y=﹣x2+(a﹣2)x+3,当x>2时,y随x的增大而减小,并且关于x的方程ax2﹣2x+1=0无实数解.那么符合条件的所有整数a的和是()A.120B.20C.0D.无法确定【分析】由二次函数的增减性可求得对称轴,可求得a取值范围,根据方程无解即△<0求得a的范围,据此得出整数a的所有取值,进行求解即可【解答】解:∵y=﹣x2+(a﹣2)x+3,∴抛物线对称轴为x=,开口向下,∵当x>2时y随着x的增大而减小,∴≤2,解得a≤6,又∵关于x的方程ax2﹣2x+1=0无实数解,∴△=(﹣2)2﹣4a<0,解得a>1,∴1<a≤6,则符合条件的整数a的值有2、3、4、5、6,这些整数a的和为2+3+4+5+6=20,故选:B.11.如图,小明站在某广场一看台C处,从眼睛D处测得广场中心F的俯角为21°,若CD=1.6米,BC=1.5米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10米,则看台底端A点距离广场中心F点的距离约为(参考数据:sin2l°≈0.36,cos2l°≈0.93,tan21°≈0.38)()A.8.8米B.9.5米C.10.5米D.12米【分析】如图,作BM⊥F A交F A的延长线于M,延长DC交F A的延长线于N,解直角三角形求出AM,BM,MN,FN即可解决问题.【解答】解:如图,作BM⊥F A交F A的延长线于M,延长DC交F A的延长线于N.∵BM:AM=3:4,AB=10米,∴BM=6(米),AM=8(米),在Rt△DNF中,tan21°=,∴=0.38,∴FN≈20(米),∴AF=FN﹣AM﹣MN=20﹣8﹣1.5≈10.5(米),故选:C.12.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.【分析】设菱形的高为h,解直角三角形求得h=,设AP=x,则PB=1﹣x,AQ=2x,PQ=x,DQ=1﹣2x,然后根据S△CPQ=S菱形ABCD﹣S△PBC﹣S△P AQ﹣S△CDQ表示出△APQ的面积,根据二次函数的性质即可求得.【解答】解:设菱形的高为h,∵在边长为1的菱形ABCD中,∠ABC=120°,∴∠A=60°,∴h=,若设AP=x,则PB=1﹣x,∵PQ⊥AB,AQ=2x,PQ=x,∴DQ=1﹣2x,∴S△CPQ=S菱形ABCD﹣S△PBC﹣S△P AQ﹣S△CDQ=1×﹣(1﹣x)•﹣x•x﹣(1﹣2x)•=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴△CPQ面积有最大值为,故选:D.二.填空题(共6小题)13.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上方,∴y1<y2.故答案为:<.14.从数﹣1、、0、2中任取一个数记为a,再从余下的三个数中任取一个数记为b,若k =a+b,则k<0的概率是.【分析】画树状图列出所有等可能结果,再从中找到使a、b两数的和小于0的结果数,根据概率公式计算可得.【解答】解:画树状图如下:由树状图知共有12种等可能结果,其中能使a、b两数的和小于0的有4种结果,∴k<0的概率是=,故答案为:.15.若关于x,y的方程组的解满足4x+3y=14,则n的值为.【分析】根据二元一次方程组的解的意义,方程组的解满足,解此方程组,然后把它们代入2x+y=2n+5中求出n.【解答】解:解方程组得,把代入2x+y=2n+5得4+2=2n+5,解得n=.故答案为.16.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.17.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A =90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH =DC=x+2,当AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,当AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为:3+2.18.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D是斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为12,则k的值为24.【分析】根据反比例函数系数k的几何意义,证明△ABC∽△EOB,根据相似比求出BA •BO的值,从而求出△AOB的面积.【解答】解:连接OA.∵△BCE的面积为12,∴BC•OE=12,∴BC•OE=24,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴=,∴AB•OB•=BC•OE,∵•OB•AB=,∴k=AB•BO=BC•OE=24,故答案为24.三.解答题(共8小题)19.(1)计算:4cos30°+(1﹣)0﹣+|﹣2|(2)解方程:+=3【分析】(1)原式利用特殊角的三角函数值,零指数幂法则,二次根式性质,以及绝对值的代数意义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4×+1﹣2+2=2+1﹣2+2=3;(2)分式方程整理得:﹣=3,去分母得:x﹣1=3(x﹣2),去括号得:x﹣1=3x﹣6,移项合并得:﹣2x=﹣5,解得:x=2.5,经检验x=2.5是分式方程的解.20.