变压器的励磁涌流产生原因及特点
变压器励磁涌流特点

变压器励磁涌流特点
1、变压器励磁涌流特点
变压器励磁涌流是由励磁电流形成的瞬变涌流。
励磁电流存在着不同的特点,它们是以下几个特点:
(1)由于励磁电路存在串联电容,因此励磁涌流有一定的泄放时间,其衰减趋势也是呈现按照一定的程度逐次下降;
(2)励磁涌流在变压器共模绕组中产生,通常由六角座绕组被激励,其电流的方向满足相同的环状空气间隙构建起电磁耦合的要求;(3)励磁电流除了由于变压器内各电路的阻抗变大而衰减衰减外,还会受到电磁耦合的影响,这种影响也是励磁涌流衰减的主要原因;(4)在正常情况下,励磁涌流在一个循环中会保持一定水平,但在空载情况下,磁通容量小,励磁电流也比较低,励磁涌流也会呈现较弱的特征。
2、变压器励磁涌流衰减原因
(1)电容型变压器的空载损耗可以引起励磁涌流的衰减;
(2)励磁涌流的衰减会受到电路构建导线的影响,导线的长度及直径会影响励磁电流的衰减;
(3)变压器的内部泄漏电感会影响励磁电流的衰减;
(4)由于磁通容量小,当变压器处于空载状态时,也会影响励磁涌流的衰减。
3、变压器励磁涌流影响因素
(1)电磁耦合:电磁耦合是指在变压器内部存在互相耦合的电感和电容,从励磁电路的发挥效果来看,改变了励磁电流的波形特征,也会影响励磁涌流的衰减趋势;
(2)环空间:变压器内部的空气间隙设计有较大的影响,会影响变压器内部磁场的分布情况;
(3)磁通容量:磁通容量会影响变压器内部磁场能量变换的情况,变压器的磁通容量越大,励磁涌流就会越强;
(4)变压器损耗:变压器的空载损耗和负载损耗会影响励磁涌流的特性,变压器损耗越低,励磁涌流的衰减情况就越好。
变压器励磁涌流产生机理及抑制措施

变压器励磁涌流产生机理及抑制措施变压器是电力系统中不可或缺的电气设备,用于提高或降低交流电压。
然而,在变压器的日常运行中,会产生一种特殊的电流——励磁涌流。
励磁涌流的产生原因、影响及抑制措施,一直是电气领域研究的焦点问题之一。
一、变压器励磁涌流的产生机理变压器励磁涌流是由于变压器在没有负载的情况下,一侧电源给定电压后,产生的瞬时电流波动引起的。
其产生的原因主要有两个方面。
1. 变压器自身磁化特性变压器是由铁芯、线圈等部件组成的,当交流电源施加在一侧线圈上时,铁芯上会产生一个磁通量,使得另一侧线圈中也会产生一定的电势。
在低频条件下,变压器的铁芯上的磁场在每个电源周期内都会发生磁化与去磁化过程,即由于铁芯饱和,磁通量无法瞬间变化,从而在每个周期内形成一个磁滞回线。
当电源供给的电压陡然由0V变化到正常值时,铁芯中的磁场并不会即刻达到稳态,从而导致瞬间电流的波动,造成产生励磁涌流。
2. 电源特性影响电源的内阻、电源的输出电压质量均会影响励磁涌流的产生。
电源内阻较大时,输出电压下降幅度较大,对于变压器来说,电流的波动幅度会更大。
同时,电源产生电压的质量也会影响励磁涌流,例如,电源输出电压存在10%、20%的谐波成分时,变压器励磁涌流的幅值会更大。
二、励磁涌流的影响变压器励磁涌流产生后,将会对变压器和电力系统的安全及稳定性产生影响。
1. 变压器内部温度升高励磁涌流的产生将会引起变压器内部电阻损耗增加,从而导致变压器温度升高。
严重情况下,会导致变压器绝缘材料老化、泄漏及烧毁等事故发生。
2. 电力系统不稳定励磁涌流的存在会造成系统电压波动,电力系统的稳定性得不到保障,从而会降低其工作效率,甚至带来负面的经济损失。
三、励磁涌流的抑制措施为了避免励磁涌流带来的安全隐患及电力系统的不稳定性,有一些抑制措施可以采取。
1. 增加阻抗变压器防励磁涌流的一种常用方法是在变压器的一侧或两侧增加阻抗,这样可以限制励磁涌流的幅值并且控制其衰减时间。
简述单相变压器励磁涌流的特点

