高考理综物理知识点总结考点复习电磁感应
高中物理:磁场 电磁感应知识点总结

高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。
2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。
3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。
此外,磁场还可以产生电能,为机器提供动力。
二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。
2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。
3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。
高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。
2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。
1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。
电磁感应、电磁场电磁波的知识点总结全

可编辑修改精选全文完整版高二物理电磁感应、电磁场电磁波的知识点总结2012.6一、产生感应电流的条件:1.磁通量发生变化(产生感应电动势的条件)2.闭合回路*引起磁通量变化的常见情况:(1)线圈中磁感应强度发生变化(2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动)(3)线圈在磁场中转动二、感应电流的方向判定:1.楞次定律:(适用磁通量发生变化)感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
关于“阻碍”的理解:(1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化;(3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。
2.右手定则:(适用导体切割磁感应线)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。
其中四指指向还可以理解为:感应电动势高电势处。
*应用楞次定律判断感应电流方向的具体步骤①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。
②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。
③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。
④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。
*楞次定律的拓展1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。
(增反减同)2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。
3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。
三、感应电动势的大小:1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
高中物理-电磁感应-知识点归纳

电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生原因闭合电路磁场B发生变化开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A中电流发生变化,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生变化2、产生感应电流的常见情况 .(1)线圈在磁场中转动。
(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。
(3)磁场强度B变化或有效面积S变化。
(比如有电流产生的磁场,电流大小变化或者开关断开)3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
(2)“阻碍”的含义.从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。
从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。
