单片机中断系统

合集下载

单片机-第五章 单片机中断系统

单片机-第五章 单片机中断系统

(1)CPU正在执行一个同级或高优先级的中断服务程序; (2)正在执行的指令尚未执行完; (3)正在执行中断返回指令RETI或者对寄存器IE、IP进 行读/写的指令。 CPU在执行完上述指令之后,要再执行一条指令,才 能响应中断请求。
二、中断响应过程 从中断请求发生直到被响应,准备去执行中断服务程 序,此过程即中断响应过程。中断响应过程一般包括如下几 个阶段: 1、中断采样并置位 中断采样过程:CPU在每个机器周期S5P2期间顺序对 中断源采样、置中断标志。 2、查询标志 在中断采样后的下一个周期的S6按优先级顺序查 询中断标志。
第5章 MCS-51单片机中断系统
5.1.1中断的概念
单片机系统中,CPU和外部设备之间不断进行信息的传 输。通常CPU和外设之间的信息传送方式有以下几种: 程序控制方式 中断方式 直接存储器存取(DMA)方式
1、 程序控制方式 可以分为以下两种方式。 (1)无条件传送方式 外设始终处于就绪状态,CPU不必查询外设的状 态,直接进行信息传输,称为无条件传送方式。 此种信息传送方式只适用于简单的外设。如开 关和数码段显示器等。
三、中断响应的时间
一般来说,中断的响应时间最短为3个机器周期,最长 为8个机器周期。 一般中断请求标志位查询占1个机器周期。而机器周期 又恰好是指令的最后一个机器周期。执行此指令后,CPU 将响应中断,产生硬件长调用指令。 长调用LCALL指令需要2个机器周期。这样,中断响应 时间为3个机器周期。
是不可寻址的
在同级的几个中断源中同时发生请求时, 内部对同级的各中断源的优先级别有一个规 定的查询顺序: 自然优先级
外部中断请求 INT0 最高 定时/计数器 T0 外部中断请求 INT1 定时/计数器 T1 串行口 UART 最低 定时/计数器 T2

单片机中断系统

单片机中断系统

单片机中断系统一、单片机中断系统的概念单片机中断系统是指在程序运行过程中,由于出现特殊情况(如外部设备的输入信号、定时器溢出等),使得单片机暂时停止当前任务的执行,转而执行相应的中断服务程序(ISR),以处理中断事件。