简述单相变压器励磁涌流的特点【简述单相变压器励磁涌流的特点】一、什么是励磁涌流励磁涌流是指在单相变压器的磁路中,由于磁感应强度的变化引起的电流大幅度波动现象。
二、励磁涌流的形成原因1. 变压器的磁路由于剩磁导致的非线性特性是形成励磁涌流的主要原因。
在变压器剩磁的基础上,励磁电流的变化引起磁感应强度的变化,从而引起励磁涌流。
2. 变压器的饱和特性也是引起励磁涌流的原因之一。
当励磁电流较小时,磁感应强度与励磁电流成线性关系,但当励磁电流超过一定值时,磁感应强度将达到饱和状态,导致励磁电流的变化引起磁感应强度的变化,从而引起励磁涌流。
三、励磁涌流的特点1. 阻抗变化:励磁涌流会引起变压器磁路的阻抗变化。
当励磁电流较小时,变压器磁路的阻抗较小,而当励磁电流超过一定值后,磁路的饱和导致励磁涌流的出现,使得磁路的阻抗增大。
这种阻抗变化导致励磁涌流对电源的电压产生影响,可能引起电源电压的波动。
2. 涌流幅度大:励磁涌流的幅度较大,一般在2-10倍额定电流之间。
这种大幅度的涌流对变压器的磁路、绕组和绝缘材料产生冲击,可能引起磁路的麻麻、绕组的焦耳损耗、绝缘材料的老化和损坏。
3. 最大值出现滞后:在变压器刚刚通电时,由于初始状况下没有磁通存在,变压器的励磁电流为零。
而在短时间内,励磁电流会迅速升高,当达到稳定状态后维持在一定数值。
这种励磁电流的最大值出现在刚通电后的一段时间内,而且最大值的出现会和电源电压的正弦波形相位有一定的滞后。
4. 高频成分:由于励磁电流的波动频率一般与电源电压的频率相等或相近,励磁涌流中存在着一定的高频成分。
这些高频成分可能对变压器和周围的其他设备造成干扰,并引起谐波污染。
四、励磁涌流的影响励磁涌流对变压器及其周围设备的影响主要体现在以下几个方面:1. 变压器工作温升的升高:励磁涌流会导致变压器的磁路产生冲击,加剧了铁芯中的焦耳损耗,从而使变压器的工作温升更高。
2. 谐波产生:励磁涌流中存在一定的高频成分,这些高频成分会引起变压器的谐波污染,对变压器及其周围其他设备的正常运行产生干扰。
各类变压器励磁涌流的特征

各类变压器励磁涌流的特征电力变压器励磁涌流电力变压器励磁涌流是变压器通电时,铁芯中发生磁通变化而产生的瞬时电流。
其特征受变压器类型、容量和连接方式等因素的影响。
双绕组变压器空载绕组励磁涌流:变压器空载通电时,电感性电流急剧增加,形成励磁涌流。
其波形为衰减振荡波,持续时间较短。
负荷绕组励磁涌流:变压器负荷通电时,由于负载侧电流急剧变化,原边绕组也会产生励磁涌流,但幅值小于空载励磁涌流。
三绕组变压器主绕组励磁涌流:与双绕组变压器空载励磁涌流类似,但由于多了一个绕组,涌流幅值和持续时间可能更长。
调节绕组励磁涌流:变压器调节绕组通电时,会产生较小的励磁涌流,幅值和持续时间远低于主绕组励磁涌流。
自耦变压器自耦变压器励磁涌流:自耦变压器的励磁涌流特征比较特殊,由于存在磁耦合,励磁涌流幅值会随耦合系数变化而变化。
相移变压器相移变压器励磁涌流:相移变压器励磁涌流的波形与普通变压器不同,由于变压器内存在励磁电流相移,导致励磁涌流具有不对称波形。
励磁涌流的的影响断路器跳闸:励磁涌流过大时,会引起断路器误动作,导致变压器断电。
绝缘损坏:励磁涌流产生的过电压会损坏变压器绝缘,导致短路或失效。
设备损坏:励磁涌流通过其他设备时,可能造成设备损坏或影响运行稳定性。
励磁涌流的抑制涌流限制电阻器:在变压器原边绕组串联涌流限制电阻器,限制励磁涌流的幅值。
电抗器:在变压器原边绕组串联电抗器,增加电路感抗,抑制励磁涌流的上升速度。
预磁合:变压器通电前,对铁芯进行预磁合,使铁芯处于非饱和状态,降低励磁涌流的幅值。
Y-△起动:对于三绕组变压器,采用Y-△起动方式,降低励磁涌流的冲击性。
理解和控制励磁涌流对于确保变压器和电力系统的安全稳定运行至关重要。
通过合理的选择和采取适当的抑制措施,可以有效减轻励磁涌流的影响,确保变压器安全可靠地运行。
三相变压器励磁涌流的特点

