新编概率论与数理统计(华东理工大学出版社)_习题5答案

合集下载

概率论与数理统计(第五版)习题答案

概率论与数理统计(第五版)习题答案

传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
Hale Waihona Puke 传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!
传播优秀 Word 版文档 ,希望对您有帮助,可双击去除!

15华工概率论与数理统计第五、六章作业答案

15华工概率论与数理统计第五、六章作业答案
由题意知54利用柯尔莫哥洛夫强大数定律1即书上定理513
概率论第五章答案 5.1 解:因 E[ X + Y ] = E[ X ] + E[Y ] = 0
故 P ( X + Y ≥ 6) = P ( X + Y − E[ X + Y ] ≥ 6) ≤
Var[ X + Y ] 36
而 Var[ X + Y ] = Var[ X ] + Var[Y ] + 2 cov( X , Y )

9

* 8S 9
2
σ
2
~ χ 2 (8)
X 10 − X 10 σ 3( X 10 − X ) 3 所以 T = 服从 t (8) 分布 . = *2 *2 S9 10 8S 9
σ2
8
X 6.7 解:由题意知 2 = i ~ χ 2 (4) . σ i =6 σ Z3

σ
Z1
因 {X n } 是独立同分布的随机变量序列,且
2 2 Var[ X n ] = E[ X n ] − (E[ X n ]) ⇒ E[ X n ] = 10 2
故 {Yn }是独立同分布的随机变量序列,且
E[Yn ] = E[ X 32n−2 + X 3n−1 X 3n ] = E[ X 32n−2 ] + E[ X 3n−1 ]E[ X 3n ]
E[ X i ] = 0 ,Var[ X i ] = 0.0075 .
因 P (48 ≤ Y60 ≤ 52) = P 48 ≤ 50 +
60
∑X
i =1
i
≤ 52
= P (−2 ≤
∑X