如图,AB为⊙O的直径,且AB=4,点C是弧AB上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)若BD=8,求线段AC的长度;(2)求证:EC是⊙O的切线;(3)当∠D=30°时,求图中阴影部分面积.【分析】(1)连接BC,如图,连接BC,根据切线的性质得到∠ABD=90°,根据勾股定理得到AD==4,根据三角形的面积公式和勾股定理即可得到结论;(2)连接OC,OE,由E是BD的中点,可得CE=BE,证明△OCE≌△OBE,得∠OCE =∠OBE=90°,则结论得证;(3)阴影部分的面积即为四边形OBED的面积减去扇形COB的面积.【解答】解:(1)如图,连接BC,∵BD是⊙O的切线,∴∠ABD=90°,∵AB=4,BD=8,∴AD==4,∵AB为⊙O的直径,∴BC⊥AD,∴BC===,∴AC==;(2)连接OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△BDC中,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∵OC为半径,∴EC是⊙O的切线;(3)∵OA=OB,BE=DE,∴AD∥OE,∴∠D=∠OEB,∵∠D=30°,∴∠OEB=30°,∠EOB=60°,∴∠BOC=120°,∵AB=4,∴OB=2,∴BE=2.∴四边形OBEC的面积为2S△OBE=2××2×2=4,∴阴影部分面积为S四边形OBEC﹣S扇形BOC=4﹣=4﹣.21.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为9;②一分钟仰卧起坐成绩的中位数为45;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代A B C D E F G H码实心球8.17.77.57.57.37.27.0 6.5 *4247*4752*49一分钟仰卧起坐其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.【分析】(1)①根据题意和表格中的数据可以求得m的值;②根据条形统计图中数据和中位数的定义可以得到这组数据的中位数;(2)①根据题意和表格中的数据可以求得全年级女生实心球成绩达到优秀的人数;②根据题意和表格中的数据可以解答本题.【解答】解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,∴全年级女生实心球成绩达到优秀的人数是:150×=65,答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.22.对任意一个四位正整数数m,若其千位与百位上的数字之和为9,十位与个位上的数字之和也为9,那么称m为“重九数”,如:1827、3663.将“重九数”m的千位数字与十位数字对调,百位数字与个位数字对调,得到一个新的四位正整数数n,如:m=2718,则n=1827,记D(m,n)=m+n.(1)请写出两个四位“重九数”:3645,7263.(2)求证:对于任意一个四位“重九数”m,其D(m,n)可被101整除.(3)对于任意一个四位“重九数”m,记f(m,n)=,当f(m,n)是一个完全平方数时,且满足m>n,求满足条件的m的值.【分析】(1)根据“重九数“定义写出两个符合要求的数即可.(2)将m的各个数位上的数字用字母表示,得出D(m,n)的表达式,一定有因数101.(3)先得出f(m,n)的表达式,再根据完全平方数的特征得出不定方程,解不定方程即可求出m的值.【解答】解:(1)3645,7263.(答案不唯一,符合题意即可).故答案为:3645,7263.(2)证明:设任意一个“重九数“m为,(a,b,c,d均为1~9的自然数),则n 为,∴D(m,n)=m+n=1000a+100b+10c+d+1000c+100d+10a+b=101(10a+10c+b+d),∴D(m,n)可被101整除.(3)由(2)可知,对于任意的“重九数“m=,有D(m,n)=101(10a+10c+b+d),∴f(m,n)=10a+10c+b+d,∵a+b=9,c+d=9,∴b=9﹣a,d=9﹣c,∴f(m,n)=10a+10c+b+d=10a+10c+9﹣a+9﹣c=9a+9c+18=9(a+c+2),∵f(m,n)是完全平方数,9是完全平方数,∴a+c+2是完全平方数,∵1≤a≤9,1≤c≤9,且m>n,∴a>c,5≤a+c+2≤19,∴a+c+2=9或16,当a+c+2=9时,解得或或.当a+c+2=16时,解得或.综上所述,满足要求的m的值有:9054、8163、6318、5427、4536.23.有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值.【分析】(1)由图表可知x≠0;(2)根据图表可知当x=3时的函数值为m,把x=3代入解析式即可求得;(3)根据坐标系中的点,用平滑的曲线连接即可;(4)观察图象即可得出该函数的其他性质.【解答】解:(1)x≠0,(2)令x=3,∴y=×32+=+=;∴m=;(3)如图(4)该函数的其它性质:①该函数没有最大值;②该函数在x=0处断开;③该函数没有最小值;④该函数图象没有经过第四象限.故答案为该函数没有最大值.24.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(3,0),C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)设点M是直线l上的一个动点,当点M到点A,点C的距离之和最短时,求点M 的坐标;(3)在抛物线上是否存在点N,使S△ABN=S△ABC,若存在,求出点N的坐标,若不存在,说明理由.