桥梁满堂支架计算

合集下载

桥梁支架计算书

桥梁支架计算书

一、 满堂支架验算 1、模板计算本桥实心桥面板底模、侧模均采用δ=12mm 厚竹胶板,其中底模安装于间距30cm 的10cmx10cm 方木上;侧模安装在钢筋排架上。

本次模板验算主要为底模的验算,侧模的验算将在排架验算中详述。

模板受力按单向板考虑,承受实心板自重恒载和施工荷载,取1cm 板宽按偏于保守的简支梁进行计算,计算模型如下:其中施工设备、人员等堆放荷载1P =2.5KPa ;倾倒混凝土产生的冲击荷载2P =2.0KPa ;振捣混凝土产生的荷载3P =2.0KPa ;按最厚部分实心板产生的恒荷载4P =15.3KPa 。

则模板验算总荷载P=21.8KPa ,可知q=0.218KN/m 。

则跨中最大弯矩0M =82ql =1.1N.m ;支座处最大剪力0V =21.8N 。

1cm 宽、12mm 厚竹胶板的截面特性如下:I=123bh =1.44x 610-4m ;W=62bh =2.4x 710-3m ;A=bh=1.2x 410-2m 。

查路桥施工计算手册可知:普通竹胶板E=5x 910Pa ,允许应力[σ]=80 MPa ,容许剪应力[ τ]=1.3MPa.则:max σ=W M=4.58MPa<[ σ]=80MPa ; m ax τ=AV230=0.27MPa<[ τ]=1.3MPa ;跨中最大挠度m ax f =EIql 38454=0.63x 610-m<250l =8x 410-m经验算可知选用模板满足受力要求。

2、次分配梁验算本桥现浇桥面板支架次分配梁采用10x10cm 方木,方木间距30cm ,安装于间距75cm 的双拼8#槽钢上。

方木受力按简支梁考虑,方木以上结构自重恒载和施工荷载,计算模型如下:其中施工设备、人员等堆放荷载1P =2.5KPa ;倾倒混凝土产生的冲击荷载2P =2.0KPa ;振捣混凝土产生的荷载3P =2.0KPa ;按最厚部分实心板产生的恒荷载4P =15.3KPa ;竹胶木模板产生的恒载可忽略不计。

桥梁临时施工结构计算(新)

桥梁临时施工结构计算(新)
4
算例1-1(海口某酒店景观桥-多跨35m连续梁支架) 本桥采用满堂支架法施工,通过钢管立柱、
纵横梁、贝雷梁、满堂支架形成施工平台。施工 平台的支架基础管桩采用直径630mm、壁厚8mm的 钢管桩,横向每排8根,钢管桩中心距为3~3.5m; 垫梁采用双I40b工字钢。P0桥台至P16桥墩支架纵 梁采用贝雷梁,P16桥墩至P19桥台支架纵梁采用 I56工字钢。

20.85103 2410-6 19810-8 5.310-3
ห้องสมุดไป่ตู้

47.7Mpa

f
=125Mpa;(满足要求)
最大挠度:
f =0.53mm<[f ] 2.25mm ;(满足要求)
20
(1)梁中部支架(60x90cm)
单根立杆承受荷载面积 S 0.54m2 ,支架及以下荷载按照梁体平均荷载 P平
12
满堂支架算例1-1
材料参数
( 8 ) 型 钢 (Q235)I56a : 截 面 面 积 A=135cm2, 截 面 模 量 Wx=2342cm3 , 截 面 惯 性 矩 Ix=65576cm4,截面面积矩 Sx=1368.8cm3,腹板厚 tw=12.5mm,抗弯设计强度 f=205MPa, 抗剪设计强度 fv=120MPa,弹性模量 E=2.1×105MPa; (9)贝雷梁桁架上下弦杆:(Q345)2[10#槽钢,截面面积 A=25.1cm2,截面惯性矩 Ix=393cm4,Iy=860cm4,抗拉、抗压、抗弯设计强度 f=310MPa, 抗剪设计强度 fv=180MPa, 弹性模量 E=2.1×105MPa; (10)贝雷梁腹杆,斜杆:(Q345)I8,截面面积 A=9.1cm2, 截面惯性矩 Ix=83.6cm4, 抗拉、抗压、抗弯设计强度 f= 310MPa, 抗剪设计强度 fv=180MPa,弹性模量 E=2.1×105MPa。 (11)型钢(Q235)I20b: 截面面积 A=39.5cm2,截面模量 Wx=250cm3,截面惯性矩 Ix=2500cm4,腹板厚 tw=11.4mm,抗弯设计强度 f=215MPa, 抗剪设计强度 fv=125MPa, 弹性模量 E=2.1×105Mpa。