概率论与数理统计课后习题参考答案

概率论与数理统计课后习题参考答案

习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。

2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。

3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。

概率论第五章习题解答

概率论第五章习题解答

概率论第五章习题解答第一篇:概率论第五章习题解答第五章习题解答1.设随机变量X的方差为2,则根据车比雪夫不等式有估计P{X-E(X)≥2}≤ 1/2.P{X-E(X)≥2}≤D(X)22=122.随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,相关系数为-0.5,则根据车比雪夫不等式有估计P{X+Y≥6}≤1/12.P{X+Y≥6}=P{(X+Y)-[E(X)+E(Y)]≥6}≤D(X)62=1123.电站供应一万户用电.设用电高峰时,每户用电的概率为0.9,利用中心极限定理,(1)计算同时用电的户数在9030户以上的概率;(2)若每户用电200 w,电站至少应具有多大发电量才能以0.95的概率保证供电?解:⑴ 设X表示用电户数,则X~B(10000,0.9),n=10000,p=0.9,np=9000,npq=900由中心定理得X~N(9000,900)近似P{X>9030}=1-P{X≤9030}⎧X-90009030-9000⎫=1-P⎨≤⎬900900⎩⎭=1-Φ(1)=1-0.8413=0.1587⑵ 设发电量为Y,依题意P{200X≤Y}=0.95⎧X-9000Y-9000⎫⎪⎪200即 P⎨≤⎬=0.95900900⎪⎪⎩⎭-9000200Φ()=0.95900Y-9000200≈1.65900Y=1809900 4.某车间有150台同类型的机器,每台机器出现故障的概率都是0.02,设各台机器的工作是相互独立的,求机器出现故障的台数不少于2的概率.解:设X表示机器出故障的台数,则X:B(150,0.02)Ynp=3,npq=2.94 由中心定理得X~N(3,2.94)近似P{X≥2}=1-P{X<2}2-3⎫⎧X-3=1-P⎨<⎬2.942.94⎩⎭=1-P{X<-0.58 32}=Φ(0.5832)=0.7201 5.用一种对某种疾病的治愈率为80%的新药给100个患该病的病人同时服用,求治愈人数不少于90的概率.解:设X表示治愈人数,则X:B(100,0.8)其中n=100,p=0.8,np=80,npq=16P{X≥90}=1-P{X<90}⎧X-8090-80⎫=1-P⎨<⎬1616⎩⎭=1-Φ(2.5)=0.0062 6.设某集成电路出厂时一级品率为0.7,装配一台仪器需要100只一级品集成电路,问购置多少只才能以99.9%的概率保证装该仪器是够用(不能因一级品不够而影响工作).解:设购置n台,其中一级品数为X,X:B(n,0.7)p=0.7,np=0.7n,npq=0.21nP{X≥100}=1-P{X<100}⎧X-0.7n100-0.7n⎫=1-P⎨<⎬0.21n0.21n⎩⎭10 0-0.7n=1-Φ()0.21n=0.999故Φ(-100-0.7n0.21n)=0.999有-100-0.7n0.21n=3.1⇒n=121(舍)或n=1707.分别用切比雪夫不等式与隶莫弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次才能保证出现正面的频率在0.4~0.6之间的概率不小于90%.解:设掷n次,其中正面出现的次数为X,X:B(n,p),p=⑴由切贝雪夫不等式,要使得P⎨0.4<12⎧⎩X⎫<0.6⎬≥0.9成立n⎭D(X)X⎧X⎫⎧XX⎫25⎧⎫n由于P⎨0.4< <0.6⎬=P⎨-p<0.1⎬=P⎨-E()<0.1⎬≥1-=1-2nnnn0.1n⎩⎭⎩⎭⎩⎭只要1-25X⎧⎫<0.6⎬≥0.9成立≥0.9,就有P⎨0.4<nn⎩⎭从而⇒n≥250⑵中心极限定理,要使得P⎨0.4<⎧⎩X⎫<0.6⎬≥0.9成立n⎭由于X:N(0.5n,0.25n)近似X⎧0.4n-0.5nX-0.5n0.6n-0.5n⎫⎧⎫P⎨0.4<<0.6⎬=P{0.4n<X<0.6n} =P⎨<<⎬n0.25n0.25n0.25n⎩⎭⎩⎭X-0.5n⎧-0.1n=P⎨<<0.25n⎩0.25n所以Φ(0.1n⎫0.1n-0.1n0.1n=Φ()-Φ()=2Φ()-1>0.9⎬0.25n⎭0.25n0.25n0.25 n0.1n0.25n)>0.95查表0.1n0.25n>1.65⇒n≥688.某螺丝钉厂的废品率为0.01,今取500个装成一盒.问废品不超过5个的概率是多少?解:设X表示废品数,则X:B(500,0.01) p=0.01,np=5,npq=4.955-5⎫⎧X-5P{X≤5}=P⎨≤⎬=Φ(0)=0.54.95⎭⎩4.95第二篇:概率论第一章习题解答1.写出下列随机试验的样本空间:1)记录一个小班一次数学考试的平均分数(以百分制记分);2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数;4)在单位圆内任意取一点,记录它的坐标.解:1)设小班共有n 个学生,每个学生的成绩为0到100的整数,分别记为x1,x2,Λxn,则全班平均分为x=∑xi=1nin,于是样本空间为12100niS={0,,Λ,}={|i=0,1,2,3,Λ100n}nnnn32)所有的组合数共有C5=10种,S={123,124,125,134,135,145,234,235,245,345} 3)至少射击一次,S={1,2,3,Λ}4)单位圆中的坐标(x,y)满足x2+y2<1,S={(x,y)|x2+y2<1}2.已知A⊂B,P(A)=0.3,P(B)=0.5,求P(A),P(AB),P(AB)和P(AB).解 P(A)=1-P(A)=1-0.3=0.7 P(AB)=P(A)=0.3(因为A⊂B)P(AB)=P(B-A)=P(B)-P(A)=0.2P(AB)=P(B)=0.5(因为A⊂B,则B⊂A)3.设有10件产品,其中6件正品,4件次品,从中任取3件,求下列事件的概率:1)只有一件次品; 2)最多1件次品; 3)至少1件次品.12C4C 解 1)设A表示只有一件次品,P(A)=36.C102)设B为最多1件次品,则表示所取到的产品中或者没有次品,或者只有一件次312C6C4C品,P(B)=3+36.C10C103)设C表示至少1件次品,它的对立事件为没有一件次品,3C6P(C)=1-P(C)=1-3C104.盒子里有10个球,分别标有从1到10的标号,任选3球,记录其号码.(1)求最小号码为5的概率.(2)求最大号码为5的概率.解1)若最小号码为5,则其余的2个球必从6,7,8,9,10号这5个球中取得。

