(完整版)高等数学函数的极限与连续习题精选及答案
高等数学函数极限连续练习题及解析

高等数学函数极限连续练习题及解析第一篇:高等数学函数极限连续练习题及解析数学任务——启动——习题1一、选择题:(1)函数y=-x+arccosx+1的定义域是()2(A)x≤1;(B)-3≤x≤1(C)(-3,1)(D)xx<1⋂x-3≤x≤1(2)函数y=xcosx+sinx是()(A)偶函数(B)奇函数(C)非奇非偶函数(D)奇偶函数(3)函数y=1+cos{}{}π2x的最小正周期是()(A)2π(B)(4)与y=π(C)4(D)1 2x2等价的函数是()(A)x;(B)(x)(C)x)(D)23x⎧x-1-1<x≤0(5)f(x)=⎨,则limf(x)=()x0<x≤1x→0⎩(A)-1(B)1(C)0(D)不存在二、填空题:(1)若f ⎪=⎛1⎫⎝t⎭5+2t2,则f(t)=_________,ft2+1=__________.t()⎧⎪1(2)φ(t)=⎨⎪sinx⎩π⎫⎛π⎫3,则φ⎛φ⎪=______。
⎪=______,π⎝6⎭⎝6⎭x>30,1],则fx2的定义域为______,f(sinx)的定义域为x≤π(3)若f(x)的定义域为()______,f(x+a)(a>0)的定义域为___,f(x+a)+f(x-a)(a>0)的定义域为______。
1-4x2(4)lim。
=__________12x+1x→-2(5)无穷小量皆以______为极限。
三、计算题(1)证明函数y=11sin在区间(0,1]上无界,但当x→+0时,这个函数不是无穷大。
xx(2)求下列极限(1)lim2x3+3x2+5x→∞7x3+4x2-1(3)lim(tanx)tan2xx→π(5)limex-1xx→0(7)lim+xsinx-1x→0x2arctanx(2)lim1-cos2x x→0xsinx(4)lim(1+2n+3n1n n→∞(6)limtanx-sinxx→0sin32x ⎛1(8)limx ex-1⎫⎪x→∞⎝⎪⎭(3)设f(x)=⎨⎧1-xx<0,求limf(x)。
函数、极限与连续测试卷带答案

函数、极限与连续测试卷带答案第一篇:函数、极限与连续测试卷带答案上海民航学院函数、极限与连续测试卷总分100分命题人:叶茂莹一、填空题(每空2分,共20分)1、函数y=3-2x|-4的定义域是;解:|3-2x|-4≥0,3-2x≥4,或3-2x≤-4 ∴-2x≥1,或-2x≤-717∴x≤-,或x≥ 2217∴x∈(-∞,-]⋃[,+∞)222、把复合函数y=earctan(1+x)分解成简单的函数________________________;解:y=eu,u=arctanv,v=1+x23、函数y=arcsin2x的反函数是_____________________;1⎡ππ⎤解:y=sinx,x∈⎢-,⎥ 2⎣22⎦⎛1+x⎫4、lim ⎪; x→∞⎝x⎭2x2⎛1+x⎫解:lim ⎪x→∞⎝x⎭2x⎡⎛1⎫x⎤=lim⎢1+⎪⎥=e2 x→∞⎝x⎭⎦⎢⎥⎣2(2x-1)15(3x+1)30=;5、limx→∞(3x-2)45(2x-1)15(3x+1)30215⨯330⎛2⎫==⎪解:lim4545x→∞(3x-2)3⎝3⎭x2-3x+26、lim2;x→2x+4x-12(x-1)(x-2)=lim(x-1)=1x2-3x+2lim解:lim2 x→2x+6x→2x+4x-12x→2x+6x-28157、x→1=;2解:lim=x→1x→x-12x→12=x→1 =x→13x-1==34x+2的连续区间为(x+1)(x-4)解:x+2≥0,且(x+1)(x-4)≠08、函数f(x)=∴x≥-2,x≠-1,x≠4,∴x∈[-2,-1)⋃(-1,4)⋃(4,+∞)ax2+bx-19、已知a,b为常数,lim=2,则a=,b=.x→∞2x+1ax2+bx-1解:因为x的最高次为2,lim=2 x→∞2x+1所以a=0,b=2,即b=42x≠0在点x=0处连续,则a=x=0x1-⎤⎡=lim⎢(1-x)x⎥x→0⎣⎦-22⎧x⎪10、已知f(x)=⎨(1-x)⎪a⎩解:limf(x)=lim(1-x)x→0x→0=e-2因为f(x)在点x=0处连续,f(0)=a=limf(x)=e-2,所以a=e-2。
(完整)高等数学极限和连续习题

极限与连续习题当x 0时,1 COSX 是X 2的 __________________ 穷小量. X 0是函数f(x)竺的 间断点.冈lim(1 -)2x __________________。
2 x X (e 1) x sin xsin x已知分段函数f(x) 〒,x 0连续,则a= ______________________x a,x 0 1由重要极限可知,lim 1+2x 〈. ‘ x 0 ---------------------------------------sin x 0 已知分段函数f(x) 去,x 0连续,则a= ______________________ .x a, x 0 由重要极限可知,lim (1丄)x . x 2x --------------------------- sin x 1知分段函数f(x) x 1 ,x 1连续,则b= ____________________________ . x b,x 1丄 由重要极限可知,Hm )(1 2x); ________________ .当X f 1时,x‘ 3x 2与x ln x 相比, ____________________ 咼阶无 穷小量.2n 51. 2. 3. 