【分析】(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣3,即可求解.(2)点A关于函数对称轴的对称点为点B,连接BC交函数的对称轴于点M,则点M为所求,即可求解.(3)S△ABN=S△ABC,则|y N|=|y C|=±4,即可求解.【解答】解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣3,解得:a=1,故抛物线的函数解析式为y=x2﹣2x﹣3.(2)点A关于函数对称轴的对称点为点B,连接BC交函数的对称轴于点M,则点M为所求,将点B、C的坐标代入一次函数表达式:y=kx+b并解得:直线BC的表达式为:y=x﹣3,当x=1时,y=﹣3,故点M(1,﹣2).(3)S△ABN=S△ABC,则|y N|=|y C|=±4,则x2﹣2x﹣3=±4,解得:x=1或1±2,故点N的坐标为:(1,﹣4)或(1+2,4)或(1﹣2,4).25.春临大地,学校决定给长12米,宽9米的一块长方形展示区进行种植改造现将其划分成如图两个区域:区域Ⅰ矩形ABCD部分和区域Ⅱ四周环形部分,其中区域Ⅰ用甲、乙、丙三种花卉种植,且EF平分BD,G,H分别为AB,CD中点.(1)若区域Ⅰ的面积为Sm2,种植均价为180元/m2,区域Ⅱ的草坪均价为40元/m2,且两区域的总价为16500元,求S的值.(2)若AB:BC=4:5,区域Ⅱ左右两侧草坪环宽相等,均为上、下草坪环宽的2倍①求AB,BC的长;②若甲、丙单价和为360元/m2,乙、丙单价比为13:12,三种花卉单价均为20的整数倍.当矩形ABCD中花卉的种植总价为14520元时,求种植乙花卉的总价.【分析】(1)根据题意可得180S+(108﹣S)×40=16500,解方程即可;(2)①设区域Ⅱ四周宽度为a,则由题意(9﹣2a):(12﹣4a)=4:5,解得a=,由此即可解决问题;②设乙、丙瓷砖单价分别为13x元/m2和12x元/m2,则甲的单价为(360﹣12x)元/m2,由GH∥AD,可得甲的面积=矩形ABCD的面积的一半,设乙的面积为s,则丙的面积为(40﹣s),由题意40(360﹣12x)+13x•s+12x•(40﹣s)=14520,解方程求得s=,结合s的实际意义解答.【解答】解:(1)由题意180S+(108﹣S)×40=16500,解得S=87.∴S的值为87;(2)①设区域Ⅱ上、下草坪环宽度为a,则左右两侧草坪环宽度为2a,由题意(9﹣2a):(12﹣4a)=4:5,解得a=,∴AB=9﹣2a=8,CB=12﹣4a=10;②设乙、丙瓷砖单价分别为13x元/m2和12x元/m2,则甲的单价为(360﹣12x)元/m2,∵GH∥AD,∴甲的面积=矩形ABCD的面积的一半=40,设乙的面积为s,则丙的面积为(40﹣s),由题意40(360﹣12x)+13x•s+12x•(40﹣s)=14520,解得s=,∵0<s<40,∴0<<40,又∵360﹣12x>0,综上所述,3<x<30,39<13x<390,∵三种花卉单价均为20的整数倍,∴乙花卉的总价为:1560元.26.在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.(1)如图1,图2,若△ABC为等腰直角三角形,问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是AM⊥BN,数量关系是AM=BN;深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM=2时,BP 的最大值为1.【分析】(1)问题初现:①由“SAS”证明△ACM≌△BCN,可得结论;深入探究:②由“SAS”证明△ACM≌△BCN,可得结论;(2)类比拓展:过点C作CE⊥AB于点E,过点N作NF⊥CE于点F,则FN∥AB,通过证明四边形FNBE是矩形,可得CE=BE=4,∠CEM=∠ABN=90°,通过证明△CEM ∽△MBP,可得,即BP==﹣(BM﹣2)2+1,由二次函数的性质可求解.【解答】解:问题初现:(1)①AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由:如图1,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN故答案为:AM⊥BN;AM=BN深入探究:②当点M在线段AB的延长线上时,AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由如下:如图,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN类比拓展:(2)如图,过点C作CE⊥AB于点E,过点N作NF⊥CE于点F,则FN∥AB∵△MCN是等腰直角三角形∴CM=CN,∠MCN=90°∴∠ECM+∠FCN=90°,且∠ECM+∠CME=90°∴∠FCN=∠CME,且CM=CN,∠F=∠CEM=90°∴△CNF≌△CME(AAS)∴FN=EC,EM=CF∵BC=4,CE⊥AB,∠CBA=45°∴CE=BE=4,∴FN=BE=CE,且FN∥BA∴四边形FNBE是平行四边形,且∠F=90°∴四边形FNBE是矩形∴∠CEM=∠ABN=90°∴∠PMB+∠MPB=90°∵CM⊥MP∴∠CME+∠PMB=90°∴∠CME=∠MPB,且∠CEM=∠ABN=90°∴△CEM∽△MBP∴∴BP==﹣(BM﹣2)2+1∴当BM=2时,BP有最大值为1.故答案为:2,1。