桥梁满堂支架计算

桥梁满堂支架计算

满堂支架计算碗扣式钢管支架门架式钢管支架扣件式满堂支架(后图为斜腿钢构)1立杆及底托1.1立杆强度及稳定性(通过模板下传荷载)由上例可知,腹板下单根立杆(横向步距300mm,纵向步距600mm)在最不利荷载作用下最大轴力P=31.15KN,在模板计算荷载时已考虑了恒载和活载的组合效应(未计入风压,风压力较小可不予考虑)。

可采用此值直接计算立杆的强度和稳定性。

立杆选用Ф48*3.5小钢管,由于目前的钢管壁厚均小于 3.5mm 并且厚度不均匀,可按Ф48*3.2或Ф48*3.0进行稳定计算。

以下按Ф48*3.0进行计算,截面A=424mm2。

横杆步距900mm,顶端(底部)自由长度450mm,则立杆计算长度900+450=1350mm。

立杆长细比:1350/15.95=84.64按 GB 50017--2003 第132页注1 计算得绕X轴受压稳定系数φx=φy=0.656875。

强度验算:31150/424=73.47N/mm2=73.47MPa,满足。

稳定验算:31150/(0.656875*424)=111.82MPa,满足。

1.2立杆强度及稳定性(依照《建筑施工扣件式钢管脚手架安全技术规范》)支架高度16m,腹板下面横向步距0.3m,纵向(沿桥向)步距0.6m,横杆步距0.9m。

立杆延米重3.3Kg=33N,每平方米剪刀撑的长度系数0.325。

立杆荷载计算:单根立杆自重:(16+(16/0.9)*(0.3+0.6)+0.325*16*0.9)*33=1210N=1.21KN。

单根立杆承担混凝土荷载:26*4.5*0.3*0.6=21.06KN。

单根立杆承担模板荷载:0.5*0.3*0.6=0.09KN。

单根立杆承担施工人员、机具荷载:1.5*0.3*0.6=0.27KN。

单根立杆承担倾倒、振捣混凝土荷载:(2.0+4.0)*0.3*0.6=1.08KN。

风荷载:W K=0.7u z*u s*w0风压高度变化系数u z查《建筑结构荷载规范》表7.2.1可取1.25(支架高度20m内,丘陵地区);风荷载脚手架体型系数u s 查《建筑施工扣件式钢管脚手架安全技术规范》表 4.2.4可取1.3ψ(敞开框架型,ψ为挡风系数,可查《建筑施工扣件式钢管脚手架安全技术规范》表A-3,表中无参照数据时可按下式计算);挡风系数ψ=1.2*An/Aw。