4.5. 6. 7. 8. 9. 10. 11.12. 13. 函数f(x)ar 如宀的间断点是x = lim彳1lim 1 =n2n ----------------------------------函数f(x)产長的无穷间断点是x = ------------------------------ tan2 x _ lim ------------ . x 0 3x 3n 5 1 lim 1 = n 2n ---------------------------------- 函数f(X)绘j 的可去间断点是X = ------------------------------2n 5 r 彳3 lim 1 — = n 2n -------------------------- ■ 2 函数f(x) 2x 1的可去间断点是x= __________________. x 3x 4 当x 0时,sinx 与x 3相比, __________________ 高阶无穷小量n 2 计算极限n im 1 1 = ----------------------------------------------lim f(x)x 1 (x 1)(x 1)x计算极限lim 1 1 = ________________ . X xx c设f(x) e, X 0, 要使f(x)在x 0处连续,则x a, x 0.14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. lim cosx x 设函数f x 2x 1, x a, x 0,在x 0处连续,则a 若当x 1f (x)是x 1的等价无穷小,则当X f0时,x sinx与x相比,_______________ 是高阶无穷小量.x2为使函数f(x) X 2, x 0在定义域内连续,则x a, x 0当X^O时,1 cosx与sinx相比,___________________ 咼阶无穷小量.当X—0时,4x2与sin3x相比,_________________ 高阶无穷小量.当x—1 时,x 12与sin x 1 木目比,_______________________________________________________是高阶无穷小量.x若lim 1 k e3,则k =x X函数f(x) 2x 1的无穷间断点是x= __________________x 3x 4极限x im0-x-、 2 T设 f x xsin —,求lim f x =x x设函数f(x) cosx,X 0在x 0处连续,则a= _____________________________a V x, x 0x 0是函数f(x) 护的______________ (填无穷、可去或跳跃)间l x断点.28.29.30.31.32.33.34.35.36.37.38.39.40.计算极限x im 14x 51x 1函数f(x) 2x 1的可去间断点是x=x22x 3 ---------------------- lim 1 -x二、计算题x35. 求极限 lim (12cosx)sinx x 0 x ln(1 6x)6. 求极限lim 丄尹x 0 x(e 1)1. 求极限2. 求极限3. 求极限4.求极限 cos3x cos2 x ln(1 x 2) x 2 (e 1) xln(1 6x) (e x 1) sin x xln(1 6x)x 2x 4 lim 2 x 2 x 4 x m 0 lim x 0 lim x 0。
word完整版函数极限与连续习题含答案-推荐文档

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。
函数的极限与连续训练题1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限(2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续(3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续(4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。
其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若a x f x x =→)(lim 0,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0C 、)(x f 在0x x =处可以无意义D 、x 可以只从一侧无限趋近于0x3、下列命题错误的是( D )A 、函数在点0x 处连续的充要条件是在点0x 左、右连续B 、函数)(x f 在点0x 处连续,则)lim ()(lim 00x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00x f x f x x =→ 4、已知x x f 1)(=,则xx f x x f x ∆-∆+→∆)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B )A 、1lim 0=→x x xB 、1)1(21lim 21=--→x x xC 、111lim 1=---→x x xD 、0lim 0=→xx x 6、51lim 21=-++→xb ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和7、已知,2)3(,2)3(-='=f f 则3)(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在8、=--→33lim a x ax a x ( D )A 、0B 、1C 、32aD 、323a9、当定义=-)1(f 2 时,xx x f +-=11)(2在1-=x 处是连续的。
