P糖蛋白与药物的体内过程
P-糖蛋白相关的药物不良反应研究进展

P-糖蛋白相关的药物不良反应研究进展陆蕴红【摘要】P-糖蛋白(P-glycoprotein,P-gp)是一种三磷酸腺苷(adenosine triphosphate,ATP)依赖的外排型药物转运蛋白,对药物的体内过程起重要调控作用.由P-gp介导的药物相互作用及多药耐药蛋白1(multidrugresistance protein 1,MDRl)基因单核苷酸多态性(single nucleotide polymorphisms,SNPs)引起的个体化差异是P-gp底物在临床用药过程中产生不良反应的主要原因.本文对P-gp 相关的不良反应研究进展进行综述,为提高相关药物的临床疗效及安全性提供依据.【期刊名称】《复旦学报(医学版)》【年(卷),期】2016(043)004【总页数】5页(P495-499)【关键词】P-糖蛋白;药物不良反应;基因多态性;药物相互作用【作者】陆蕴红【作者单位】复旦大学附属中山医院药剂科上海200032【正文语种】中文【中图分类】R968;R969.2药物在人体内的吸收、分布及消除等过程受多方面因素影响,药物转运蛋白是影响上述过程的重要因素之一。
目前已发现的药物转运蛋白按功能可分为以下几类:多药耐药蛋白 (multidrug resistance protein,MDR)、多药耐药相关蛋白(multidrug resistance-associated protein,MRP)、有机阴离子转运蛋白(organic anion transporter,OAT)、有机阴离子转运多肽 (organic anion transporting polypeptide,OATP)、有机阳离子转运蛋白 (organic cation transporter,OCT)及寡肽转运蛋白 (peptide transporter,PepT)[1]。
其中,研究最为深入的是由多药耐药基因MDR1编码的P-gp,广泛分布于肠道、血-脑屏障、肝、胆管等组织器官,参与多数药物体内过程的调控,故P-gp介导的药物相互作用及MDR1基因多态性可能会影响许多药物的临床疗效和安全性。
p-gp(P-糖蛋白药物相互作用)

抑制
P-糖蛋白介 导的地高辛 经肾分泌
P-糖蛋白在小肠中的表 达与肾小管十分相似
小肠上P-蛋 白同样被抑 制?
奎尼丁的肠道试验
当用奎尼丁对进行 P- 糖蛋白表达的肠道进行灌注时 , 地 高辛静脉给药后的血浆浓度提高到原来的 2倍,而肠腔中药物 量降低了 40%, 在奎尼丁作用下总清除率由 318.0±19.3ml/h 降低到 167.1±11.0ml/h, 而肠中的清除率由 28.8±1.7ml/h 降 低到 11.1±1.6ml/h 这表明奎尼丁不仅影响地高辛的肾排泄 , 也影响地高辛在肠中的吸收与分泌。
Polymorphisms in Human MDR1 (P-glycoprotein): Recent Advances and Clinical Relevance Clinical Pharmacology & Therapeutics 75, 13-33 (January 2004)
人体各部位P-糖蛋白的作用
地高辛的相互作用
5. 与奎尼丁同用,可使本品血药浓度提高约一倍, 提高程度与奎尼丁用量相关,甚至可达到中毒浓度, 即使停用地高辛,其血药浓度仍继续上升,这是奎 尼丁从组织结合处置换出地高辛,减少其分布容积 之故。两药合用时应酌减地高辛用量1/2~1/3。 6.与维拉帕米、地尔硫䓬、胺碘酮合用,由于降 低肾及全身对地高辛的清除率而提高其血药浓度, 可引起严重心动过缓。 7.螺内酯可延长本品半衰期,需调整剂量或给药 间期,随访监测本品的血药浓度。 8.血管紧张素转换酶抑制剂及其受体拮抗剂可使 本品血药浓度增高。
Polymorphisms in Human MDR1 (P-glycoprotein): Recent Advances and Clinical Relevance Clinical Pharmacology & Therapeutics 75, 13-33 (January 2004)