重庆市第一中学2019届九年级下学期一模数学试卷分析

重庆市第一中学2019届九年级下学期一模数学试卷分析

重庆一中初2019级18-19学年度第一次定时作业数学试卷分析1.试题题型概述本次考试采用150分考试试卷,总分150分,时间为120分钟。

题型分为选择题(12个)、填空题(6个)、和解答题(8个),考察范围为整个初中数学所学知识。

具体分值分布:选择:1-12题,每题4分,共48分;填空:13-18题,每题4分,共24分;解答:19-25题,每题10分,26题8分;共78分;具体难度分布:简单题:选择题1-9;填空题13-15;解答题19、20、21(1)、(2)、22(1)、(2)(3)、23(1)、24(1)25(1)共91分,占比60.7%。

中档题:选择题10、11、12;填空题16;解答题21(3)、22(4)、23(2)、24(2);25(2)共39分,占比26%偏难题:解答题:17、18、25(3)、26(1)(2)共20分,占比13.3%。

2.具体难度分析题型题号考察内容选择题1(简)考查了立方根2(简)考查了三视图中的左视图3(简)考查了二次函数的交点坐标4(简)考查了黄金分割点5(简)考查了图形的规律6(简)考查了根式的估值,整数估值比较简单7(简)考查了程序框图题8(简)考查了命题的判断,特殊四边形的性质和判定9(简)考查了圆的切线问题10(中)考查了直角三角函数的实际应用,计算量和三角函数边的比例关系是解题关键,高度易错。

11(中)考查反比例函数与几何综合12(中)考查了二次函数图象的增减性,含参分式方程填空题13(简)考查了综合计算14(简)考查了概率15(简)考查了阴影部分面积,掌握求直角三角形30度角,扇形面积及不规则图形面积,分割是解题关键16(中)考查了翻折问题和相似三角形的结合17(难)考查了一次函数的应用,求出速度是解题的关键18(难)考查不定方程,列表设值表示求解解答题19(简)考查整式的计算及分式化简20(简)考查三角形内角和与角平分线的性质21(1)(简)(2)(简)(3)(中)考查数据与统计,平均数、中位数、众数、以及选择判断22(1)(简)(2)(简)(3)(简)(4)(中)考查了函数图象与性质,本题有一次函数和二次函数的结合,准确求函数图象交点是解题关键,端点是否取等易错。