函数极限与连续习题(含答案)

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。
函数的极限与连续训练题1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限(2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续(3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续(4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。
其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若a x f x x =→)(lim 0,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0C 、)(x f 在0x x =处可以无意义D 、x 可以只从一侧无限趋近于0x3、下列命题错误的是( D )A 、函数在点0x 处连续的充要条件是在点0x 左、右连续B 、函数)(x f 在点0x 处连续,则)lim ()(lim 00x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00x f x f x x =→ 4、已知x x f 1)(=,则xx f x x f x ∆-∆+→∆)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B )A 、1lim 0=→x xx B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→xb ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和7、已知,2)3(,2)3(-='=f f 则3)(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在8、=--→33lim a x ax a x ( D )A 、0B 、1C 、32aD 、323a9、当定义=-)1(f 2 时,xx x f +-=11)(2在1-=x 处是连续的。
(完整版)函数与极限习题与答案

(完整版)函数与极限习题与答案第⼀章函数与极限(A )⼀、填空题 1、设x x x f lg lg 2)(+-=,其定义域为。
2、设)1ln()(+=x x f ,其定义域为。
3、设)3arcsin()(-=x x f ,其定义域为。
4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为。
5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为。
6、432lim23=-+-→x kx x x ,则k= 。
7、函数xxy sin =有间断点,其中为其可去间断点。
8、若当0≠x 时,xxx f 2sin )(= ,且0)(=x x f 在处连续,则=)0(f 。
9、=++++++∞→)21(lim 222nn nn n n n n Λ。
10、函数)(x f 在0x 处连续是)(x f 在0x 连续的条件。
11、=++++∞→352352)23)(1(lim xx x x x x 。
12、3)21(lim -∞→=+e nknn ,则k= 。
13、函数231x1是⽐3-+x 15、当0→x 时,⽆穷⼩x --11与x 相⽐较是⽆穷⼩。
16、函数xe y 1=在x=0处是第类间断点。
17、设113--=x x y ,则x=1为y 的间断点。
18、已知33=??πf ,则当a 为时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
19、设??>+<=0)1(02sin )(1x ax x xxx f x 若)(lim 0x f x →存在,则a= 。
20、曲线2sin 2-+=xxx y ⽔平渐近线⽅程是。
21、114)(22-+-=x x x f 的连续区间为。
22、设??>≤+=0,cos 0,)(x x x a x x f 在0=x 连续,则常数a= 。