P糖蛋白介导的药代动力学及其药物相互作用

浓度增高8。 并非所有P p 物吸收 11 但 . 9 - 的底 g 都受到Pg - p 转运的影响ห้องสมุดไป่ตู้ 临床给药剂量通常超过该药的K 值,P m -
9 的活性很容易达到饱和,只有一部分药物以小剂量 p 给予时, 才会受到Pg 主动排泄对生物利用度的影响。 - p 但对于一些药物,如环抱霉素、紫杉醇等因其水溶性
要为M R(u d g tc 1 R(u d g tcaoad e ) D I l r ri n ) m f u es e s a 及M P l m ri n -s iep t m t es e sct r i i sa on 家族。它们结构相似, 但转运底物不同。MD 1 R 主要转运疏水性阳离子化合 物,MR P既转运疏水性非带电化合物, 也转运水溶性的阴离子化合物。目 前对M R 编 D1 基因 码的P糖蛋白 ( g c re , ) 究比 深人。 - P l o o i P p 的研 较 -y p tn - g 它利用A P水解释放的能量将作用底物从细胞内转运至细胞外。分子结 T 构包括位于中间的连接区和与此相连的N端和 C端的两个功能区、每个 功能区各自 包括6 个疏水的跨膜部位及一个位于细胞浆内的亲水A P T 结 合位点。2 个功能区有4 %的同源性,任何一个A P 3 T 结合位点的灭活都可 使整个蛋白质功能丧失。药物结合位点遍布整个Pg 分子, - p 包括跨膜区、 连接区、甚至A P T 结合区。在人体正常组织肝脏、肾脏、肠道、胎盘、血 脑屏障、血塞屏障以及淋巴细胞系和心胜内小动脉、毛细血管等部位都有 分布。 - 在人体正常 Pp g 组织内 的分布以及对药 物的逆向 转运功能使 - 得P p g
407 ) 10 8
p-glycoprotein结构

p-glycoprotein结构P-糖蛋白(P-glycoprotein)是一种细胞膜上的输送蛋白,广泛存在于许多生物体的多种组织中,如肠道上皮细胞、肝细胞、肾小管细胞以及血脑屏障等。
它扮演着调节细胞内外物质转运的重要角色,参与多种生理过程,包括药物转运、毒物排泄、胆汁酸的循环利用以及保护组织免受外界环境的损害。
P-糖蛋白的基因由MDR1、ABCB1或ABC1命名,编码的蛋白质包含1280个氨基酸残基。
其经翻译和修饰后被转运到细胞膜上,形成一个由12个跨膜螺旋结构组成的分子,可分为两个对称的半通透通道结构。
蛋白质的N端朝胞质,C端朝细胞外。
该蛋白质主要由两个重要功能域组成:核苷酸结合结构域(nucleotide-binding domains, NBDs)和跨膜结构域(transmembrane domains, TMDs)。
NBDs包括两个相同的结构域,即NBD1和NBD2,分别位于P-糖蛋白的N端和C端,负责ATP结合和水解。
TMDs由6个跨膜螺旋(TM1-TM6)组成,它们相互连接形成两个分子之间的孔道。
P-糖蛋白对多种底物具有高度的选择性和广泛的特异性。
底物结合到TMDs区域的特定位点上,通过底物的结合、NBDs的ATP结合和水解来调节其运输。
具体来说,底物与P-糖蛋白的结合位点之间发生握手效应,导致NBDs结构域的构象变化。
这种构象变化使得NBDs中已结合的ATP分子水解成ADP和磷酸,释放出的能量用于驱动底物经跨膜结构域的转运。
P-糖蛋白在药物转运中的作用尤为重要,它能够将许多不同的化合物从细胞内排出,包括抗生素、镇痛剂、抗肿瘤药物等。
这种药物的排出可导致多药耐药性(Multi-drug resistance, MDR),使得治疗药物能力受到限制。
因此,研究P-糖蛋白的抑制剂和调节机制对于提高药效和治疗效果具有重要意义。
此外,P-糖蛋白还参与细胞内环境的维持。
它在肠道上皮细胞中起到防止细菌和有毒物质进入体内的保护作用。
糖蛋白在药物中的新应用

