2014中考数学试题及答案

合集下载

2014年天津市中考数学试卷(含解析版)

2014年天津市中考数学试卷(含解析版)

2014年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014年天津市)计算(﹣6)×(﹣1)的结果等于()A.6 B.﹣6 C.1D.﹣12.(3分)(2014年天津市)cos60°的值等于()A.B.C.D.3.(3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.(3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10105.(3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.6.(3分)(2014年天津市)正六边形的边心距为,则该正六边形的边长是()A. B. 2 C. 3 D.27.(3分)(2014年天津市)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°8.(3分)(2014年天津市)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:29.(3分)(2014年天津市)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1010.(3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁12.(3分)(2014年天津市)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年天津市)计算x5÷x2的结果等于.14.(3分)(2014年天津市)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.15.(3分)(2014年天津市)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.16.(3分)(2014年天津市)抛物线y=x2﹣2x+3的顶点坐标是.17.(3分)(2014年天津市)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).18.(3分)(2014年天津市)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明).三、解答题(本大题共7小题,共66分)19.(8分)(2014年天津市)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)(2014年天津市)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.(10分)(2014年天津市)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.22.(10分)(2014年天津市)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).23.(10分)(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.24.(10分)(2014年天津市)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).25.(10分)(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.2014年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014年天津市)计算(﹣6)×(﹣1)的结果等于()A.6 B.﹣6 C.1D.﹣1【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣6)×(﹣1),=6×1,=6.故选A.【点评】本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.2.(3分)(2014年天津市)cos60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值解题即可.【解答】解:cos60°=.故选A.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.3.(3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.4.(3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1608000000用科学记数法表示为:1.608×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解;从左面看下面一个正方形,上面一个正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.6.(3分)(2014年天津市)正六边形的边心距为,则该正六边形的边长是()A. B. 2 C. 3 D.2【考点】正多边形和圆.【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.7.(3分)(2014年天津市)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.8.(3分)(2014年天津市)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.9.(3分)(2014年天津市)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10【考点】反比例函数的性质.【分析】将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.【解答】解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.【点评】本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10.(3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁【考点】加权平均数.【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.【点评】此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.12.(3分)(2014年天津市)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3【考点】二次函数图象与系数的关系.【分析】由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.【解答】解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年天津市)计算x5÷x2的结果等于x3.【考点】同底数幂的除法.【分析】同底数幂相除底数不变,指数相减,【解答】解:x5÷x2=x3故答案为:x3.【点评】此题考查了同底数幂的除法,解题要注意细心明确指数相减.14.(3分)(2014年天津市)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为1.【考点】反比例函数的性质.【专题】开放型.【分析】反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.【点评】此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.15.(3分)(2014年天津市)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.【考点】概率公式.【分析】抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于9的概率.【解答】解:∵抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于9的概率是:.故答案为:.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014年天津市)抛物线y=x2﹣2x+3的顶点坐标是(1,2).【考点】二次函数的性质.【专题】计算题.【分析】已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.17.(3分)(2014年天津市)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45(度).【考点】等腰三角形的性质.【分析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为45.【点评】本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.18.(3分)(2014年天津市)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于11;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)如图所示:.【考点】作图—应用与设计作图.【分析】(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【解答】解:(Ⅰ)AC2+BC2=()2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求.【点评】此题主要考查了应用设计与作图,借助网格得出正方形是解题关键.三、解答题(本大题共7小题,共66分)19.(8分)(2014年天津市)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1≤x≤1.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(I)解不等式①,得x≥﹣1;(II)解不等式②得,x≤1,(III)在数轴上表示为:;(IN)故此不等式的解集为:﹣1≤x≤1.故答案分别为:x≥﹣1,x≤1,﹣1≤x≤1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2014年天津市)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(10分)(2014年天津市)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.【考点】圆周角定理;等边三角形的判定与性质;勾股定理.【分析】(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.【解答】解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.【点评】本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.22.(10分)(2014年天津市)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为23.5m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).【考点】解直角三角形的应用.【专题】应用题.【分析】(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.【解答】解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.【点评】本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.23.(10分)(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 1016 18…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.【考点】一次函数的应用;一元一次方程的应用.【分析】(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.【解答】解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.【点评】本题考查了一次函数的应用,分类讨论是解题关键.24.(10分)(2014年天津市)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【考点】几何变换综合题;三角形的外角性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】综合题.【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)在第一象限内,当点D′与点P重合时,点P的纵坐标最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.【点评】本题是在图形旋转过程中,考查了全等三角形的判定与性质、勾股定理、三角形的外角性质、30°角所对的直角边等于斜边的一半等知识,而找到使点P的纵坐标最大时点P的位置是解决最后一个问题的关键.25.(10分)(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.【考点】一次函数综合题.【分析】(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t ﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有 y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得 x=2﹣.有 y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得 t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得 m=或m=.则m=或m=即为所求.【点评】本题考查了一次函数的综合题型.涉及到了待定系数法求一次函数解析式,一次函数与直线的交点问题.此题难度不大,掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题.祝福语祝你考试成功!。