概率论与数理统计第五章习题参考答案

概率论与数理统计第五章习题参考答案

F = S甲2 ~ F (4,4) S乙2

P⎪⎨⎧ ⎪⎩
S甲2 S乙2
<
F 1−
0.05
(4,4)
U
2
S甲2 S乙2
>
F0.05
2
(4,4)⎪⎬⎫ ⎪⎭
=
0.05
查表得: F0.05 (4,4) = 9.6,
2
F 1−
0.05
2
(4,4)
=
1 F0.025 (4,4)
=
0.1042

故拒绝域为 (0, 0.142) U (9.6, + ∞) .
54 67 68 78 70 66 67 70 65 69 问患者与正常人的脉搏有无显著差异(患者的脉搏可视为服从正态分布。α = 0.05 ) 解:设患者的脉搏为 X , 计算其样本均值与样本方差分别为 x = 67.4, s = 5.93
在检验水平α = 0.05 下,检验假设 H 0 : µ = µ0 = 72 H1 : µ ≠ µ0 = 72
问两台机器的加工精度是否有显著差异(α = 0.05 )?
解:在检验水平α = 0.05 下,检验假设 H 0 : µ1 = µ 2
H1 : µ1 ≠ µ2
因为
µ1,µ
2,σ
12,σ
2 2
均未知,且不知
σ
12与σ
2 2
是否相等,
故先检验假设 H 0′
:
σ
2 1
=
σ
2 2
,
H
1′
:
σ
2 1

σ
2 2

H1 : µ1 ≠ µ2
当假设 H 0 为真时,取检验统计量

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。

华理概率论习题5答案-2012



ac cov( X , Y ) ac DX DY
XY
4. 设两个随机变量 , , E 2, E 4, D 4, D 9, 0.5 ,求
E (3 2 2 2 3) 。

E (3 2 2 2 3) 3E ( 2 ) 2 E ( ) E ( 2 ) 3 =3 D ( E ) 2 2cov( , ) EE D ( E ) 2 3 68
=max( , ) 的分布函数 F ( z ) 等于
A. max{F ( z ), F ( z )} B. F ( z ) F ( z )
( B )
1 C. [ F ( z ) F ( z )] 2 二. 填空:
已知 ~ N (0 ,1) ,
1 3
D. F ( z ) F ( z ) F ( z ) F ( z )
B. 独立的充分条件,但不是必要条件 D. 不相关的充分条件,但不是必要条件 )
3.
对于任意两个随机变量 X 和 Y ,若 E ( XY ) E ( X ) E (Y ) ,则 (B A) D( XY ) D( X ) D(Y ) C) X 和 Y 独立
B) D( X Y ) D( X ) D(Y ) D) X 和 Y 不独立0.25 0.15
0.15 0.2 0.15
1.05 E 0 .5 E 0.25 E max( , ) _______, 1.2 E ______, ____, sin ( ) _______, 2
0.36 Dmax( , ) _______ 。
三. 计算题: 1. 已知二维随机变量 ( , ) 的联合概率分布为

(全)概率论与数理统计答案(东华大学出版)

第二章 离散型随机变量及其分布律第二节 一维离散型随机变量及其分布律习题Page 551、 一个口袋里有6只球,分别标有数字-3、-3、1、1、1、2,从中任取一个球,用ξ表示所得球上的数字,求ξ的分布律。

解答:因为ξ只能取-3、1、2,且分别有2、3、1个,所以ξ的分布律为:ξ-3 1 2 {}i P x ξ=2/63/61/62、 在200个元件中有30个次品,从中任意抽取10个进行检查,用ξ表示其中的次品数,问ξ的分布律是什么?解答:由于200个元件中有30个次品,只任意抽取10个检查,因此10个元件中的次品数可能为0、1、2到10个。

当次品数ξ为k 时,即有k 个次品时,则有10-k 个正品。

所以:ξ的分布律为:103017010200{},0,1,,10k k C C P k k C ξ-===。

3、 一个盒子中有m 个白球,n m -个黑球,不放回地连续随机地从中摸球,直到取到黑球才停止。

设此时取到的白球数为ξ,求ξ的分布律。

解答:因为只要取到黑球就停止,而白球数只有m 个,因此在取到黑球之前,所取到的白球数只可能为0m 中的任意一个自然数。

设在取到黑球时取到的白球数ξ等于k ,则第1k +次取到是黑球,以i A 表示第i 次取到的是白球;_i A 表示第i 次取到的是黑球。

则ξ的分布律为:__12112111{}()()(|)(|)11,0,1,,11k k k k P k P A A A A P A P A A P A A A m m m k n m k mn n n k n kξ++===--+-=⋅⋅⋅⋅=--+-。