糖蛋白在药物中的新应用刘桂林(广东石油化工学院化学工程学院应用化学专业2011级4班,学号:11114060422)摘要:综述近五年来,糖蛋白在药物中的研究进展。
利用中国知网,查阅了大量文献,介绍了糖蛋白在新药物中的应用,包括其特性、结构、作用机制、底物、抑制剂以及诱导剂等,同时也阐明的其部分药物动力原理。
总而言之,糖蛋白在药物领域的利用具有很大的研究价值。
关键字:糖蛋白;药物;药物动力;吸收作用机制糖类是人体生命活动的重要能量来源,但是其结合糖也是人体所需的重要物质,例如说糖脂、脂多糖、糖蛋白以及蛋白聚糖。
近年来,关于药物中利用的糖蛋白的研究愈加多,特别是P糖蛋白。
杜慧慧、任强、刘晓民等做了P糖蛋白介导的肿瘤多药耐药机制及其逆转策略的相关研究。
他们在相关文献中说过,多药耐药( multidrug resistance,MD R) 是影响肿瘤化疗疗效及预后的主要因素之一。
而 P-糖蛋白过度表达是引起多药耐药的常见原因,因此抑制 P-糖蛋白介导的外排作用,从而提高细胞内的药物浓度进而逆转多药耐药,这已成为国内外研究的热点。
代昌远、李庆文等也做过P糖蛋白介导的药物研究。
他们在其中谈到,P糖蛋白是一个相对分子质量为170×103的依赖 ATP 的具有跨膜转运功能的糖蛋白,它是由MDR1编码的一种跨膜蛋白,其通过将化疗药物从细胞内泵到细胞外而导致细胞耐药。
P糖蛋白可在许多正常组织中表达,与某些细胞的分泌功能有关,是细胞的一种自我保护机制[7]。
P糖蛋白参与了上皮细胞的分泌及排泄,具有屏障和解毒作用,并与内分泌及免疫有关。
昆明医科大学人体解剖与组织胚胎学教研室的李洁、杨力、郭泽云老师对三七及单体对P糖蛋白抑制作用进行了研究。
P-糖蛋白属于ABC跨膜转运蛋白超家族中的一员,是一种ATP依赖性的外向型转运泵,参与生物的各种生理功能以及多类药物的体内转运过程,同时也是产生临床多药耐药作用的主要原因。
三七作为云南的特色中草药,在很多疾病的治疗与预防方面有着显著疗效,其副作用小、多靶点及多途径的综合调节作用,在逆转Mdr1和P-gp表达的研究中,具有一定的前景。
P糖蛋白与药物的体内过程

P-糖蛋白与药物的体内过程【摘要】 ATP结合盒转运载体蛋白作为影响药物体内过程的重要因素已被广泛研究,P-糖蛋白(P-gp)是其中最主要的一种转运子。
P-gp的结构、特点及组织分布决定了其在药物的吸收、分布、代谢、排泄方面的重要作用。
了解P-gp的这些作用有助于增加临床用药的合理性。
经过近三十年的发展,虽然研究P-gp的方法已经较为成熟;但是,目前对转运子的研究仍有许多争议存在,还有很多问题需要解决。
本文主要阐述P-gp的特性及其对药物体内过程的影响。
【关键词】 ATP结合盒转运载体蛋白;P-糖蛋白;药物体内过程近年来,ATP结合盒转运载体蛋白对药物体内过程的影响已被广泛研究。
P-糖蛋白(P-glycoprotein,P-gp)是其中最大的一个亚系。
研究发现,P-gp在许多组织有分布,是一种ATP依赖性膜转运体,作为药物转运子,其作用类似于排出泵,可将药物从细胞内外排而使胞内药物浓度降低,从而降低药效[1]。
因此,P-gp与底物及调节子之间的相互作用能影响药物的吸收、分布、代谢、排泄。
目前主要用细胞内模型(caco-2细胞系)和动物模型(mdr基因敲除小鼠)研究 P-gp 对其底物的药代动力学影响,常用的调节子有环孢素A(CsA)和维拉帕米。
1 认识ATP结合盒转运载体蛋白家族ATP结合盒转运载体蛋白(ATP-binding cassette transporter,ABC)是细胞膜糖蛋白,这些蛋白包括调控性膜通道等,包含有一个ATP结合蛋白盒及一个转运膜区。
哺乳类动物,活性ABC至少由四个这样的区域构成(两个转运膜区和两个ATP结合盒)。
这些区域或呈现在一个多肽链里(完整转运子),或在两个分离的蛋白中(半转运子);后者是功能性ABC特殊的转运子二聚体[2]。
已有49种人类ABC基因被命名[3]。
基于种系分析,这些转运子已被分为7个亚科(ABCA~ABCG)。
三种主要的多药耐药性ABC是MDR1、MRP1和ABCG2[2]。