重庆一中初2019级九年级(下)第一次月考物理试题(Word版无答案)

重庆一中初2019级九年级(下)第一次月考物理试题(Word版无答案)

重庆一中初2019级18—19学年度下期第一次定时作业物 理 试 卷2019.03(全卷共四个大题,满分80分 与化学共用120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项;3.考试结束,由监考人员将试题和答题卡一并收回; 4.全卷g =10N/kg ,ρ水=1.0×103kg/m 3。

一、选择题 (本题共8个小题,每小题只有一个选项最符合题意,每小题3分,共24分。

) 1.以下对物理现象的估测符合实际的是( )A .中学生100m 短跑成绩约为6sB .一个鸡蛋的质量约为50gC .教室门的高度约为60dmD .家用空调的额定功率约为100W2.如图1所示的四种现象中,其物态变化属于液化的是( )A .露珠逐渐消失B .蜡烛流出“烛泪”C .烧水时锅中冒“白气”D .树叶上的霜3.如图2所示,下列有关电磁学的知识,说法错误的是( )A .甲图中,电动机运用了此原理,电动机将电能转化为机械能B .乙图中,使用测电笔时一定不能触碰金属笔尖C .丙图中,此实验证明了电流周围存在磁场D .丁图中,带有金属外壳的用电器一定要接地线4.如图3所示,一个未装满水的密闭杯子,放在水平桌面上,下列说法正确的是( ) A .杯子受到的重力和桌面对杯子的支持力是一对相互作用力 B .杯子受到的重力和杯子对桌面的压力是一对平衡力C .若将杯子倒置过来,如图乙所示,则水对杯底的压力增大D .若将杯子倒置过来,如图乙所示,则杯子对桌面的压强不变图1图1图3 乙 甲图4 图2 丁 丙 乙 甲图75.如图4所示,当开关S 闭合,滑动变阻器的滑片P 由右端向左端滑动的过程中,以下说法正确的是( ) A .灯泡变暗,电流表A 示数变小B .电压表V 的示数变小,电流表A 示数变小C .电压表V 的示数变大,电流表A 示数变大D .电压表V 的示数和电流表A 示数的比值变小6.重庆一中举办青少年科学小发明大赛,要求设计一个《高温报警器》,报警器中有热敏电阻R t 、保护电阻R 0、电铃以及电磁继电器,其中R t 的电阻随温度的升高而减小。

重庆市第一中学2019届九年级下学期第一次定时作业(一模)物理试题(无答案)

重庆市第一中学2019届九年级下学期第一次定时作业(一模)物理试题(无答案)

重庆一中初2018级17—18学年度下期第一次定时作业物理试卷201805(全卷共四个大题,满分80分与化学共用120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.考试结束,由监考人员将试题和答题卡一并收回;4.全卷g =10N/kg,ρ水=1.0×103kg/m3。

一、选择题 (本题共8个小题,每小题只有一个选项最符合题意,每小题3分,共24分。

)1.下列数据中,最接近生活实际的是()A.一瓶普通矿泉水的质量约为500g B.人正常步行的速度约为5m/sC.小汽车内的汽油机效率可以达到99% D.家庭普通液晶电视正常工作时电流约为10A2.如图1所示的现象中,由于光的折射形成的是()3.关于物理常识,下列说法正确的是()A.物体运动速度越快惯性越大B.气体流动时流速大的地方压强大C.验电器只能检验物体所带电荷的正负D.电动机转动时将电能主要转化为机械能4.如图2所示,用天然气烧水至水沸腾的情景。

下列有关烧水过程的观察和思考,正确的是()A.加热过程中,通过热传递改变水的内能B.加热过程中,水的热量不断增加C.水沸腾时,壶口冒的“白气”是水汽化产生的水蒸气D.水沸腾时,继续吸热水温不断升高5.重庆某商场地下停车区,车位上方有红、绿灯,方便驾驶员判断是否有车位。