桥梁满堂支架工程量计算公式

桥梁满堂支架工程量计算公式

桥梁满堂支架工程量计算公式桥梁满堂支架是在桥梁施工中经常用到的一种支撑结构,要准确计算它的工程量,那可得有点小技巧和公式。

咱先来说说满堂支架的组成部分,一般包括立杆、横杆、纵杆、剪刀撑还有各种连接件啥的。

那计算工程量的时候,就得把这些部分都考虑进去。

立杆的工程量计算,咱就以长度乘以根数来算。

比如说,一根立杆长度是 3 米,一共用了 100 根,那立杆的总长度就是 3×100 = 300 米。

横杆呢,也是同样的道理,根据横杆的布置间距和长度,还有数量来计算。

假设横杆间距是 1.5 米,每根长度 2 米,一共用了 200 根,那横杆的总长度就是 2×200 = 400 米。

纵杆的计算方法和横杆类似,按照实际的布置情况来算就行。

还有剪刀撑,这个稍微有点复杂。

得根据剪刀撑的布置形式和长度来算。

比如说,剪刀撑每隔 5 米设置一道,每道长度 6 米,一共设置了 50 道,那剪刀撑的总长度就是 6×50 = 300 米。

连接件的数量,就得根据立杆、横杆、纵杆之间的连接点来数啦。

我之前在一个桥梁施工现场,就碰到过计算满堂支架工程量的事儿。

那时候,天气特别热,工人们都在辛苦地干活。

我拿着图纸,在现场一点点地核对数据。

汗水不停地流,眼镜都快滑下来了。

我特别仔细地数着立杆、横杆的数量,还时不时地用尺子量量长度,就怕算错了。

回到办公室,我又根据现场的数据,认真地用公式计算,反复核对,确保工程量的准确性。

因为这工程量算错了,那可不仅仅是数字的问题,会影响到材料的采购、施工的进度,甚至整个工程的成本和质量。

总之,计算桥梁满堂支架的工程量,虽然有点繁琐,但只要咱认真仔细,按照公式一步步来,就不会出错。

这可是保证桥梁施工顺利进行的重要一步哦!。

满堂支架计算书

满堂支架计算书

海湖路桥箱梁断面较大,本方案计算以海湖路桥北幅为例进行计算,南幅计算与北幅相同。

海湖路桥北幅为5×30m等截面预应力混凝土箱形连续梁(标准段为单箱双室),箱梁高度,箱梁顶宽。

对荷载进行计算及对其支架体系进行检算。

满堂支架的计算内容为:①碗扣式钢管支架立杆强度及稳定性验算②满堂支架整体抗倾覆验算③箱梁底模下横桥向方木验算④碗扣式支架立杆顶托上顺桥向方木验算⑤箱梁底模计算⑥立杆底座和地基承载力验算⑦支架门洞计算。

1 荷载分析荷载分类作用于模板支架上的荷载,可分为永久荷载(恒荷载)和可变荷载(活荷载)两类。

⑴模板支架的永久荷载,包括下列荷载。

①作用在模板支架上的结构荷载,包括:新浇筑混凝土、模板等自重。

②组成模板支架结构的杆系自重,包括:立杆、纵向及横向水平杆、水平及垂直斜撑等自重。

③配件自重,根据工程实际情况定,包括:脚手板、栏杆、挡脚板、安全网等防护设施及附加构件的自重。

⑵模板支架的可变荷载,包括下列荷载。

①施工人员及施工设备荷载。

②振捣混凝土时产生的荷载。

③风荷载、雪荷载。

荷载取值(1)雪荷载根据《建筑结构荷载规范》(GB 50009-2012)查附录可知,雪的标准荷载按照50年一遇取西宁市雪压为m2。

根据《建筑结构荷载规范》(GB50009-2012 )雪荷载计算公式如下式所示。

Sk=ur×so式中:Sk——雪荷载标准值(kN/m2);ur——顶面积雪分布系数;So——基本雪压(kN/m2)。

根据规《建筑结构荷载规范》(GB 50009-2012)规定,按照矩形分布的雪堆计算。

由于角度为小于25°,因此μr取平均值为,其计算过程如下所示。

Sk=ur×so=×1=m2(2)风荷载根据《建筑结构荷载规范》(GB 50009-2012)查附录可知,风的标准荷载按照50年一遇取西宁市风压为m2根据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ 130-2011)风荷载计算公式如下式所示。