(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。
(4)“阻碍”的形式.1.阻碍原磁通量的变化,即“增反减同”。
2.阻碍相对运动,即“来拒去留”。
3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。
物理高考复习电磁感应与电磁波知识点梳理

物理高考复习电磁感应与电磁波知识点梳理物理高考复习:电磁感应与电磁波知识点梳理电磁感应和电磁波是物理领域中的重要内容,也是高考中常考的重点知识。
掌握了这些知识点,不仅能够解答相关考题,还能够扩展对电磁学的理解。
本文将从电磁感应和电磁波两个方面,对高考复习的知识点进行梳理。
一、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律描述了通过导体回路的磁通量的变化所产生的感应电动势。
该定律可以用以下公式表示:ε = -ΔΦ/Δt其中,ε表示感应电动势,ΔΦ表示磁通量的变化量,Δt表示时间的变化量。
根据该定律,可以解释感应电动势的产生原理。
2. 感应电流与磁场当导体回路中的感应电动势存在时,会产生感应电流。
感应电流的大小与感应电动势、导体的电阻等因素有关。
此外,感应电流所产生的磁场方向也可以通过右手定则来确定。
3. 感应电流的应用感应电流具有一系列重要应用,例如:电磁感应加热、感应电动机、变压器等。
这些应用既有理论意义,也有实际应用价值,值得深入研究。
二、电磁波1. 电磁波的特点电磁波是由振荡的电场和磁场相互作用而形成的,具有一系列特点,包括:传播速度恒定、波长与频率之间的关系、能量的传播等。
了解这些特点对于理解电磁波的本质非常重要。
2. 电磁波谱电磁波谱将电磁波按照频率或波长的不同进行分类,包括射电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
不同波段的电磁波具有不同的应用和特性,例如,微波可以应用于通信和烹饪,紫外线可以杀灭细菌等。
3. 光的干涉和衍射光的干涉和衍射是光的波动性质的重要体现,通过干涉和衍射实验可以验证光是一种波动现象。
例如,杨氏双缝干涉实验和菲涅尔衍射实验都是经典的光的干涉和衍射实验。
4. 照相机与人眼成像原理的比较照相机和人眼都能够实现成像,但成像原理存在一些差异。
照相机利用透镜组将光线聚焦在感光材料上,而人眼通过眼睛中的晶状体和视网膜实现成像。
理解这些成像原理对于解析光的传播具有重要意义。
高考物理中电磁感应的考点和解题技巧有哪些

高考物理中电磁感应的考点和解题技巧有哪些在高考物理中,电磁感应是一个重要且具有一定难度的考点。
理解和掌握电磁感应的相关知识,以及熟练运用解题技巧,对于在高考中取得优异成绩至关重要。
一、电磁感应的考点1、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心内容之一。
其表达式为:$E = n\frac{\Delta \Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta \Phi$ 表示磁通量的变化量,$\Delta t$ 表示变化所用的时间。
这个考点通常会要求我们计算感应电动势的大小,或者根据给定的条件判断感应电动势的变化情况。
2、楞次定律楞次定律用于判断感应电流的方向。
其核心思想是:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
这一定律在解决电磁感应中的电流方向问题时经常用到,需要我们能够准确理解并运用“阻碍”这一概念。
3、电磁感应中的电路问题当导体在磁场中做切割磁感线运动或者磁通量发生变化时,会产生感应电动势,从而形成闭合回路中的电流。
在这类问题中,我们需要根据电路的基本规律,如欧姆定律、串并联电路的特点等,来计算电路中的电流、电压、电阻等物理量。
4、电磁感应中的能量转化问题电磁感应现象中,机械能与电能相互转化。
例如,导体棒在磁场中运动时,克服安培力做功,将机械能转化为电能;而电流通过电阻时,电能又转化为内能。
在解题时,需要运用能量守恒定律来分析能量的转化和守恒关系。
5、电磁感应与力学的综合问题这类问题通常将电磁感应现象与力学中的牛顿运动定律、功和能等知识结合起来。
例如,导体棒在磁场中受到安培力的作用,其运动情况会受到影响,我们需要综合运用电磁学和力学的知识来求解。
6、电磁感应中的图像问题包括磁感应强度$B$、磁通量$\Phi$、感应电动势$E$、感应电流$I$ 等随时间或位移变化的图像。
要求我们能够根据给定的物理过程,准确地画出相应的图像,或者从给定的图像中获取有用的信息,分析物理过程。
高三物理第六章知识点梳理
高三物理第六章知识点梳理高三物理的最重要的内容之一就是电磁学。