2014河南中考数学试题(解析版)

2014河南中考数学试题(解析版)

2014年河南省中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(2014年河南省)下列各数中,最小的数是()A.0 B.C.﹣D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014年河南省)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:3875.5亿=3875 5000 0000=3.8755×1011,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014年河南省)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35° B.45° C.55°D.65°考点:垂线;对顶角、邻补角.分析:由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC得出答案.解答:解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.点评:本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.4.(3分)(2014年河南省)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6D.(a+b)2=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可.解答:解:A、a+2a=3a,故本选项错误;B、(﹣a3)2=a6,故本选项正确;C、a3•a2=a5,故本选项错误;D、(a+b)2=a2+b2+2ab,故本选项错误,故选B.点评:本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算能力.5.(3分)(2014年河南省)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船反射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查考点:随机事件;全面调查与抽样调查;概率的意义.分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.解答:解:A.“打开电视,正在播放河南新闻节目”是随机事件,本项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,本项错误;C.神舟飞船反射前需要对零部件进行全面调查,本项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查.故选:D.点评:本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)(2014年河南省)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.点评:本题考查了简单组合体的三视图,注意能看到的棱用实线画出.7.(3分)(2014年河南省)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11考点:平行四边形的性质;勾股定理.分析:利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.解答:解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选C.点评:本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.(3分)(2014年河南省)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A 出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x (s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分.故C错误;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是线段.故B、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.二、填空题(每小题3分,共21分)9.(3分)(2014年河南省)计算:﹣|﹣2|=1.考点:实数的运算.分析:首先计算开方和绝对值,然后再计算有理数的减法即可.解答:解:原式=3﹣2=1,故答案为:1.点评:此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算.10.(3分)(2014年河南省)不等式组的所有整数解的和为﹣2.考点:一元一次不等式组的整数解.分析:先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.解答:解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.点评:本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(3分)(2014年河南省)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.考点:作图—基本作图;线段垂直平分线的性质.分析:首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.解答:解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.点评:本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.12.(3分)(2014年河南省)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A 的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.考点:抛物线与x轴的交点.分析:由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A点的坐标为(﹣2,0),根据二次函数的对称性,求得B点的坐标,再求出AB的长度.解答:解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.点评:此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B点的坐标.13.(3分)(2014年河南省)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率.解答:解:列表得:红红白白红﹣﹣﹣(红,红)(白,红)(白,红)红(红,红)﹣﹣﹣(白,红)(白,红)白(红,白)(红,白)﹣﹣﹣(白,白)白(红,白)(红,白)(白,白)﹣﹣﹣所有等可能的情况有12种,其中第一个人摸到红球且第二个人摸到白球的情况有4种,则P==.故答案为:.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)(2014年河南省)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.考点:菱形的性质;扇形面积的计算;旋转的性质.分析:连接BD′,过D′作D′H⊥AB,则阴影部分的面积可分为3部分,再根据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.解答:解:连接BD′,过D′作D′H⊥AB,∵在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,∴D′H=,∴S△ABD′=1×=,∴图中阴影部分的面积为+﹣,故答案为:+﹣.点评:本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.15.(3分)(2014年河南省)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.考点:翻折变换(折叠问题).分析:连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.解答:解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC 交BC于点P,∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在RT△END′中,设ED′=a,①当MD′=3时,D′E=5﹣3=2,EN=7﹣CN﹣DE=7﹣3﹣a=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,D′E=5﹣4=1,EN=7﹣CN﹣DE=7﹣4﹣a=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.点评:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共8小题,满分75分)16.(8分)(2014年河南省)先化简,再求值:+(2+),其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.解答:解:原式=÷=÷=•=,当x=﹣1时,原式==.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.(9分)(2014年河南省)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=﹣1cm时,四边形AOBD是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:(1)利用切线的性质可得OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ACP=30°,从而求得.(2)①要使四边形AOBD是菱形,则OA=AD=OD,所以∠AOP=60°,所以OP=2OA,DP=OD.②要使四边形AOBD是正方形,则必须∠AOP=45°,OA=PA=1,则OP=,所以DP=OP﹣1.解答:解:(1)连接OA,AC∵PA是⊙O的切线,∴OA⊥PA,在RT△AOP中,∠AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形.(2)①1,②.点评:本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键.18.(9分)(2014年河南省)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.解答:解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)(2014年河南省)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)考点:解直角三角形的应用-仰角俯角问题.分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,分别在Rt三角形ACD中表示出CD和在Rt三角形BCD中表示出BD,从而利用二者之间的关系列出方程求解.解答:解:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=65°,设AD=x,则BD=BA+AD=1000+x,在Rt三角形ACD中,CD===,在Rt三角形BCD中,BD=CD•tan68°,∴1000+x=x•tan68°解得:x==≈308米,∴潜艇C离开海平面的下潜深度为308米.点评:本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解.20.(9分)(2014年河南省)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B 的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.考点:反比例函数综合题.专题:综合题.分析:(1)作BM⊥x轴于M,作BN⊥x轴于N,利用点A,B的坐标得到BC=OM=5,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD进行计算.解答:解:(1)作BM⊥x轴于M,作BN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=5,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.点评:本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.21.(10分)(2014年河南省)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.分析:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m <100时,m﹣50>0,y随x的增大而增大,分别进行求解.解答:解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x﹣150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.点评:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.22.(10分)(2014年河南省)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A 到BP的距离.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专题:综合题;探究型.分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.解答:解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE.∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE.∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵A、P、D、B四点共圆,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.23.(11分)(2014年河南省)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解.解答:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15|①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;①若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m=3+或m=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.综上所述,存在满足条件的点P,可求得点P坐标为(﹣,),(4,5),(3﹣,2﹣3).点评:本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.。