中断处理完毕后,再返回到中断点继续执行原来的任务。

这种特殊的中断机制,使得单片机能够同时处理多个任务,实现了实时性较高的应用程序设计。

二、单片机中断系统的结构单片机中断系统主要由以下几个部分组成:1、中断源:产生中断的外部设备或内部定时器。

2、中断请求寄存器:用于存储各个中断源的中断请求状态。

3、中断优先级寄存器:用于确定多个中断源的优先级。

4、中断服务程序(ISR):用于处理中断事件,执行相应的操作。

5、中断返回:中断处理完毕后,返回原程序继续执行。

三、单片机中断系统的处理过程当单片机检测到某个中断源发出中断请求时,会暂停当前任务的执行,按照优先级顺序执行相应的中断服务程序(ISR)。

在ISR中,程序会读取中断源的中断请求状态,并对相应的中断源进行处理。

处理完毕后,程序会返回原程序继续执行。

如果此时还有其他的中断源发出中断请求,则根据优先级顺序再次执行相应的ISR。

四、单片机中断系统的应用单片机中断系统在实时控制、数据采集、通信等领域有着广泛的应用。

例如,在工业控制中,当某个传感器发出中断请求时,单片机可以暂停当前任务的执行,转而执行相应的中断服务程序(ISR),对传感器数据进行采集和处理。

处理完毕后,再返回原程序继续执行。

这样,单片机可以在不丢失任何数据的情况下,实时地响应外部设备的请求。

五、总结单片机中断系统是实现实时控制和数据处理的重要手段之一。

通过合理的配置和使用中断系统,可以提高单片机的实时性能和数据处理能力。

在实际应用中,需要根据具体的需求和硬件条件选择合适的单片机型号和中断系统配置方案,以满足系统的实时性和稳定性要求。

单片机的中断系统在嵌入式系统设计中,单片机因其体积小、性价比高、可靠性强等特性被广泛应用。

单片机的中断系统

单片机的中断系统

单片机的中断系统在单片机的世界里,中断系统就像是一位高效的“调度员”,能够让单片机在处理多个任务时有条不紊,实现高效运行。

对于初学者来说,理解中断系统可能会有些困难,但只要我们逐步深入,就能揭开它神秘的面纱。

想象一下,单片机正在专心致志地执行着一个任务,比如说计算一些数据。

突然,有一个紧急的事情发生了,比如外部设备传来了一个重要的信号,需要单片机立即响应处理。

这个时候,如果单片机没有中断系统,它就只能傻傻地继续完成当前的计算任务,而把那个紧急的事情晾在一边,等到计算完成后再去处理。

这样一来,可能就会耽误了重要的事情。

但是有了中断系统,情况就完全不同了。

中断系统能够让单片机在执行当前任务的过程中,暂停下来,先去处理那个紧急的事情,处理完之后再回到原来的任务继续执行。

这就好比你正在写作业,突然电话响了,你会先接电话,说完重要的事情后再继续写作业。

那么,中断系统是如何实现这样的功能的呢?首先,我们要知道中断的概念。

中断,简单来说,就是单片机正常运行过程中,由于内部或外部事件的触发,暂停当前正在执行的程序,转而执行相应的中断服务程序,处理完中断事件后再返回原来被中断的地方继续执行。

单片机的中断源可以分为内部中断源和外部中断源。

内部中断源通常是单片机内部的一些特殊功能模块,比如定时器/计数器溢出、串行口接收或发送完成等。

而外部中断源则是来自单片机外部的信号,比如按键按下、外部设备的数据准备好等。

当有中断源产生中断请求时,单片机并不会立即响应。

它需要先判断当前是否允许中断。

就好像你正在忙的时候,有人找你帮忙,你得先看看自己有没有时间和精力去帮忙一样。

单片机通过设置一些中断允许寄存器来控制是否允许中断。

如果允许中断,并且中断请求的优先级高于当前正在执行的任务,那么单片机会暂停当前的任务,将当前程序的一些重要信息,比如程序计数器的值等,保存到特定的寄存器中,这叫做保护现场。

然后,单片机就会跳转到相应的中断服务程序去执行。

单片机中断系统详细教程

单片机中断系统详细教程

单片机中断系统详细教程一、中断系统的原理中断系统是一种异步事件响应机制,它允许设备在正常程序运行的过程中插入一个特殊事件,中断请求触发后,处理器即刻中断当前程序的执行,执行特定的中断服务程序,完成对事件的处理。

其流程如下:1.当外设需要处理器响应时,会向处理器发送中断请求信号,通常为一个引脚的高电平触发。

2.处理器在接收到中断请求信号后,暂停当前的程序执行,保存当前现场(保存中断发生时的CPU状态),并进入中断服务程序执行,执行完成后再返回到原来的程序继续执行。

二、中断系统的使用方法1.初始化中断控制器:对中断向量表进行初始化,设置中断优先级等。

2.配置外设的中断请求触发方式:设置外设的中断触发方式,包括电平触发和边沿触发。

3.编写中断服务程序:根据需要,编写中断服务程序来处理中断事件。

4.启动中断系统:启动中断系统,使处理器能够响应外设的中断请求。

三、中断系统的实例下面以8051单片机为例,演示如何使用中断系统。

1.初始化中断控制器使用8051单片机的中断系统,首先需要初始化中断控制器,设置中断向量表和中断优先级。

具体步骤如下:```cvoid init_interrup//设置中断向量表EA=1;//打开总中断使能ET0=1;//打开定时器0中断EX0=1;//打开外部中断0EX1=1;//打开外部中断1//设置中断优先级IP=0x10;//设置定时器0中断为高优先级P3=0x0F;//设置外部中断0和中断1为低优先级```2.配置外设的中断请求触发方式在8051单片机中,外部中断0和中断1的触发方式可由用户进行配置,可以选择为低电平触发或上升沿触发。

例如,将外部中断0配置为上升沿触发:```cvoid init_external_interrupIT0=1;//设置外部中断0为边沿触发方式(上升沿触发)EX0=1;//打开外部中断0使能```3.编写中断服务程序根据需要,编写相应的中断服务程序来处理中断事件。