其中第六章是一项关于电磁现象的研究。
本章主要包括了三大部分,分别是电磁感应、电磁波和电磁场。
下面我们来详细梳理这些知识点。
一、电磁感应电磁感应是电磁学中的基础知识之一。
通过导体中的电荷运动形成的磁场的变化引起导体中感应电动势的现象称为电磁感应。
常用的电磁感应规律有法拉第电磁感应定律和楞次定律。
根据法拉第电磁感应定律,当磁通量的变化率产生感应电动势时,感应电动势的方向和变化率与磁通量的变化率有关。
而楞次定律则说明在感应电流中,电流方向所产生的磁场的反方向,使得磁场的变化的总效果是阻碍磁通量的变化。
二、电磁波电磁波是一种能量通过电磁场传播的现象。
电磁波可以分为有线电波和无线电波两类。
有线电波是通过导线传播的电流产生的,而无线电波则是通过电磁振荡产生的。
电磁波的传播速度等于光速,即299792458米/秒。
电磁波具有一系列特征:1. 电磁波是横波,传播方向和电磁波的振动方向垂直。
2. 电磁波在真空中的传播速度为光速,而在介质中则会改变。
3. 电磁波具有电场和磁场的相互作用,两者的振动方向垂直且相互垂直。
三、电磁场电磁场是电荷和电流产生的电场和磁场相互作用的结果。
电磁场可以分为静电场和恒定磁场。
静电场是指没有电流存在时的电场,根据库仑定律可知,两个电荷之间的电力与它们之间的距离的平方成反比。
而恒定磁场则是指没有电荷运动时的磁场,根据安培定律可知,磁场的强度与电流成正比,并且与电流所形成的回环的半径成反比。
在电磁场中,电磁波的产生和传播是通过电荷和电流的相互作用实现的。
电子的运动会产生磁场,而变化的磁场又会感应出电场。
因此,电磁场是电荷和电流之间相互作用的结果。
综上所述,高三物理第六章主要涵盖了电磁感应、电磁波和电磁场三个方面的知识点。
电磁感应是指通过导体中的电荷运动形成的磁场的变化引起感应电动势的现象。
电磁波是一种能量通过电磁场传播的现象,其特点包括横波、光速传播等。
高考物理电磁知识点
高考物理电磁知识点电磁现象是物理学中的重要内容,也是高考物理考试中不可忽视的部分。
本文将为大家介绍高考物理中的一些重要电磁知识点。
一、电磁感应电磁感应是指通过磁场对电流产生作用力,或通过电流对磁场产生作用力的现象。
电磁感应的实验中,常使用电磁铁和螺线管。
1. 法拉第电磁感应定律:当导体相对于磁场运动或磁场相对于导体变化时,导体中就会感应出电动势。
2. 感应电流的方向:根据楞次定律,感应电流的方向总是使得其磁场与导体感应磁场相互作用而阻碍运动。
3. 感应电流的大小:感应电流的大小与磁场的变化率成正比,在导体闭合回路中的电流大小与回路面积、磁场强度和运动速度有关。
二、电磁波电磁波是由电场和磁场相互作用而产生的一种波动现象,是高考物理中的重要内容。
1. 电磁波的基本特性:电磁波是以光速传播的横波,具有电场和磁场的振动。
2. 电磁波的分类:电磁波按照波长从小到大的顺序可分为射线、紫外线、可见光、红外线、微波和无线电波等。
3. 电磁波的传播与吸收:电磁波能够在真空中传播,其能量主要来自于振荡的电场和磁场。
不同物质对电磁波有各自的吸收特性。
三、电磁场电磁场是指由电荷和电流所产生的电场和磁场的空间分布。
了解电磁场对高考物理的学习和应用有着重要的意义。
1. 电场的基本性质:电场是由电荷产生的,具有方向和大小。
电场的强度用电场强度来描述,可以通过库仑定律计算。
2. 磁场的基本性质:磁场是由电流产生的,具有方向和大小。
磁场的强度用磁感应强度来描述,可以通过安培环路定律计算。
3. 电磁场的相互作用:电场和磁场之间通过洛伦兹力相互作用,影响着物体的运动轨迹和能量转化。
四、电磁感应与电磁场的应用电磁感应和电磁场在现实生活中有着广泛的应用,也是高考物理考试的重点。
1. 电磁感应的应用:感应电流的产生为发电机和变压器等电器的工作原理提供了基础。
同时,感应电磁力还被应用于电动机和电磁铁等装置中。
2. 电磁场的应用:电磁场的应用涉及到电磁波的传播和电磁辐射的效应。
高考物理电磁感应知识点解析
高考物理电磁感应知识点解析在高考物理中,电磁感应是一个重要且具有一定难度的知识点。
理解和掌握电磁感应相关的概念、规律以及应用,对于在高考中取得理想的物理成绩至关重要。
电磁感应现象是指闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流的现象。
这是法拉第经过多年的实验和研究得出的重要结论。
要深入理解电磁感应,首先得明白磁通量这个概念。
磁通量可以简单理解为穿过某一面积的磁感线的条数。
当通过闭合回路的磁通量发生变化时,就会产生感应电动势。
如果回路是闭合的,那么就会产生感应电流。
产生电磁感应的条件有两个:一是电路必须闭合;二是穿过闭合电路的磁通量发生变化。
这两个条件缺一不可。
楞次定律是判断感应电流方向的重要规律。