满堂支架验算

满堂支架验算

某分离立交桥为左、右幅分离式连续箱梁构造,全桥箱梁长137m,由于地形复杂,每跨高度不同,本方案按最高一跨进行计算:H=13m。

一.上部结构核载1.新浇砼的重量:2.804t/m22.模板、支架重量:0.06t/m23.钢筋的重量:0.381t/m24.施工荷载:0.35t/m25.振捣时的核载:0.28t/m26.倾倒砼时的荷载:0.35t/m2则:1+2+3+4+5+6=2.804+0.06+0.381+0.35+0.28+0.35=4.162t/m2钢材轴向容许应力:【σ】=140Mpa受压构件容许xx:【λ】=200二.钢管的布置、受力计算某分离立交桥拟采用Φ42mm,壁厚3mm的无缝钢管进行满堂支架立设,并用钢管卡进行联接。

通过上面计算,上部结构核载按4.162t/m2计,钢管间距0.6×0.6m间隔布置,则每区格面积:A1=0.6×0.6=0.36m2每根立杆承受核载Q:Q=0.36×4.162=1.498t竖向每隔h=1m,设纵横向钢管,则钢管回转半径为:i=hµ/【λ】=1000×根据i≈0.35d,得出d=i/0.35,则则选Φ42mm钢管可。

Φ42mm,壁厚3mm的钢管受力面积为:A2=π()2-π((42-3×2)÷2)2=π(212-182)=367mm2则坚向钢管支柱受力为:σ=Q/A2=1.498T/367mm2=1.498×103×10N/367×10-6m2=4.08×107Pa=40.8MPa=140Mpa应变为:ε=σ/E=40.8××109=1.94×10-4xx改变L=εh(注h=13m)=1.94×10-4×13000=2.52mm做为预留量,提高模板标高。

通过上式计算,确定采用¢42mm外径,壁厚3㎜的无缝钢管做为满堂支架,间隔0.6×0.6m,坚向每间隔1m设纵横向钢管,支架底部及顶部设剪刀撑,并在底部增设纵横向扫地撑,以保证满堂支架的整体稳定性。

公路定额满堂支架立面积

公路定额满堂支架立面积

公路定额满堂支架立面积公路建设是现代交通基础设施的重要组成部分,而满堂支架则是公路建设中的一项重要技术。

本文将介绍公路定额满堂支架立面积,包括其概念、作用、计算方法等内容。

概念:公路定额满堂支架立面积,是指在公路建设中使用的一种支撑结构,用于临时支撑桥梁、隧道或其他工程的施工过程中,以确保施工安全和速度。

该技术通过合理布置支架,实现对构件的稳定支撑,以及对模板的精准定位,从而为施工提供可靠的工作平台。

作用:公路定额满堂支架立面积在公路建设中具有以下重要作用:1. 施工安全保障:满堂支架可以有效地支撑道路桥梁、隧道等大型结构的施工过程,防止因不当支撑而引起的事故,确保施工人员的安全。