单片机的中断系统设计与应用案例

单片机的中断系统设计与应用案例

单片机的中断系统设计与应用案例在单片机系统中,中断是一种重要的事件处理机制,能够在程序执行过程中暂停当前任务,转而执行其他任务,从而提高系统的响应速度和效率。

本文将探讨单片机中断系统的设计原理和应用案例。

**一、中断系统设计原理**在单片机系统中,中断系统由中断向量表、中断优先级和中断服务程序组成。

中断向量表存储了不同中断源对应的中断服务程序入口地址,在中断发生时,单片机根据中断源的优先级查询中断向量表,跳转到相应的中断服务程序执行相应的处理操作。

中断系统设计需考虑以下几个方面:1. 中断控制器的设计:中断控制器通常由中断使能、中断源、中断优先级等模块组成,负责管理中断请求信号,确定中断优先级顺序,选择合适的中断服务程序执行。

2. 中断服务程序的编写:中断服务程序是针对特定中断源编写的处理程序,需要在中断发生时快速响应,执行相应的处理逻辑,保证系统正常运行。

3. 中断优先级的设置:根据系统需求和中断源的重要性,设置合理的中断优先级,确保关键中断得到及时处理。

**二、中断系统应用案例**以下是一个简单的单片机中断系统应用案例:定时器中断控制LED 闪烁。

```c#include <reg52.h>sbit LED = P1^0; // 定义LED连接的IO口void InitTimer0() // 定时器0初始化函数{TMOD = 0x01; // 定时器0工作在模式1下TH0 = 0xFC; // 定时器初值TL0 = 0x67;EA = 1; // 开启总中断ET0 = 1; // 开启定时器0中断TR0 = 1; // 启动定时器0}void Timer0_ISR() interrupt 1 // 定时器中断服务程序{static bit state = 0;TH0 = 0xFC; // 重新装载计数初值TL0 = 0x67;state = ~state;LED = state; // LED状态翻转}void main(){InitTimer0(); // 初始化定时器0while(1);}```在上述应用案例中,通过定时器0中断控制LED的闪烁,实现了一个简单的中断系统应用。

8051单片机的中断系统

8051单片机的中断系统

8051单片机的中断系统在单片机的世界里,8051 单片机的中断系统就像是一个有条不紊的交通指挥中心,能够让单片机在应对各种复杂任务时做到有条不紊、高效快捷。

什么是中断呢?打个比方,你正在家里专心致志地看书,突然门铃响了,这时候你就得放下手中的书去开门,处理完开门这件事之后再回来继续看书。

对于单片机来说,中断就像是这个突然响起的门铃,它会打断单片机正在进行的主程序,让单片机先去处理更紧急、更重要的任务,处理完后再回到原来的主程序继续执行。

8051 单片机的中断系统有 5 个中断源,分别是外部中断 0(INT0)、外部中断 1(INT1)、定时/计数器 0 溢出中断(TF0)、定时/计数器1 溢出中断(TF1)和串行口中断(RI 或 TI)。

外部中断 0 和 1 通常是由外部信号触发的。

比如说,连接一个传感器,当传感器检测到特定的条件时,就会产生一个信号触发外部中断,让单片机去处理相应的操作。

定时/计数器 0 和 1 溢出中断则是在定时/计数器计满溢出时产生中断。

这就好比你设定了一个闹钟,时间到了闹钟就响,单片机就知道该去执行相应的任务了。

串行口中断是在串行通信过程中,当接收或发送完一帧数据时产生的中断。

每个中断源都有自己的中断标志位。

当相应的中断事件发生时,中断标志位就会被置位。

单片机通过查询这些中断标志位来判断是否有中断请求。

为了有效地管理这些中断,8051 单片机设置了中断允许寄存器 IE和中断优先级寄存器 IP。

中断允许寄存器 IE 就像是一个总开关,决定了哪些中断源可以被响应。

如果某个中断源对应的位被设置为 1,那么它就是被允许的;如果是 0,就会被禁止。

中断优先级寄存器 IP 则决定了多个中断同时请求时的响应顺序。

就像在一个拥挤的路口,警车、救护车等具有更高优先级的车辆会先通过。

在 8051 单片机中,默认的中断优先级顺序是:外部中断 0 >定时/计数器 0 溢出中断>外部中断 1 >定时/计数器 1 溢出中断>串行口中断。