它指出:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
简单来说,就是“来拒去留,增反减同”。
例如,当一个磁铁靠近闭合回路时,回路会产生一个感应电流,这个感应电流产生的磁场会阻碍磁铁的靠近;当磁铁远离回路时,感应电流产生的磁场会阻碍磁铁的远离。
法拉第电磁感应定律则定量地描述了感应电动势的大小。
感应电动势的大小与穿过电路的磁通量的变化率成正比。
公式为E=nΔΦ/Δt,其中 E 表示感应电动势,n 表示线圈匝数,ΔΦ 表示磁通量的变化量,Δt表示变化所用的时间。
在实际问题中,常常会遇到导体棒在磁场中切割磁感线运动的情况。
对于这种情况,我们可以使用 E=BLv 来计算感应电动势,其中 B 是磁感应强度,L 是导体棒在垂直于磁场方向上的有效长度,v 是导体棒切割磁感线的速度。
电磁感应在生活中有很多应用。
比如发电机,就是利用电磁感应原理将机械能转化为电能。
当外力推动发电机的转子在磁场中旋转时,线圈中的磁通量发生变化,从而产生感应电流。
变压器也是基于电磁感应原理工作的。
通过改变原、副线圈的匝数比,可以实现电压的升高或降低。
在远距离输电中,变压器起着重要的作用,它可以将发电厂发出的高电压降低到适合传输的电压,然后在用户端再将电压升高到适合使用的电压。
高中物理电磁感应知识点总结
高中物理电磁感应知识点总结电磁感应是电磁学的一个重要分支,主要探讨电磁场变化与导体中电动势的关系。
下面是对高中物理电磁感应的一些知识点总结:1. 法拉第电磁感应定律:当导体穿过磁场或磁场变化时,导体两端会产生电动势以及相应的电流。
电动势的大小与导体长度、磁场变化率和导体与磁场的相对运动速度有关。
2. 感应电流的方向:由法拉第电磁感应定律可以得知,产生的感应电流会使得磁场的变化减小。
根据楞次定律,产生的感应电流的方向会使得产生它的原因减弱。
因此,感应电流的方向与导体运动方向或者磁场变化方向相反。
3. 负载的作用:当导体产生感应电流时,如果导体是一个闭合回路,那么这个回路就形成了一个电路。
感应电流会在电路中产生电阻,导致电路中的电流和电压发生变化。
4. 磁场方向与感应电流方向的关系:通过电磁感应实验可以得知,当磁场垂直于导体运动方向时,感应电流的方向与导体的运动方向无关。
但是,当磁场与导体运动方向成一定角度时,感应电流的方向会受到磁场和导体运动方向的影响。
5. 感应电流的大小:根据法拉第电磁感应定律,感应电流的大小与导体的速度、导体的长度和磁场的磁感应强度有关。
一般情况下,感应电流的大小与以上因素成正比。
6. 电磁感应的应用:电磁感应在生活中有很多应用,例如电磁感应加热、发电机和变压器。
电磁感应加热是利用感应电流产生的热量来加热物体。
发电机是通过转动导体在磁场中产生感应电流从而转化为电能。
变压器则利用感应电流的相互感应来实现电能的输送和变换。
7. 涡流:当导体中的磁场发生变化时,会在导体中产生一个磁场。
由于涡流的存在,导体中的电荷会发生运动,从而形成一个感应电流。
8. 感应电磁场:当电流通过一根导线时,会在周围形成一个环状磁场。
同样,当磁场变化时,也会在周围形成一个感应电磁场。
感应电磁场与磁场的变化率有关,可以通过安培环路定理进行计算。
9. 洛伦兹力:当导体中的电流与磁场相互作用时,会在导体上产生洛伦兹力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考理综物理知识点总结考点复习电磁感应1.(15江苏卷)某同学探究小磁铁在铜管中下落时受电磁阻尼作用的运动规律,实验装置如题11-1图所示,打点计时器的电源为50Hz的交流电(1)下列实验操作中,不正确的有________A.将铜管竖直地固定在限位孔的正下方B.纸带穿过限位孔,压在复写纸下面C.用手捏紧磁铁保持静止,然后轻轻地松开让磁铁下落D.在磁铁下落的同时接通打点计时器的电源(2)该同学按照正确的步骤进行试验(记为“实验①”),将磁铁从管口处释放,打出一条纸带,取开始下落的一段,确定一合适的点为O点,每隔一个计时点取一个计数点,标为1、2、3…….8,用刻度尺量出各计数点的相邻计时点到O点的距离,记录在纸带上,如题11-2图所示计算相邻计时点间的平均速度v,粗略地表示各计数点的速度,抄入下表,请将表中的数据补充完整(3)分析上表的实验数据可知:在这段纸带记录的时间内,磁铁运动速度的变化情况是________;磁铁受到阻尼作用的变化情况是____________.(4)该同学将装置中的铜管更换为相同尺寸的塑料管,重复上述实验操作(记为实验②),结果表明磁铁下落的运动规律与自由落体运动规律几乎相同,请问实验②是为了说明说明?对比实验①和②的结果得到什么结论?答案:(1)CD(2)39.0(3)逐渐增大到39.8 cm/ s 逐渐增大到等于重力(4)为了说明磁铁在塑料管中几乎不受阻尼作用,磁铁在铜管中受到的阻尼作用主要是电磁阻尼作用. 