2014年云南省中考数学试卷(含参考答案)

2014年云南省中考数学试卷(含参考答案)

2014年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2014年云南省)|﹣|=()A .﹣B.C.﹣7 D.72.(3分)(2014年云南省)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x63.(3分)(2014年云南省)不等式组的解集是()A.x >B.﹣1≤x <C.x <D.x≥﹣14.(3分)(2014年云南省)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥5.(3分)(2014年云南省)一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=26.(3分)(2014年云南省)据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A.1.394×107B.13.94×107C.1.394×106D.13.94×1057.(3分)(2014年云南省)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A.B.2πC.3πD.12π8.(3分)(2014年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A .9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2014年云南省)计算:﹣=.10.(3分)(2014年云南省)如图,直线a∥b,直线a,b被直线c所截,∠1=37°,则∠2=.11.(3分)(2014年云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).12.(3分)(2014•云南省)抛物线y=x2﹣2x+3的顶点坐标是.13.(3分)(2014年云南省)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=.14.(3分)(2014年云南省)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=;…(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=.(用含n的代数式表示,n是正整数,且n≥2)三、解答题(本大题共9个小题,满分58分)15.(5分)(2014年云南省)化简求值:•(),其中x=.16.(5分)(2014年云南省)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA ,求证:AC=BD.17.(6分)(2014年云南省)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?18.(7分)(2014年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C (79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?19.(7分)(2014年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.20.(6分)(2014年云南省)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?21.(6分)(2014年云南省)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB 的高度(取≈1.73,结果保留整数)22.(7分)(2014年云南省)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD =MN.23.(9分)(2014年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A (3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.2014年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣|=,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.(3分)考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x >,由②得,x≥﹣1,故此不等式组的解集为:x >.故选A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(3分)考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.(3分)考点:解一元二次方程-因式分解法。