单片机的中断系统

单片机的中断系统

单片机的中断系统单片机是一种集成电路,具有微处理器的功能。

它在各种电子设备中广泛应用,包括家电、汽车电子、通信设备等等。

单片机的中断系统是其核心功能之一,它允许单片机能够在处理其他任务的同时快速响应重要事件。

本文将介绍单片机的中断系统的原理、实现方式和应用场景。

一、中断系统的原理中断系统是单片机实现多任务处理的一种机制。

它基于硬件和软件的联合工作,使得单片机能够在执行某个任务的过程中,以快速响应的方式中断当前任务,去处理其他紧急或优先级更高的任务。

中断系统的原理可以简单地概括为如下几步:1. 系统中断源发生中断信号,例如外部设备向单片机发送中断请求;2. 单片机硬件或者软件检测到中断源的信号,暂停当前任务的执行;3. 单片机保存当前任务的状态,包括程序计数器、寄存器等等;4. 单片机跳转到中断服务程序(ISR)中执行,处理中断源的任务;5. 中断服务程序执行完成后,恢复之前被中断的任务,继续执行。

二、中断系统的实现方式单片机的中断系统可以通过硬件和软件两种方式来实现。

硬件中断是通过设置硬件电路来实现中断响应的。

例如,外部设备可以通过给单片机一个脉冲信号来触发中断。

单片机内部有一个专门的硬件电路来检测和处理这个脉冲信号,以启动中断服务程序的执行。

软件中断则是通过软件指令来触发中断。

单片机提供了一些特殊的指令,用于主动地产生中断信号。

软件中断通常在一些特定的场景下使用,例如在实时操作系统中,通过软件中断来处理实时任务的请求。

根据中断响应的时间,中断可以分为可屏蔽中断和不可屏蔽中断。

可屏蔽中断可以在执行指定指令时被屏蔽,不会触发中断;不可屏蔽中断则无法被屏蔽,必须立即响应。

三、中断系统的应用场景单片机的中断系统在各种应用场景中都有广泛的应用。

1. 实时控制系统:在一些实时控制系统中,中断可以用于处理各种紧急事件,例如传感器数据的采集、电机的控制等。

通过中断系统,单片机可以在不中断主任务的情况下快速响应这些事件,提高系统的实时性和可靠性。

单片机中断系统的结构

单片机中断系统的结构

单片机中断系统的结构一、引言在单片机的应用中,中断是一种非常重要的机制,它可以提高系统的响应速度和效率。

中断系统是指由硬件和软件共同组成的一套机制,用于处理外部事件的优先级和响应方式。

本文将介绍单片机中断系统的结构和工作原理,以及如何在程序设计中使用中断。

二、中断系统的基本原理中断系统是由中断源、中断控制器和中断服务程序三部分组成的。

其中,中断源是指产生中断请求的外部事件,如按键输入、定时器溢出等;中断控制器是负责接收和分发中断请求的硬件模块;中断服务程序是处理中断请求的一段特定程序代码。

三、中断源中断源是产生中断请求的外部事件,它可以是来自外部硬件设备的信号,也可以是由内部程序生成的软件中断请求。

常见的中断源包括按键输入、定时器溢出、串口通信等。

中断源通过触发相应的中断请求,将中断信号发送给中断控制器。

四、中断控制器中断控制器是负责接收和分发中断请求的硬件模块。

它通常包含多个中断通道,每个通道对应一个中断源。

当中断源触发中断请求时,中断控制器会根据中断源的优先级和中断屏蔽状态,确定是否接受该中断请求,并将中断信号发送给CPU。

中断控制器通常包括以下几个重要的部分:1. 中断请求线:用于接收中断源产生的中断请求信号;2. 中断屏蔽器:用于屏蔽或使能特定的中断源;3. 中断优先级编码器:用于确定中断源之间的优先级;4. 中断向量表:用于存储每个中断源对应的中断服务程序的入口地址。

五、中断服务程序中断服务程序是处理中断请求的一段特定程序代码。

当中断请求被接受后,CPU会暂停当前的任务,跳转到对应的中断服务程序执行。

中断服务程序通常包括以下几个重要的步骤:1. 保存现场:将当前程序的状态和寄存器值保存到栈中,以便在中断处理完成后恢复;2. 执行中断处理:根据中断源的类型和需求,执行相应的中断处理操作;3. 恢复现场:将之前保存的状态和寄存器值从栈中恢复,以继续执行被中断的程序。

六、中断优先级和嵌套中断在多个中断源同时产生中断请求时,中断控制器会根据中断源的优先级确定中断的处理顺序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档