小吴同学设计了一种自动控制方案:将光控开关S1、S2装在每个车位地面中央,红、绿灯装在车位入口上方。

要求:遮光时只有D.笔“折断”了A.树荫下的光斑B.手影C.月亮的“倒影”图1图2开关S 1闭合,有光时只有开关S 2闭合,当车位未停车时(有光),绿灯亮;当车位已停车时(遮光),红灯亮。

如图3所示的电路中符合要求的是( )6.如图4所示,条形磁铁放在水平桌面上,左端的S 极正对着在同一水平线上的电磁铁。

当电磁铁通电时,条形磁铁静止且受到向左的吸引力,则下列说法正确的是( ) A .条形磁铁受到向左的摩擦力 B .电磁铁中的电流方向是从a 流向bC .电磁铁对条形磁铁的吸引力和条形磁铁受到的摩擦力是一对平衡力D .电磁铁受到的吸引力和条形磁铁受到的摩擦力是一对相互作用力7.如图5所示的电路,电源电压恒为4.5V ,电流表量程为0~0.6A ,电压表量程为0~3V ,定值电阻阻值为5Ω,滑动变阻器规格为“20Ω 0.5A”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆一中初2019级18—19学年度下期定时作业数学试题(2019.3)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答.2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24()24b ac b a a --,,对称轴为直线2b x a=-. 一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的.请将答题卡...上对应题目的正确答案标号涂黑. 1.实数4的算术平方根为( ▲ )A .2B .2±C .2D .16 2.下列图形中既是轴对称图形,又是中心对称图形的是( ▲ )A .B .C .D .3.为了了解我校初三年级 2000 名学生的体重情况,从中抽查了 100 名学生的体重进行统计分析,在这个问题中,样本是( ▲ )A .2000名学生的体重B .100C .100名学生D .100名学生的体重4.下列图形都是由同样大小的“○”按照一定规律所组成的,其中第①图形有3个“○”,第②个图形有8个“○”,第③个图形有15个“○”,……,按此规律排列下去,则第⑥个图形中“○”的个数为( ▲ )A .35B .42C .48D .63 5.如图,在ABC ∆中,点D 、E 分别在AB 、AC 边上,BC DE //,且BD AD 3=,若16=∆ABC S ,则=∆ADE S ( ▲ ) A .964 B .9 C .332D .12 6.下列命题正确的是( ▲ )A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等且互相垂直的四边形是菱形D .有一个角是直角的菱形是正方形① ② ③ ④ ……第5题图7.如图,在半径为2的⊙O 中,C 为直径AB 延长线上一点,CD 与圆相切于点D ,连接AD ,已知30=∠DAC ,则线段CD 的长为( ▲ )A .1B .3C .2D .32 8.估计()382+的值应在( ▲ )A .4 和 5 之间B .5和6 之间C .6和 7 之间D .7 和8之间 9.按如图所示的运算程序,能使输出的结果为8的是( ▲ ) A .1 ,3=-=y x B .2 ,2-=-=y xC .2 ,4-==y xD .7 ,8=-=y x10.位于重庆市江北区的照母山森林公园秉承“近自然”生态理念营造森林风景,“虽由人作,宛自天开”,凸显自然风骨与原生野趣.山中最为瞩目的经典当属揽星塔.登临塔顶,可上九天邀月揽星;可鸟瞰新区,领略附近楼宇的壮美;亦可远眺两江胜景.登临此塔,让你有飘然若仙的联想,又有登高远眺,“一览众山小”的震撼. 我校某数学兴趣小组的同学准备利用所学的三角函数知识估测该塔的高度,已知揽星塔AB 位于坡度1:3=i 的斜坡BC 上,测量员从斜坡底端C 处往前沿水平方向走了120m 达到地面D 处,此时测得揽星塔AB 顶端A 的仰角为37°,揽星塔底端B 的仰角为30°,已知A 、B 、C 、D 在同一平面内,则该塔AB 的高度为( ▲ )米.(结果保留整数,参考数据:sin 370.60,cos370.80,tan 370.75︒︒︒≈≈≈,73.13≈)A .31B .40C .60D .13611.如图,在平面直角坐标系xoy 中,OAB Rt ∆的直角顶点A 在x 轴上,30=∠B ,反比例函数)0(≠=k xky 在第一象限的图象经过OB 边上的点C 和AB 的中点D ,连接AC ,已知64=∆O A C S ,则实数k 的值为( ▲ ) A .34 B .36 C .38312.