直流三相逆变器设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 设计任务与要求

条件:输入直流电压:110V。

要求完成的主要任务:

(1)开关元器件的选择

(2)各模块方案选择

(3)各模块方案设计

(4)总电路的设计

(5)各模块的器件选型

(6)参数计算

设计容量为3KVA的三相逆变器,要求达到:

(1)输出380V,频率50Hz三相交流电

(2)完成总电路设计

(3)完成电路中各元件的参数计算

1.1 设计任务分析

由于输入直流电压只有110V,而输出交流电压要求有效值为380V,所以必须通过升压电路将直流电压升到到一定值才能作为逆变器的输入电压。逆变器的核心是半导体开关器件,不同拓扑的逆变电路有不同的优缺点和应用领域。半导体开关器件需要触发信号才能导通,要使逆变器输出正弦波形,则需要特殊的触发电路对开关器件进行调制。逆变器输出带有高次谐波,需要滤波电路对谐波进行。在进行仿真前,需对上述电路模块进行比较论证和选择。

1.2 设计思路

首先,考虑输入直流电压为110V而输出380V、频率50Hz三相交流电,要采用斩波电路升压到大于380以上,可以用直流斩波升压电路、直流斩波升降压电路等。其次要求由直流变为三相交流电,可采用电压型逆变电路、电流型逆变电路。逆变电路得到的是三相矩形波,再用PWM或者SPWM开关采用规则采样法将矩形波变为三相波,最后用滤波器滤波得到最终的所要的三相电,设计流程图如图1.1所示

图1.1设计流程图

2 设计意义及原理

2.1 设计意义

逆变电源技术的核心部分是逆变器和其控制部分。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但其含有较大成分低次谐波等缺点,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用众所周知。

逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器BJT,IGBT,GTO等的发展和PWM的控制技术的日趋完善,使SPWM逆变器得以迅速发展并广泛使用。

PWM控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:

(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。

(2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。

(3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。

在后备式供电中,蓄电池作为一种非常重要的储能介质,在各个行业都得到了广泛的应用。由于单个电池的参数存在着差别,不能通过将蓄电池并联的方法来提高直流供电系统的容量,因此在电池的容量不能满足实际需求时,最直接的办法就是多个蓄电池串联共同提供能量。所串的蓄电池越多,蓄电池组能够提供的能量就越多,但输出端电压就越高,此时,逆变器输入直流电压的上限就直接决定了蓄电池组的容量

大小。

另外,高压变频器广泛的应用于轧钢、造纸、水泥制造、矿井提升、轮船推进器等传统工业的改造和高速列车、城市地铁轻轨、电动汽车中,其核心部分也是高压逆变器。

2.2 开关元器件的选择

IGBT 主要是以M(模块)P(脉波)W(宽度)M(调变)方式制作,用主动元件IGBT模块设计,使本机容量可达300KVA,以隔离变压器输入及输出,来增加整机稳定性,特别感性、容性级特殊负载,负载测试和寿命实验可靠性高。

IGBT优点:

高频MPWM设计,IGBT功率推动,体积小、可靠性能高、噪音低。

效率达85%以上。

反应快速,对100%除载/加载,稳压反应时间在2ms以内。

超载能力强,瞬间电流能承受额定电流的300%。

波峰因素比(CREST FACTOR RATIO)高于3:1。

具过压、过流、超温等多重保证级报警装置。

Power MOSFET全称功率场效应晶体管。它的三个极分别是源极(S)、漏极(D)和栅极(G)。主要优点:热稳定性好、安全工作区大。缺点:击穿电压低,工作电流小。

GTR(功率晶管)由于二次击穿和驱动功率大等缺点,目前被IGBT和MOSFET 所代替。

IGBT全称绝缘栅双极晶体管,是MOSFET和GTR(功率晶管)相结合的产物。它的三个极分别是集电极(C)、发射极(E)和栅极(G)。特点:击穿电压可达1200V,集电极最大饱和电流已超过1500A。由IGBT作为逆变器件的变频器的容量达250kVA以上,工作频率可达20kHz。

所以这里选择IGBT作为此次设计的开关元件。

2.3 逆变电路原理

逆变电路在电力电子电路中占很重要的地位,他可分为电压型逆变电路和电流型逆变电路,在实际生产生活中三相逆变应用较为广泛,其中电压型的直流侧通常是并一个电容器,而电流型通常是在直流侧串一个电感。

电压型逆变:直流侧为电压源,采用并联大电容器来缓冲无功功率,则构成电压型逆变器。电压型逆变电路输出电压波形为矩形波,输出电流波形近似正弦波。直流侧电压基本无脉动,直流回路呈现低阻抗;交流侧输出电压为矩形波;当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用等特点。

电压型逆变电路有以下主要特点:

(1)直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。

(2)由于支路电压源的箝位作用,交流侧输出电压波形位矩形波,并且与负

相关文档
最新文档