⼆、计算题1、求下列函数定义域(1)211xy -= ;(2)x y sin = ;(3)x2、函数)(x f 和)(x g 是否相同?为什么?(1)x x g x x f ln 2)(,ln )(2 == ;(2)2)(,)(x x g x x f == ;(3)x x x g x f 22tan sec )(,1)(-== ;3、判定函数的奇偶性(1))1(22x x y -= ;(2)323x x y -= ;(3))1)(1(+-=x x x y ;4、求由所给函数构成的复合函数(1)22,sin ,x v v u u y === ;(2)21,x u uy +==;5、计算下列极限(1))2141211(lim n n ++++∞→Λ;(2)2)1(321lim nn n -++++∞→Λ;(3)35lim 22-+→x x x ;(4)112lim 221-+-→x x x x ;(5))12)(11(lim 2x x x -+∞→;(6)2232) 2(2lim -+→x x x x ;(7)x x x 1sin lim 20→;(8)xx x x +---→131lim 21 ;(9))1(lim 2x x x x -++∞→;6、计算下列极限(1)xwx x sin lim 0→;(2)x x→;(4)xx xx )1(lim +∞→;(5)1)11(lim -∞→-+x x x x ;(6)x x x 10)1(lim -→;7、⽐较⽆穷⼩的阶(1)32220x x x x x --→与,时;(2))1(21112x x x --→与,时;8、利⽤等价⽆穷⼩性质求极限(1)30sin sin tan lim x x x x -→;(2)),()(sin ) sin(lim0是正整数m n x x m n x →;9、讨论函数的连续性。
高中数学函数的极限与连续练习题及参考答案2023

高中数学函数的极限与连续练习题及参考答案2023题目一:函数极限1. 计算以下极限:a) lim(x→2) (x^2 + 3x - 4)b) lim(h→0) [(4+h)^2 - 16]/hc) lim(x→∞) [(x+1)/(x-1)]^2d) lim(x→0) (1/x - 1)/(1 - sqrt(1 + x))解答:a) 将x代入函数,得到:lim(x→2) (2^2 + 3*2 - 4) = 8b) 将h代入函数,得到:lim(h→0) [(4+0)^2 - 16]/0 = 0c) 当x趋向于正无穷大时,[(x+1)/(x-1)]^2 = 1d) 将x代入函数,得到:lim(x→0) (1/0 - 1)/(1 - sqrt(1)) = undefined题目二:连续函数2. 判断以下函数在给定区间是否连续:a) f(x) = x^2 - 5x + 6, 在区间[1, 5]上b) g(x) = √(x + 2), 在区间[-2, 3]上c) h(x) = 1/(x-2), 在区间(-∞, 2)上解答:a) 函数f(x)是一个二次函数,对于任意实数x,f(x)都是连续的。
因此,f(x)在区间[1, 5]上连续。
b) 函数g(x)是一个开根号函数,对于非负实数x,g(x)都是连续的。
在区间[-2, 3]上,g(x)的定义域为[-2, ∞),因此在该区间上连续。
c) 函数h(x)在x=2处的定义域为无穷,因此在该点不连续。
在区间(-∞, 2)上除x=2之外的点,h(x)为一个连续函数。
题目三:函数极限的性质3. 判断以下命题的真假,并简要说明理由:a) 若lim(x→a) f(x) = L,且L≠0,则lim(x→a) [f(x)]^2 = L^2。
b) 若lim(x→a) f(x) = L,且f(x) > 0,那么lim(x→a) 1/f(x) = 1/L。
c) 若lim(x→a) f(x) = L,且lim(x→a) g(x) = M,则lim(x→a) [f(x) +g(x)] = L + M。
高中数学练习题附带解析极限与连续函数的计算

高中数学练习题附带解析极限与连续函数的计算高中数学练习题附带解析:极限与连续函数的计算第一题:求以下函数在$x=0$处的右导数和左导数,判断该函数在$x=0$处是否连续。
$$f(x)=\begin{cases}x+1 &,x<0 \\x^2 &,x \geq 0\end{cases}$$解析:首先求该函数在$x=0$处的函数值$f(0)$,由于$x \geq 0$时,$f(x)=x^2$,因此$f(0)=0$。
其次,求该函数在$x=0$处的右导数和左导数。
当$x<0$时,$f(x)=x+1$,因此该函数在$x=0$处的左导数为$f'_{-}(0)=1$。
当$x>0$时,$f(x)=x^2$,因此该函数在$x=0$处的右导数为$f'_{+}(0)=0$。
由于$f'_{-}(0) \neq f'_{+}(0)$,因此该函数在$x=0$处不存在导数,所以该函数在$x=0$处不连续。
第二题:求以下函数在$x=1$处的极限。
$$f(x)=\begin{cases}x+1 &,x<1 \\x^2 &,x >1\end{cases}$$解析:该函数在$x=1$处的左极限为$$\lim_{x \to 1^{-}}f(x)=\lim_{x \to 1^{-}}(x+1)=2$$该函数在$x=1$处的右极限为$$\lim_{x \to 1^{+}}f(x)=\lim_{x \to 1^{+}}(x^2)=1$$由于左极限和右极限不相等,因此该函数在$x=1$处不存在极限。
第三题:求以下函数在$x \to +\infty$时的极限。
$$f(x)=\frac{3x^3+x^2+1}{5x^3-2x+1}$$解析:首先将分母的最高次幂提取出来,得到$$f(x)=\frac{3x^3+x^2+1}{5x^3-2x+1}=\frac{x^3(3+\frac{1}{x}+\frac{1}{x^3})}{x^3(5-\frac{2}{x^2}+\frac{1}{x^3})}$$当$x \to +\infty$时,$\frac{1}{x} \to 0$,$\frac{1}{x^2} \to 0$,$\frac{1}{x^3} \to 0$,所以$$\lim_{x \to +\infty}f(x)=\lim_{x \to+\infty}\frac{x^3(3+\frac{1}{x}+\frac{1}{x^3})}{x^3(5-\frac{2}{x^2}+\frac{1}{x^3})}=\frac{3}{5}$$因此,该函数在$x \to +\infty$时的极限为$\frac{3}{5}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→xxax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