2014年河北省中考数学试卷附详细答案(原版+解析版)

2014年河北省中考数学试卷附详细答案(原版+解析版)

2014年河北省中考数学试题一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2014•河北)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根2.(2分)(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B.3 C.4 D. 53.(2分)(2014•河北)计算:852﹣152=()A.70 B.700 C.4900 D. 70004.(2分)(2014•河北)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D. 80°5.(2分)(2014•河北)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D. 6,86.(2分)(2014•河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.7.(3分)(2014•河北)化简:﹣=()A.0 B.1 C.x D.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2 B.3 C.4 D. 5A.6厘米B.12厘米C.24厘米D. 36厘米9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是412.(3分)(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()A、B、C、D、13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对14.(3分)(2014•河北)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.15.(3分)(2014•河北)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3 B.4 C.5 D. 616.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C.30 D. 31二、填空题(共4小题,每小题3分,满分12分)17.(3分)(2014•河北)计算:=.18.(3分)(2014•河北)若实数m,n满足|m﹣2|+(n﹣2014)2=0,则m﹣1+n0=.19.(3分)(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇=cm2.形.则S扇形20.(3分)(2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.22.(10分)(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)23.(11分)(2014•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c (n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=°;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:(2)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?2014年河北省中考数学试题参考答案与试题解析一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2014•河北)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣2是2的相反数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2分)(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B.3 C.4 D. 5考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×2=4.故选C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.3.(2分)(2014•河北)计算:852﹣152=()A.70 B.700 C.4900 D. 7000考点:因式分解-运用公式法.分析:直接利用平方差进行分解,再计算即可.解答:解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).4.(2分)(2014•河北)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D. 80°考点:三角形的外角性质分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:a,b相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.(2分)(2014•河北)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D. 6,8考点:估算无理数的大小.分析:根据,可得答案.解答:解:,故选:A.点评:本题考查了估算无理数的大小,是解题关键.6.(2分)(2014•河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.7.(3分)(2014•河北)化简:﹣=()A.0 B.1 C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2 B.3 C.4 D. 5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故选:A.点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键.A.6厘米B.12厘米C.24厘米D. 36厘米9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,∴x=6.故选A.点评:本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.考点:展开图折叠成几何体分析:根据展开图折叠成几何体,可得正方体,根据勾股定理,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,勾股定理是解题关键.11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4考点:利用频率估计概率;折线统计图.分析:根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.解答:解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故此选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故此选项正确.故选:D.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(3分)(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()A、B、C、D、考点:作图—复杂作图分析:要使P A+PC=BC,必有P A=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确.解答:解:D选项中作的是AB的中垂线,∴P A=PB,∵PB+PC=BC,∴P A+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据作图得出P A=PB.13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:相似三角形的判定;相似多边形的性质分析:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相似.∴乙说法正确.故选A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用.14.(3分)(2014•河北)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象专题:新定义.分析:根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.解答:解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合,故选:D.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.15.(3分)(2014•河北)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3 B.4 C.5 D. 6考点:正多边形和圆分析:先求得两个三角形的面积,再求出正六边形的面积,求比值即可.解答:解:如图,∵三角形的斜边长为a,∴两条直角边长为a,a,=a•a=a2,∴S空白∵AB=a,∴OC=a,∴S正六边形=6×a•a=a2,∴S阴影=S正六边形﹣S空白=a2﹣a2=a2,∴==5,故选C.点评:本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.16.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C.30 D. 31考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则可求得五个数的和的范围,进而判断.解答:解:中位数是6.唯一众数是7,则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则五个数的和一定大于20且小于29.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.二、填空题(共4小题,每小题3分,满分12分)17.(3分)(2014•河北)计算:=2.考点:二次根式的乘除法.分析:本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出结果.解答:解:,=2×,=2.故答案为:2.点评:本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则,求出正确答案是本题的关键.18.(3分)(2014•河北)若实数m,n满足|m﹣2|+(n﹣2014)2=0,则m﹣1+n0=.考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0,可得绝对值与平方同时为0,根据负整指数幂、非0的0次幂,可得答案.解答:解:|m﹣2|+(n﹣2014)2=0,m﹣2=0,n﹣2014=0,m=2,n=2014.m﹣1+n0=2﹣1+20140=+1=,故答案为:.点评:本题考查了负整指数幂,先求出m、n的值,再求出负整指数幂、0次幂.19.(3分)(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇=4cm2.形.则S扇形考点:扇形面积的计算.=×弧长×半径求出即可.分析:根据扇形的面积公式S扇形解答:解:由题意知,弧长=8cm﹣2cm×2=4 cm,扇形的面积是×4cm×2cm=4cm2,故答案为:4.点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大.20.(3分)(2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为 3.7×10﹣6.考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.22.(10分)(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(kg),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(3)∵AC=100米,∠C=37°,∴tan37°=,∴AB=ACtan37°=100×0.75=75(m),∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元),答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用,利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)(2014•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABEF是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°,∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°,∴∠BAE=∠BFE,∴四边形ABEF是平行四边形,∵AB=AE,∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质,等腰三角形的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c (n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题专题:压轴题.分析:(1)根据﹣1的奇数次方等于﹣1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标即可;(2)根据﹣1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数.解答:解:(1)n为奇数时,y=﹣x2+bx+c,∵l经过点H(0,1)和C(2,1),∴,解得,∴抛物线解析式为y=﹣x2+2x+1,y=﹣(x﹣1)2+2,∴顶点为格点E(1,2);(2)n为偶数时,y=x2+bx+c,∵l经过点A(1,0)和B(2,0),∴,解得,∴抛物线解析式为y=x2﹣3x+2,当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;(3)所有满足条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意(3)抛物线有开口向上和开口向下两种情况.25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是1,当BP经过点O时,∠ABA′=60°;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.∵OH⊥AB,AB=2,∴AH=BH=.∵OB=2,∴OH=1.∴点O到AB的距离为1.②当BP经过点O时,如图1②所示.∵OH=1,OB=2,OH⊥AB,∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B,Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求α的取值范围,有一定的综合性.第(3)题中α的范围可能考虑不够全面,需要注意.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.。