若实数a 使关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧>--≤-032121131x a x x 有且只有4个整数解,且使关于x 的方程第10题第7题图21512-=--+-xa x 的解为正数,则符合条件的所有整数a 的和为( ▲ ) A .7 B .10 C .12 D .1二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答.题卡..(卷.)中对应的位置上. 13.计算:()()=+-+- 45sin 3102019π ▲ .14.如图,在等边ABC ∆中,22=AB ,以点A 为圆心,AB 为半径画弧BD ,使得 105=∠BAD ,过点C 作AD CE ⊥交AD 于点D ,则图中阴影部分的面积为 ▲ .15.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出一个小球,取出的两个小球上都写有数字2的概率是 ▲ . 16.如图,矩形纸片ABCD ,4=AB ,3=BC ,点P 在BC 边上,将CDP ∆沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP OF =,则BF 的长为 ▲ . 17.已知A 、B 两地之间的路程为3000米,甲、乙两人分别从A 、B 两地同时出发,相向而行,甲到B 地停止,乙到A 地停止.出发10分钟后,甲原路原速返回A 地取重要物品,取到该物品后立即原路原速前往B 地(取物品的时间忽略不计),结果到达B 地的时间比乙到达A 地的时间晚.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (m )与甲运动的时间x (min )之间的关系如图所示,则乙到达A 地时,甲与B 地相距的路程是 ▲ 米.18.随着电影《流浪地球》的热映,科幻大神刘慈欣的著作受到广大书迷的追捧,《流浪地球》、《球状闪电》、《三体》、《超新星纪元》四部小说在某网上书城热销.已知《流浪地球》的销售单价与《球状闪电》相同,《三体》的销售单价是《超新星纪元》单价的3倍,《流浪地球》与《超新星纪元》的单价和大于40元且不超过50元;若自电影上映以来,《流浪地球》与《超新星纪元》的日销售量相同,《球状闪电》的日销售量为《三体》日销售量的3倍,《流浪地球》与《三体》的日销售量和为450本,且《流浪地球》的日销售量不低于《三体》的日销量的32且小于230本;《流浪地球》、《三体》的日销售额之和比《球状闪电》、《超新星纪元》的日销售额之和多1575元.则当《流浪地球》、《三体》这2部小说日销额之和最多时,《流浪地球》的单价为 ▲ 元. 三、解答题:(本大题7个小题,每小题10分,共70分)解答题时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡...中对应的位置上. 19.计算(1)()()()2222y x y x y x ---- (2)⎪⎪⎭⎫ ⎝⎛-+--÷+--113121222a a a a a a a第14题图 PO F ED C B A 第16题图第17题图20.已知:如图,在ABC ∆中,AC AB =,BD 平分ABC ∠交AC 于点D ,DE 平分ADB ∠交AB 于点E ,AB CF //交ED 的延长线于F ,若 52=∠A ,求DFC ∠的度数.21.我校2019年度“一中好声音”校园歌手比赛已正式拉开序幕,其中甲、乙两位同学的表现分外突出,现场A 、B 、C 、D 、E 、F 六位评委的打分情况以及随机抽取的50名同学的民意调查结果分别如下统计表和不完整的条形统计图:(1)________=a ,六位评委对乙同学所打分数的中位数是 ,并补全条形统计图; (2)六位评委对甲同学所打分数的平均分为92分,则m =_______;(3)学校规定评分标准:去掉评委评分中最高和最低分,再算平均分,并将平均分与民意测评分按3﹕2计算最后得分,求甲、乙两位同学的得分.(民意测评分=“好”票数×2+“较好”票数×1+“一般”票数×0)(4)现准备从甲、乙两位同学中选一位优秀同学代表重庆一中参加市歌手大赛,请问选哪位同学?并说明理由.FEDCBA乙甲选项较好22.在平面直角坐标系xoy 中,函数2321-=x y 的图象与函数()()⎪⎩⎪⎨⎧>-+≤+=1 ,61 ,522x x mx x x y 的图象在第一象限有一个交点A ,且点A 的横坐标是6.