7、如果函数()x f 当0x x →时极限存在,则函数()x f 在0x 点( c ) a .有定义 b .无定义 c .不一定有定义∵()x f 当0x x →时极限存在与否与函数在该点有无定义没有关系。
8、数列1,1,21,2,31,3,…,n1,n ,…当∞→n 时为( c ) a .无穷大 b .无穷小 c .发散但不是无穷大9、函数()x f 在0x 点有极限是函数()x f 在0x 点连续的( b )a .充分条件b .必要条件c .充分必要条件 10、点0=x 是函数1arctanx的( b ) a .连续点 b .第一类间断点 c .第二类间断点 ∵001lim arctan2x x π→-=- 001lim arctan 2x x π→+=根据左右极限存在的点为第一类间断点。
11、点0=x 是函数x1sin的( c ) a .连续点 b .第一类间断点 c .第二类间断点 四、计算下列极限:1、()nn nn 31lim -+∞→ 解()31))1(3131(lim 31lim =-⋅+=-+∞→∞→n n n n n nn2、0tan 3limsin 2x xx→解 0tan 3lim sin 2x x x →2323lim 0==→x x x (∵x x 2sin ,0→~2,tan3x x ~x 3) 3、⎪⎭⎫ ⎝⎛+--+∞→x x x x x lim()xx x x x +--+∞→lim()()xx x x xx x x x x x x x ++-++-+--=+∞→limxx x x xx ++--=+∞→2lim111111lim2-=++--=+∞→xx x4、()n n n nn --++∞→221lim解()()()nn n n nn n nnn n nn n n nn n -+++-+++--++=--++∞→∞→22222222111lim1lim11111112lim 112lim222=-++++=-++++=∞→∞→nn n n n n n n n n n 5、xx x x x sin lim 2300+++→21sin 11lim sin 1lim sin lim 00002300=++=++=+++→+→+→xx x x x x xx x x xx x x 6、11sin lim2-+→x x x x)22211sin limlimx x x x x x x x →→→⋅+⋅+==()lim 12x →=+=7、11lim--→x x x()()()11lim 111lim11lim0=+=-+-=--→→→x x x x x x x x x8、1lim1--→x xx x()111lim1lim 11=--=--→→x x xx x x x x9、30tan sin limx x xx→- ()23330001sin 1cos tan sin 112lim lim lim cos cos 2x x x x x x x x x x x x x x →→→⋅⋅--==⋅= (∵210,1cos 2x x x →-,sin x )10、xx x 2cos 1lim0--→解()21221lim2cos 1lim20000-==--→-→x x xx x x(∵x x cos 1,0-→~221x ) 11、1lim 1xx x x →∞-⎛⎫⎪+⎝⎭解121111lim lim 111xx x x x x e x x e e x -→∞→∞⎛⎫- ⎪-⎛⎫⎝⎭=== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭12、⎪⎭⎫⎝⎛+∞→x x x 11ln lim解 ⎪⎭⎫⎝⎛+∞→x x x 11ln lim 111lim ln 11ln lim =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=∞→∞→xx x x x x13、xx xx x cos cos lim+-∞→解 cos 1cos lim lim 1cos cos 1x x x x x x x x x x→∞→∞--==++14、⎪⎭⎫⎝⎛---→1112lim 21x x x解 2211121111lim lim lim 11112x x x x x x x x →→→-⎛⎫-==-=- ⎪---+⎝⎭ 15、x 解lim lim 1x x →∞→∞==16、x x x cos 1sin lim 00-+→ 解000000sin sin lim lim lim x x x x x x →+→+→+===17、()⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→11321211lim n n n 解 ()⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→11321211lim n n n ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=∞→1113121211lim n n n1111lim =⎪⎭⎫ ⎝⎛+-=∞→n n。