2. 施工效率提升:通过合理的支架布置和定位,可以提高施工效率,减少施工周期。

满堂支架可为施工人员提供稳定的工作平台,有助于施工人员顺利进行作业。

3. 结构形态实现:满堂支架可以根据不同的构件形态和结构需求进行调整和改造,使得施工过程中的道路桥梁、隧道等结构能够按照设计要求准确落地。

计算方法:公路定额满堂支架立面积的计算方法主要包括以下几个方面:1. 构件形态计算:根据具体的结构形态和设计要求,确定满堂支架所需的支撑方式和数量。

结构形态计算可以根据设计图纸或者实际现场情况进行。

2. 荷载计算:根据设计要求和实际使用情况,计算出满堂支架所需承载的荷载大小。

荷载计算可以考虑施工材料和设备的重量以及施工人员的负荷等因素。

3. 材料选择:根据满堂支架所需的稳定性和承载能力,选择合适的材料进行搭建。

常见的材料包括钢管、钢板、连接件等。

4. 搭建方案设计:根据计算结果和实际情况,设计满堂支架的搭建方案,包括支撑位置、支撑间距、支架高度等。

搭建方案要考虑施工人员的操作和安全要求。

总结:公路定额满堂支架立面积作为公路建设中的重要技术之一,具有保障施工安全、提高施工效率和实现结构形态的功能。

通过合理计算支架的立面积和采用合适的材料,可以为公路建设提供可靠的工作平台,推动公路建设的顺利进行。

满堂支架设计计算

满堂支架设计计算

满堂支架设计计算
首先,满堂支架设计计算需要进行荷载分析。

根据结构所承受的荷载,包括自重、活载、风荷载、雪荷载等,确定满堂支架的荷载分布和大小。

通过荷载分析可以确定满堂支架的结构形式和尺寸。

其次,满堂支架设计计算需要进行结构稳定性分析。

包括确定满堂支
架的抗倾覆能力、抗弯能力和抗侧向位移能力等。

通过结构稳定性分析可
以确定满堂支架的构造形式和尺寸。

接下来,满堂支架设计计算需要进行满堂支架的梁柱设计。

梁柱设计
根据满堂支架的受力情况,确定满堂支架的截面形状和尺寸。

梁柱设计需
要考虑满堂支架的强度和刚度,以及满堂支架的连接方式。

此外,满堂支架设计计算还需要进行满堂支架的连接设计。

连接设计
包括满堂支架的连接节点的确定和连接件的选择。

连接设计需要考虑满堂
支架的受力情况,确保连接的强度和刚度。

最后,满堂支架设计计算还需要进行满堂支架的材料选择和防腐设计。

根据满堂支架的使用环境和要求,选择适合的材料,并进行防腐设计,以
延长满堂支架的使用寿命。

总之,满堂支架设计计算涉及到结构分析、构造设计、材料选择等多
个方面的内容。

通过合理的设计和计算,可以确保满堂支架的稳定性和安
全性,满足建筑结构的要求。

满堂支架设计计算是建筑结构设计中重要的
环节之一,需要进行细致的分析和计算,确保设计结果的合理性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

满堂支架计算
碗扣式钢管支架门架式钢管支架
扣件式满堂支架(后图为斜腿钢构)
1立杆及底托
1.1立杆强度及稳定性(通过模板下传荷载)
由上例可知,腹板下单根立杆(横向步距300mm,纵向步距600mm)在最不利荷载作用下最大轴力P=31.15KN,在模板计算荷载时已考虑了恒载和活载的组合效应(未计入风压,风压力较小可不予考虑)。

可采用此值直接计算立杆的强度和稳定性。

立杆选用Ф48*3.5小钢管,由于目前的钢管壁厚均小于 3.5mm 并且厚度不均匀,可按Ф48*3.2或Ф48*3.0进行稳定计算。

以下按Ф48*3.0进行计算,截面A=424mm2。

横杆步距900mm,顶端(底部)自由长度450mm,则立杆计算长度900+450=1350mm。

立杆长细比:1350/15.95=84.64
按 GB 50017--2003 第132页注1 计算得绕X轴受压稳定系数φx=φy=0.656875。

强度验算:31150/424=73.47N/mm2=73.47MPa,满足。

稳定验算:31150/(0.656875*424)=111.82MPa,满足。

1.2立杆强度及稳定性(依照《建筑施工扣件式钢管脚手架安全技术规范》)
支架高度16m,腹板下面横向步距0.3m,纵向(沿桥向)步距0.6m,横杆步距0.9m。

立杆延米重3.3Kg=33N,每平方米剪刀撑的长度系数0.325。

立杆荷载计算:
单根立杆自重:(16+(16/0.9)*(0.3+0.6)+0.325*16*0.9)*33=1210N=1.21KN。

单根立杆承担混凝土荷载:26*4.5*0.3*0.6=21.06KN。

单根立杆承担模板荷载:0.5*0.3*0.6=0.09KN。

单根立杆承担施工人员、机具荷载:1.5*0.3*0.6=0.27KN。

单根立杆承担倾倒、振捣混凝土荷载:(2.0+4.0)*0.3*0.6=1.08KN。

风荷载:W K=0.7u z*u s*w0
风压高度变化系数u z查《建筑结构荷载规范》表7.2.1可取1.25(支架高度20m内,丘陵地区);风荷载脚手架体型系数u s 查《建筑施工扣件式钢管脚手架安全技术规范》表 4.2.4可取1.3ψ(敞开框架型,ψ为挡风系数,可查《建筑施工扣件式钢管脚手架安全技术规范》表A-3,表中无参照数据时可按下式计算);
挡风系数ψ=1.2*An/Aw。