P糖蛋白介导的药代动力学及其药物相互作用

P糖蛋白介导的药代动力学及其药物相互作用P糖蛋白(P-glycoprotein,P-gp)是一种跨膜糖蛋白,在许多组织中广泛表达,包括肠道、肾脏、肝脏和血脑屏障等。
它起到跨膜转运药物的作用,通过将药物从细胞内排出,从而影响药物在体内的吸收、分布和排泄。
药物和P糖蛋白的相互作用具有重要的药代动力学意义。
P糖蛋白介导的药物转运是通过被动扩散和活性转运两种方式进行的。
被动扩散通常发生在小分子药物上,而活性转运主要发生在大分子药物和药物代谢产物上。
药物通过P糖蛋白的跨膜结构进入细胞内,然后通过ATP酶活化P糖蛋白,将药物排出细胞外。
药物与P糖蛋白之间的相互作用可以影响药物的吸收、分布和排泄。
首先,在肠道中,P糖蛋白通过封闭细胞内的药物转运,减少药物的吸收。
例如,一些心律药物和化疗药物,如地高辛和阿霉素,经P糖蛋白介导的转运被排出肠道,减少了它们在肠道中的吸收。
其次,在肾脏中,P糖蛋白通过排泄药物阻止它们重新进入肾小管细胞,从而增加药物的排泄。
最后,在血脑屏障中,P糖蛋白阻止许多药物从血液进入脑组织,这种转运过程称为脑脊液排泄。
这些相互作用可能导致药物的低生物利用度、药物的低浓度和临床疗效的降低。
药物可以通过抑制P糖蛋白表达或减少其活性来改变药物与P糖蛋白的相互作用。
例如,一些药物通过竞争性抑制P糖蛋白的ATP酶活性来抑制其功能。
这些药物包括钙通道阻断剂、胺碘酮、珠蛋白抑制剂等。
此外,一些药物也可以诱导P糖蛋白的表达,从而增加药物的转运和排泄。
如含有谷胱甘肽乳剂的化疗药物、肠道抗菌素等。
此外,多种因素可以影响药物与P糖蛋白的相互作用。
药物的结构特征、剂量、给药途径和给药时间等都可能影响药物与P糖蛋白的相互作用。
糖尿病和肝病等疾病状态也可能增加药物与P糖蛋白的相互作用。
因此,在药物治疗中,应特别关注药物与P糖蛋白之间的相互作用,以避免药物的不良反应和疗效降低。
总之,P糖蛋白介导的药代动力学及其与药物的相互作用是药物在体内转运和排泄的关键过程。
药物转运蛋白的功能与机制研究

药物转运蛋白的功能与机制研究在现代医学和药理学领域,药物转运蛋白的研究是一个至关重要的课题。
这些小小的蛋白质分子在药物的吸收、分布、代谢和排泄过程中发挥着关键作用,直接影响着药物的疗效和安全性。
药物转运蛋白可以被看作是药物在体内“旅行”的“交通工具”。
它们存在于细胞膜上,负责将药物从一个部位运输到另一个部位。
比如说,在药物的吸收阶段,肠道上皮细胞中的转运蛋白决定了药物能否从肠道进入血液循环。
如果这些转运蛋白的功能出现异常,药物的吸收可能会受到阻碍,导致药物无法达到有效的治疗浓度。
常见的药物转运蛋白包括 ABC 转运蛋白家族和 SLC 转运蛋白家族。
ABC 转运蛋白家族中的 P糖蛋白(Pgp)是研究得比较深入的一种。
Pgp 能够利用ATP 水解产生的能量,将药物从细胞内“泵出”到细胞外,从而降低细胞内药物的浓度。
这一机制在肿瘤细胞对抗癌药物的耐药性中常常起到重要作用。
肿瘤细胞可能会过度表达 Pgp,使得抗癌药物无法在细胞内积累到有效浓度,从而导致治疗失败。
SLC 转运蛋白家族则通常通过促进扩散的方式来转运药物。
例如有机阴离子转运多肽(OATP)可以将一些有机阴离子型药物转运进入细胞,参与药物的摄取过程。
药物转运蛋白的功能受到多种因素的调节。
基因多态性是其中一个重要的因素。
不同个体的基因存在差异,这可能导致药物转运蛋白的表达水平和活性不同。
比如,某些个体中编码药物转运蛋白的基因发生突变,可能会使其转运蛋白的功能降低或增强,从而影响药物的处置和疗效。
环境因素也能对药物转运蛋白的功能产生影响。
例如,某些疾病状态可能会导致转运蛋白的表达和功能发生改变。
炎症反应时,细胞因子的释放可能会影响转运蛋白的活性,进而改变药物的体内过程。
药物转运蛋白之间还存在着相互作用。
一种药物可能是某个转运蛋白的底物,同时也可能是另一个转运蛋白的抑制剂或诱导剂。
这种相互作用使得药物在体内的转运变得更加复杂。