三相变压器励磁涌流的特点三相变压器励磁涌流是指在三相变压器中,当变压器初级侧接入电源后,由于变压器铁心的磁导率非线性特性以及变压器的感应电动势,会产生一个瞬时的大电流,这就是励磁涌流。
励磁涌流的特点主要包括以下几个方面。
励磁涌流是瞬时性的。
励磁涌流的产生是因为变压器铁心的磁导率非线性特性,当电源接入变压器初级侧时,铁心磁导率会突然增大,从而导致磁通突然增大,感应电动势也会突然增大,进而产生瞬时的大电流。
这个瞬时的大电流只会在接通电源的瞬间出现,随后会逐渐减小,最终趋于稳定。
励磁涌流的幅值较大。
励磁涌流的幅值通常是变压器额定电流的几倍甚至几十倍。
这是因为励磁涌流是由于铁心的磁导率非线性特性引起的,当铁心磁导率突然增大时,感应电动势也会突然增大,从而导致励磁涌流的幅值较大。
励磁涌流具有波动性。
励磁涌流的波动性主要是由于电源的交流特性以及变压器的感应电动势引起的。
由于电源的交流特性,电源电压会不断变化,从而导致感应电动势也会不断变化,进而引起励磁涌流的波动。
励磁涌流的持续时间较短。
励磁涌流只会在接通电源的瞬间出现,随后会逐渐减小并趋于稳定。
一般情况下,励磁涌流的持续时间在毫秒量级,非常短暂。
励磁涌流会对电力系统产生一定的影响。
由于励磁涌流的幅值较大,会导致电流突变,进而引起电压的波动。
这种电压波动可能会对电力系统的稳定性和设备的正常运行产生一定的影响。
三相变压器励磁涌流的特点主要包括瞬时性、幅值较大、波动性、持续时间较短和对电力系统的影响。
了解和掌握励磁涌流的特点对于合理设计和运行电力系统中的三相变压器具有重要的意义。
通过合理的控制和抑制励磁涌流,可以提高变压器的运行效率和稳定性,保证电力系统的正常运行。
变压器励磁涌流产生的原因及特点

1)幅值大且衰减,含有非周期分量电流,且只流过变压器差动保护的一侧;
2)波形呈间断特性;
3)含有大量的偶次谐波分量,其中以2次谐波为主。
变压器励磁涌流:变压器全电压充电时,在其绕组中产生的暂态电流。
产生的原因是:变压器投入前铁芯中的剩余磁通与变压器投入时工作电压产生的磁通方向相同时,其总磁通量远远超过铁芯的饱和磁通量,因此产生较大的涌流,其中最大峰值可达到变压器额定电流的6-8倍。
励磁涌流是由于变压器铁芯磁通饱和所引起的冲击电流,其大小与变压器等值阻抗、合闸初相角、剩磁大小、绕组接线方式、铁芯结构及材质等因素有关。
在变压器的铁芯磁通未饱和时,励磁绕组电感很大,励磁电流很小甚至可忽略不计;而当变压器空载投入和外部故障切除后电压恢复时,由于磁链不能突变,会产生自由直流分量,经过一段时间后变压器铁芯磁通饱和,变压器励磁绕组电感降低,将出现数值很大的励磁电流,也就是我们所说的励磁涌流。
励磁涌流的波形分为两种:一种是偏向时间轴一侧的单向励磁涌流
变压器励磁涌流原理