(1)求m 的值;(2)补全表格并以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,补充画出2y 的函数图象;(3)写出函数2y 的一条性质: ; (4)已知函数1y 与2y 的图象在第一象限有且只有一个交点A ,若函数n x y +=323与2y 的函数图象有三个交点,求n 的取值范围.23.重庆一中开学初在重百商场第一次购进A 、B 两种品牌的足球,购买A 品牌足球花费了3200元,购买B 品牌足球花费了2400元,且购买A 品牌足球数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌的足球多花20元. (1)求购买一个A 品牌、一个B 品牌的足球各需多少元;(2)重庆一中为举办足球联谊赛,决定第二次购进A 、B 两种品牌足球.恰逢重百商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了a 元(0>a ),B 品牌足球按第一次购买时售价的9折出售.如果第二次购买A 品牌足球的个数比第一次少a 2个,第二次购买B 品牌足球的个数比第一次多2a个,则第二次购买A 、B 两种品牌足球的总费用比第一次少320元.求a 的值.24.已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,45=∠BDC ,过点B 作DCBH ⊥交DC 的延长线于点H ,在DC 上取CH DE =,延长BH 至F ,使CH FH =,连接DF 、EF .(1)若2=AB ,10=AD ,求BH 的值; (2)求证:EF AC 2=.EHOFDCBAFDB25.著名数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则.” 阅读下列两则材料,回答问题.材料一:平方运算和开方运算是互逆运算,如:2222()a a b b a b ±+=±,那么||a b =±()0200>±>>b a b a ,,化简呢?如能找到两个数m ,n ()00>>n m ,,使得22a +=即m n a +=,且使=即m n b ⋅=,那么222a ±=+±|==,双重二次根式得以化简;;312=+且212=⨯,223∴+=++1==+材料二:在直角坐标系xoy 中,对于点()y x P ,和给()y x Q ' ,出如下定义:若y '= ()()⎩⎨⎧<-≥00x y x y 则称点Q 为点P 的“横负纵变点” 例如:点()2 3,的“横负纵变点”为()2 3, 点()5 2,-的“横负纵变点”为()5 2--, 问题:(1)请直接写出 点()2 ,33--的“横负纵变点”为 ▲ ; 化简:=-1429 ▲ . (2)点M 为一次函数1y x =-+图象上的点,M '为点M 的横负纵变点,已知()1 ,1N ,若13='N M ,求点M 的坐标.(3)已知b 为常数且12b ≤≤,点P 在函数2y x =-+ (—7a x ≤≤)的图象上,其“横负纵变点”的纵坐标y '的取值范围是3232≤'<-y , 若a 为偶数,求a 的值.四、解答题:(本大题共1个小题,8分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.26.如图,在平面直角坐标系中,抛物线3332332-+=x x y C :与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为y 轴正半轴上一点,且满足OC OD 32=,连接BD . (1)如图1,点P 为抛物线上位于x 轴下方一点,连接PB ,PD ,当PBD S ∆最大时,连接AP ,以PB 为边向上作正BPQ ∆,连接AQ ,点M 与点N 为直线AQ 上的两点,2=MN 且点N 位于M 点下方,连接DN ,求AM MN DN 23++的最小值; (2)如图2,在第(1)问的条件下,点C 关于x 轴的对称点为E ,将BOE ∆绕着点A 逆时针旋转60°得到E O B '''∆,将抛物线3332332-+=x x y 沿着射线PA 方向平移,使得平移后的抛物线C '经过点E ,此时抛物线C '与x 轴的右交点记为点F ,连接F E ',F B ',R 为线段F E '上的一点,连接R B ',将R E B ''∆沿着R B '翻折后与F E B ''∆重叠部分记为RT B '∆,在平面内找一个点S ,使得以S T R B 、、、'为顶点的四边形为矩形,求点S 的坐标.图2图1。

相关文档
最新文档