例如,一种药物如果抑制了某种转运蛋白的功能,可能会导致其他依赖该转运蛋白转运的药物在体内的浓度升高,增加药物不良反应的风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P-糖蛋白与药物的体内过程
【摘要】 ATP结合盒转运载体蛋白作为影响药物体内过程的重要因素已被广泛研究,P-糖蛋白(P-gp)是其中最主要的一种转运子。
P-gp的结构、特点及组织分布决定了其在药物的吸收、分布、代谢、排泄方面的重要作用。
了解P-gp的这些作用有助于增加临床用药的合理性。
经过近三十年的发展,虽然研究P-gp的方法已经较为成熟;但是,目前对转运子的研究仍有许多争议存在,还有很多问题需要解决。
本文主要阐述P-gp的特性及其对药物体内过程的影响。
【关键词】 ATP结合盒转运载体蛋白;P-糖蛋白;药物体内过程
近年来,ATP结合盒转运载体蛋白对药物体内过程的影响已被广泛研究。
P-糖蛋白(P-glycoprotein,P-gp)是其中最大的一个亚系。
研究发现,P-gp在许多组织有分布,是一种ATP依赖性膜转运体,作为药物转运子,其作用类似于排出泵,可将药物从细胞内外排而使胞内药物浓度降低,从而降低药效[1]。
因此,P-gp与底物及调节子之间的相互作用能影响药物的吸收、分布、代谢、排泄。
目前主要用细胞内模型(caco-2细胞系)和动物模型(mdr基因敲除小鼠)研究 P-gp 对其底物的药代动力学影响,常用的调节子有环孢素A(CsA)和维拉帕米。
1 认识ATP结合盒转运载体蛋白家族
ATP结合盒转运载体蛋白(ATP-binding cassette transporter,ABC)是细胞膜糖蛋白,这些蛋白包括调控性膜通道等,包含有一个ATP结合蛋白盒及一个转运膜区。
哺乳类动物,活性ABC至少由四个这样的区域构成(两个转运膜区和两个ATP结合盒)。
这些区域或呈现在一个多肽链里(完整转运子),或在两个分离的蛋白中(半转运子);后者是功能性ABC特殊的转运子二聚体[2]。
已有49种人类ABC基因被命名[3]。
基于种系分析,这些转运子已被分为7个亚科(ABCA~ABCG)。
三种主要的多药耐药性ABC是MDR1、MRP1和ABCG2[2]。
ABC的主要功能是小分子物质及多肽分子跨膜转运[3]。
转运膜区会通过改变形态允许某些分子通过。
ATP结合盒结合或水解胞浆中的ATP,以此确保转运底物所需的足够能量。
ATP结合盒及转运膜区的这些特殊反应能够使转运子与底物像齿轮一样吻合并通过水解ATP来转运底物[4]。
相同的转运子可存在于多种组织和细胞中。
尽管底物的种类多种多样,但ABC家族显现出许多结构相似性。
从原核生物系统到哺乳动物系统,ABC趋向于通过增加分子功能单位的数量来增加结构的复杂
性[5]。
2 P-gp的结构、生化特性及可能的转运机制
2.1 P-gp的结构 P-gp是由1280个氨基酸组成的跨膜蛋白,分子量为170kD,由两个相似的部分构成。
其中每一个部分包含六个转运膜区和一个ATP结合利用区。
两部分被一个线性的易变区域隔开,如果线性区域缺失,虽然细胞表面的蛋白表达与原蛋白相似,但丧失了转运及药物刺激ATP酶活性的功能。
如用一个有足够柔韧性二级结构的多肽链替换这个缺失的结构,分子的功能就会恢复。
这些数据表明P-gp两个半球的相互作用是分子功能的关键[6]。
2.2 生物化学特性研究表明1mol P-gp可水解1mol的ATP。
已证实人和仓鼠提纯的P-gp的两个ATP部位均能水解ATP,但机制并不完全一致[7]。
人类P-gp的突变将影响底物的特异性。
2.3 P-gp的转运机制 P-gp在某些组织(肝、肾、小肠、大肠的上皮、脑毛细血管内皮细胞、卵巢和睾丸)表现屏障功能。
不同的研究模型已被用于解释P-gp的转运机制。
Roepe描述的改变分配模型中,P-gp的过度表达可导致膜电位的改变和/或细胞内pH的改变,最终改变药物的分配和细胞内药物浓度。
flip-pase模型中,P-gp扮演类似于膜脂质移位酶的角色,它将底物从脂质双层分子的内面转移至外面。