变压器励磁涌流原理
变压器励磁涌流是指在刚开始接通变压器时,由于电感元件励磁过程中磁感应强度逐渐增大的关系,导致变压器中的电流迅速增加,形成一个短暂的高峰电流。
励磁涌流的主要原因有以下几点:
1. 电感元件的电流变化滞后于电压变化。
由于电感元件的特性,当电压突然改变时,电感元件中的电流并不会立即改变,而是需要一定的时间来达到稳态。
在这个过程中,电流会迅速增加,导致励磁涌流。
2. 初级绕组和次级绕组之间的电容效应。
变压器的初级绕组和次级绕组之间会存在一定的电容效应。
当变压器接通时,由于电容的充电过程,会导致涌流的产生。
3. 磁芯饱和和磁滞。
在刚开始接通变压器时,由于磁感应强度逐渐增大,磁芯中会出现饱和和磁滞现象。
这些现象会导致磁路中的电流迅速变大,从而产生涌流。
励磁涌流对变压器和电网造成的影响主要有以下几点:
1. 过大的励磁涌流会导致变压器绕组和瓷套的过热,甚至引发绝缘击穿,导致设备损坏。
2. 励磁涌流还会对电网造成短暂的过电压,对其他设备和线路造成影响。
为了减小励磁涌流的影响,可以采取以下措施:
1. 使用励磁变压器。
励磁变压器是在主变压器旁边并列连接一个励磁变压器,通过调节励磁变压器的励磁电流来抑制励磁涌流。
2. 采用软起动方式。
通过逐步升高初始电压,使得励磁涌流逐步增加,避免突然产生过大的涌流。
3. 提前预热变压器。
在正式接入电网之前,可以对变压器进行预热,使其达到临界电压之后再投入运行,从而减小励磁涌流的影响。
变压器励磁涌流原理

变压器励磁涌流原理变压器励磁涌流的产生是由于变压器的铁心在初次通电时,由于铁心上残余磁场的存在,电磁感应作用产生一个瞬时电势,导致励磁电流瞬时增大。
另外,变压器柔性铁芯中的有机冷却剂(如油)的热膨胀现象,也会引起涌流的产生。
通常情况下,励磁涌流的持续时间大约为数十至数百毫秒。
励磁涌流会产生一些不良影响,主要有以下几点:1.变压器的励磁涌流会使变压器的输入电流瞬间增大,导致电网负荷增加。
在电网的规划和运行中,通常需要预留一定的电流裕度以应对励磁涌流的增加,这样会导致电网资源的浪费。
2.励磁涌流还会导致变压器线圈的电压降低,甚至可能引起电压的波动,影响变压器的正常工作。
瞬时电压降低可以导致一些与用户的设备断开连接,从而导致设备的故障和停机。
3.变压器励磁涌流还会产生较大的瞬时电流,使变压器和供电设备的绝缘强度受到挑战。
长期以来,过大的涌流会导致绝缘系统的老化和破坏,甚至引发短路故障,严重影响电力供应的质量和可靠性。
为了减小和控制励磁涌流1.在变压器设计和制造过程中,通过优化变压器的铁心结构和材料,降低励磁电流的瞬时增加,从而减小励磁涌流。
2.通过合理的变压器接线方式和转换设备的设备保护装置,实施逐级励磁、逐级负荷并行运行、多变压器群控等措施,来减小励磁涌流对电网的冲击。
3.应用先进的励磁系统,如智能励磁控制技术、励磁变压器的多种调整和优化方案,并加强变压器的维护管理,提高励磁系统和变压器的可靠性和稳定性。
总之,励磁涌流是变压器中存在的一种不良电气现象。
通过优化设计、合理布置和维护管理,可以有效地减小和控制励磁涌流,从而保证变压器和电力系统的正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器的励磁涌流产生原因及特点
产生原因:
1.铁芯非线性特性:在励磁过程中,铁芯会经历从饱和到非饱和的过程,而在饱和和非饱和状态下,铁芯的磁导率存在较大的差异。
当励磁电
流突变时,铁芯的饱和状态发生变化,导致磁通密度的非线性变化,进而
产生励磁涌流。
2.电压突变:在电压突变的瞬间,变压器的磁通密度变化较大,导致
涌流现象的出现。
特点:
1.波动范围大:励磁涌流的幅值会随着励磁电流的大小和励磁电源特
性的不同而变化。
通常情况下,励磁涌流的波动幅值会比较大,但是短暂,并且随着时间的推移会逐渐回归正常工作状态。
2.涌流时间短:励磁涌流一般持续的时间比较短暂,通常在数十毫秒
到数百毫秒之间。
3.作用范围广:励磁涌流会对整个变压器回路产生影响,不仅会造成
励磁线圈中的涌流,也会对次级绕组和电网产生影响。
4.会影响电机和负载设备:励磁涌流在电机和负载设备上产生的过电
压和过电流可能会导致电机和负载设备的损坏。
5.会引起设备振动和噪声:励磁涌流会引起变压器的振动和噪声,对
设备和周围环境造成不良影响。
励磁涌流对变压器和电网的影响是不可忽视的,因此在实际应用中需
要采取一些措施来限制和减小励磁涌流的影响,例如采用特殊的励磁变压
器、引入励磁涌流限制电抗器等。
此外,合理调整变压器的设计和励磁电源的参数也能有效减小励磁涌流的幅值和时间。