1.2为节点增大系数;An为挡风面积(An=(L+h+0.325*L*h)*d=(0.6+0.9+0.325*0.6*0.9)*0.048=0.08m2, L为立杆的纵距,h为横杆的步距,0.325为每平方米剪刀撑的长度,d为钢管的外径);Aw为迎风面积(Aw=L*h=0.6*0.9=0.54m2,L为立杆的纵距,h为横杆的步距)。

故ψ=1.2*0.08/0.84=0.114);
基本风压w0查《建筑结构荷载规范》D.4表可取0.30KN/m2(根据地区情况,浙江杭州)。

风荷载为W K=0.7*1.25*1.3*0.114*0.3=0.04 KN/m2。

不考虑风载时立杆的强度和稳定性:
立杆计算荷载:N=1.2*(1.21+21.06+0.09)+1.4*(0.27+1.08)=28.72KN。

由于28.72KN<31.15KN(单根立杆在最不利荷载作用下由模板下传的最大轴力P=31.15KN),由于立杆最大轴力为31.15KN时已通过强度和稳定性计算,故无需检算。

考虑风载时立杆的强度和稳定性:
立杆计算荷载:N=1.2*(1.21+21.06+0.09)+1.4*0.85*(0.27+1.08)=28.44KN=28440N。

风荷载产生的弯矩:M W=1.4*0.85*W K*L*h2/10(3跨连续梁弯矩公式,L为立杆的纵距,h为横杆的步距),M W=0.85*1.4*0.04*0.6*0.92/10=0.0023KN.m=2300N.mm。

立杆长细比84.64,计算得绕X轴受压稳定系数φx=φy=0.656875。

立杆截面参数A=424mm2,W=4493mm3。

由N/(φ*A)+M W/W=28440/(0.656875*424)+2300/4493=102.62
N/mm2=102.62MPa,满足。

1.3立杆压缩变形
ε=N*H/ (E*A)=28720*16000/(2.06*105*424)=5.26mm
H为立杆的总高度,E为弹性模量,A截面面积。

1.4底托检算
当立杆最大轴力超过40KN时,则大于标准底托的承载能力,需要另行设计底托或对现有底托采用加强措施(《扣件式钢管脚手架计算手册》90页,王玉龙编著)。

P=31.15KN<40KN,N=28.44KN<40KN,故满足底托承载力要求。

复杂地形组合支架跨线(河)组合支架
2地基承载力
模板下传最不利荷载作用下最大轴力31.15KN,立杆下传轴力采用根据规范计算为28.72KN,以31.15KN作为控制计算。

一个底托下混凝土垫板最大面积为0.3*0.6=0.18m2(腹板下面,按全部硬化处理)。

地基承载力设计值最小需要满足31150/0.18=173.06KPa。

当立杆横纵间距大于0.6m时,通过以下办法来计算地基承载力:底托宽度0.15m,硬化混凝土厚度h,混凝土压力扩散角为45。

则立杆轴力传递到地基表面的面积为(2*h+0.15)2。

上例中混凝土厚度0.2m,则单根立杆地基顶面承压面积为:0.552=0.30mm2。

在此说明:根据《扣件式钢管脚手架安全施工规范》5.5立杆地基承载力计算:地基承载力设计值fg=kc*fk(fk为地基承载力标准值,kc为支架地基承载力调整系数,对碎石土、砂土、回填土应取0.4,对粘土应取0.5,对岩石、混凝土应取1。

3支架总体弹性沉降值
面板最大挠度0.2mm,次楞(横梁)最大挠度0.04mm,主楞(纵梁)最大挠度0.18mm,立杆压缩值5.26mm,则不考虑地基沉降因素支架弹性沉降值为:5.68mm。

相关文档
最新文档