4、 汽车沿街道行驶,要通过3个有红绿灯的路口,信号灯出现什么信号相互独立,且红绿灯显示时间相等。

以ξ表示该车首次遇到红灯前已通过的路口数,求ξ的分布律。

解答:因为只有3个路口,因此ξ只可能取0、1、2、3,其中{3}ξ=表示没有碰到红灯。

以i A 表示第i 个路口是红灯,因红绿灯显示时间相等,所以()1/2i P A =,又因信号灯出现什么信号相互独立,所以123,,A A A 相互独立。

东华理工大学概率论与数理统计练习册答案

第一章 概率论的基本概念一、选择题1.答案:(B ) 2. 答案:(B )解:AUB 表示A 与B 至少有一个发生,Ω-AB 表示A 与B 不能同时发生,因此(AUB)(Ω-AB)表示A 与B 恰有一个发生. 3.答案:(C )4. 答案:(C ) 注:C 成立的条件:A 与B 互不相容.5. 答案:(C ) 注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D ) 注:由C 得出A+B=Ω.7. 答案:(C )8. 答案:(D ) 注:选项B 由于11111()1()1()1()1(1())nnnnni i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C ) 注:古典概型中事件A 发生的概率为()()()N A P A N =Ω.10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A 的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365rr r rC r PP A ⋅==,故365()1365rrP P A =-.11.答案:(C ) 12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明A B C ⊂,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ⋃=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P A B P A B P A B P A B P B P B P B P B P A B P B P B P A P B P A B P B P B P A B P B P B P A P B P A B P B P B P A B P A B P B P B P A P B P B P B P A B P B -⋃+=+--+--+==-⇒-+--+=-⇒-+--+=2(())()()()P B P A B P A P B -⇒=故A 与B 独立. 14.答案:(A )解:由于事件A,B 是互不相容的,故()0P AB =,因此P(A|B)=()00()()P AB P B P B ==.15.答案:(D )解:用A 表示事件“密码最终能被译出”,由于只要至少有一人能译出密码,则密码最终能被译出,因此事件A 包含的情况有“恰有一人译出密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译出密码”,情况比较复杂,所以我们可以考虑A 的对立事件A “密码最终没能被译出”,事件A 只包含一种情况,即“四人都没有译出密码”,故111112()(1)(1)(1)(1)()543633P A P A =----=⇒=.16.答案:(B ) 解:所求的概率为()1()1()()()()()()()11111100444161638P A B C P A B C P A P B P C P AB P BC P AC P ABC =-⋃⋃=---+++-=---+++-=注:0()()0()0ABC AB P ABC P AB P ABC ⊂⇒≤≤=⇒=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++.二、填空题1.{(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)}2.;ABC ABC ABC ABC ABC 或AB BC AC 3.0.3,0.5解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.5.0.3解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=.7.7/12解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 8.1/4解:因为()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC =++---+ 由题设22()()(),()()()(),()()()()P A P B P C P AC P A P C P A P AB P A P B P A ======,2()()()(),()0P BC P B P C P A P ABC ===,因此有293()3()16P A P A =-,解得P (A )=3/4或P (A )=1/4,又题设P (A )<1/2,故P (A )=1/4. 9.1/6解:本题属抽签情况,每次抽到次品的概率相等,均为1/6,另外,用全概率公式也可求解. 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114⨯⨯⨯⨯⨯⨯=,故所求的概率为417!1260=.11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯.12.6/11解:设A={甲射击},B={乙射击},C={目标被击中}, 则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5, 故()()(|)0.50.66(|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯.三、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P .求A ,B ,C 至少有一个发生的概率。

(2021年整理)概率论与数理统计习题集及答案

概率论与数理统计习题集及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(概率论与数理统计习题集及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为概率论与数理统计习题集及答案的全部内容。

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 。

1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形。

样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数。

样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= 。

(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: 。

(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: 。

(5)A 、B 、C 中至少二个发生表示为: 。

(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 。

3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档