解析:根据速度T s s v n n n 211-+-=计算速度. 2.(15北京卷)如图所示,足够长的平行光滑金属导轨水平放置,宽度 L = 0.4 m ,一端连接 R=1 Ω 的电阻,导轨所在的空间存在竖直向下的匀强磁场, 磁感应强度B = 1 T , 导体棒 MN 放在导轨上, 其长度恰好等于导轨间距,与导轨接触良好.导轨和导体棒的电阻均可忽略不计.在平行于导轨的拉力 F 作用下,导体棒沿导轨向右匀速运动,速度 v = 5 m/s ,求:( 1 ) 感应电动势 E 和感应电流 I ;( 2 ) 在 0.1 s 时间内,拉力的冲量的大小;( 3 ) 若将 MN 换为电阻为 r = 1Ω的导体棒,其它条件不变,求导体棒两端的电压 U.解析:(1)根据动生电动势公式得E=BLv = 1T ×0.4m ×5m /s =2.0 V ①故感应电流I=A 0.21v 0.2R E =Ω= ②(2)金属棒匀速运动过程中,所受的安培力大小为F 安= BIL =0.8N, 因为是匀速直线运动,所以导体棒所受拉力F = F 安 = 0.8N ③所以拉力的冲量 IF =F t=0.8 N × 0.1 s=0.08 S N • ④导体棒两端电压U=V0.1r R RE =+ ⑤3.(15海南卷)如图,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v 沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小ε,将此棒弯成两段长度相等且相互垂直的折弯,置于磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v 运动时,棒两端的感应电动势大小为,则等于( )A.1/2B.C.1D.答案:B解析:设折弯前导体切割磁感线的长度为,折弯后,导体切割磁场的有效长度为,故产生的感应电动势为,所以,B正确;4.(15海南卷)如图,两平行金属导轨位于同一水平面上,相距,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下.一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速度匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好.已知导体棒与导轨间的动摩擦因数为,重力加速度大小为g,导轨和导体棒的电阻均可忽略.求(1)电阻R消耗的功率;(2)水平外力的大小.解析:(1)导体切割磁感线运动产生的电动势为,根据欧姆定律,闭合回路中的感应电流为电阻R消耗的功率为,联立可得(2)对导体棒受力分析,受到向左的安培力和向左的摩擦力,向右的外力,三力平衡,故有,,故5.(15四川卷)18分)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触.不计所有导轨和ab 棒的电阻,ef 棒的阻值为R ,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g .(1)若磁感应强度大小为B ,给ab 棒一个垂直于NQ 、水平向右的速度v 1,在水平导轨上沿运动方向滑行一段距离后停止,ef 棒始终静止,求此过程ef 棒上产生的热量;(2)在(1)问过程中,ab 棒滑行距离为d ,求通过ab 棒某横截面的电量;(3)若ab 棒以垂直于NQ 的速度v 2在水平导轨上向右匀速运动,并在NQ 位置时取走小立柱1和2,且运动过程中ef 棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab 棒运动的最大距离.解析:(1)由于ab 棒做切割磁感线运动,回路中产出感应电流,感应电流流经电阻R 和ef棒时,电流做功,产生焦耳热,根据功能关系及能的转化与守恒有:=Q R +Q ef①根据并联电路特点和焦耳定律Q =I 2Rt 可知,电阻R 和ef 棒中产生的焦耳热相等,即Q R =Q ef ②由①②式联立解得ef 棒上产生的热量为:Q ef =(2)设在ab 棒滑行距离为d 时所用时间为t ,其示意图如下图所示:该过程中回路变化的面积为:ΔS =[L +(L -2d cot θ)]d ③根据法拉第电磁感应定律可知,在该过程中,回路中的平均感应电动势为:= ④2121mv 2141mv 21E t S B Δ根据闭合电路欧姆定律可知,流经ab 棒平均电流为:= ⑤ 根据电流的定义式可知,在该过程中,流经ab 棒某横截面的电量为:q = ⑥由③④⑤⑥式联立解得:q = ⑶由法拉第电磁感应定律可知,当ab 棒滑行x 距离时,回路中的感应电动势为: e =B (L -2x cot θ)v 2 ⑦根据闭合电路欧姆定律可知,流经ef 棒的电流为:i = ⑧ 根据安培力大小计算公式可知,ef 棒所受安培力为:F =iLB ⑨由⑦⑧⑨式联立解得:F = ⑩ 由⑩式可知,当x =0且B 取最大值,即B =B m 时,F 有最大值F m ,ef 棒受力示意图如下图所示:根据共点力平衡条件可知,在沿导轨方向上有:F m cos α=mg sin α+f m ⑪ 在垂直于导轨方向上有:F N =mg cos α+F m sin α ⑫ 根据滑动摩擦定律和题设条件有:f m =μF N ⑬ 由⑩⑪⑫⑬式联立解得:B m= 显然此时,磁感应强度的方向竖直向上或竖直向下均可由⑩式可知,当B =B m 时,F 随x 的增大而减小,即当F 最小为F min 时,x 有最大值为x m ,此时ef 棒受力示意图如下图所示:I 2/R E t I ⋅Rθd L Bd )cot (2-Re )cot 2(22θx L RLv B -2)sin (cos )cos (sin 1v αμααμαmgR L -+× × × × × × × × ×× × × × × × × × ×× × × × × × × × ×× × × × × v θ c da bM N l 根据共点力平衡条件可知,在沿导轨方向上有:F min cos α+f m =mg sin α ⑭ 在垂直于导轨方向上有:F N =mg cos α+F min sin α ⑮ 由⑩⑬⑭⑮式联立解得:x m = 6.(15安徽卷)如图所示,abcd为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则A .电路中感应电动势的大小为θsin Blv B .电路中感应电流的大小为r θsin Bv C .金属杆所受安培力的大小为rθsin lv B 2 D .金属杆的发热功率为θsin r lv B 22 答案:B 解析:金属棒的有效切割长度为l ,电路中感应电动势的大小E Blv =,选项A 错误;金属棒的电阻sin rl R θ=,根据欧姆定律电路中感应电流的大小sin E Bv I R rθ==,选项B 正确;金属杆所受安培力的大小2sin l B lv F BI rθ==,选项C 错误;根据焦耳定律,金属杆的发热功率为222sin B lv P I R r θ==,选项D 错误.答案为B . 7.(15重庆卷)题4图为无线充电技术中使用的受电线圈示意图,线圈匝数为,面积为.若在到时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由均匀增加到,则该段时间线圈两端a 和b 之间的电势差A.恒为B. 从0均匀变化到 μααμθL μ++cos sin )1(tan 2n S 1t 2t 1B 2B a b ϕϕ-2121()nS B B t t --2121()nS B B t t --C.恒为D.从0均匀变化到 答案:C 解析:穿过线圈的磁场均匀增加,将产生大小恒定的感生电动势,由法拉第电磁感应定律得2121()S B B E n n t t t ϕ-∆==∆-,而等效电源内部的电流由楞次定理知从a b →,即b 点是等效电源的正极,即2121()a b S B B nt t ϕϕ--=--,故选C.7.(2015·全国新课标Ⅱ)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是A .U a > U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a -b -c -aC .U bc =-1/2Bl ²ω,金属框中无电流D .U bc =1/2Bl ²w ,金属框中电流方向沿a -c-b -a答案:C解析:当金属框绕ab 边以角速度ω逆时针转动时,穿过直角三角形金属框abc 的磁通量恒为0,所以没有感应电流,由右手定则可知,c 点电势高,ω221Bl U bc -=,故C 正确,A 、B 、D 错误.8、(2015·全国新课标Ⅰ)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是2121()nS B B t t ---2121()nS B B t t ---A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动答案:AB解析:圆盘运动过程中,半径方向的金属条在切割磁感线,在圆心和边缘之间产生了感应电动势,选项A对,圆盘在径向的辐条切割磁感线过程中,内部距离圆心远近不同的点电势不等而形成涡流产生,选项B对.圆盘转动过程中,圆盘位置,圆盘面积和磁场都没有发生变化,所以没有磁通量的变化,选项C错.圆盘本身呈现电中性,不会产生环形电流,选项D 错.。