2014年青海省中考数学试卷(含解析版)

2014年青海省中考数学试卷(含解析版)

2014年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)的倒数是;=.2.(4分)分解因式:a3b﹣9ab=;不等式组的解集是.3.(2分)据青海省湿地保护管理中心和世界自然基金会公布的调查数据表明,我省湿地总面积的最新数据为8140000公顷,居世界第一,该数据用科学记数法表示为公顷.4.(2分)方程的解是.5.(2分)如图,为了测量一水塔的高度,小强用2米的竹竿做测量工具,移动竹竿,使竹竿、水塔的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8米,与水塔相距32米,则水塔的高度为米.6.(2分)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,那么点D到BC的距离是.7.(2分)若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2014=.8.(2分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P=度.9.(2分)从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是.10.(2分)如图,已知∠C=∠D,∠CAB=∠DBA,AD交BC于点O,请写出图中一组相等的线段.11.(2分)如图所示,坐在象棋棋盘上建立直角坐标系,使“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),则“兵”位于点.12.(4分)一组按照规律排列的式子:,…,其中第8个式子是,第n个式子是.(n为正整数)二、选择题(本大题共8小题,每小题3分,共24分)13.(3分)下列计算正确的是()A.a2+a3=a5B.C.(a2)3=a5D.(a3)2=a614.(3分)如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.15°B.60°C.45°D.75°15.(3分)如图,点P1、P2、P3分别是双曲线同一支图象上的三点,过这三点分别作y轴的垂线,垂足分别是A1、A1、A3,得到的三个三角形△P1A1O、△P2A2O、△P3A3O.设它们的面积分别为S1、S2、S3,则它们的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S1=S2=S3D.S2>S3>S1 16.(3分)下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.17.(3分)如图,∠1=∠2,∠3=30°,则∠4等于()A.120°B.130°C.145°D.150°18.(3分)如图是一个几何体的三视图,根据图纸标注的数据,求得这个几何体的侧面积是()A.12πB.15πC.24πD.30π19.(3分)某商场四月份的利润是28万元,预计六月份的利润将达到40万元.设利润每月平均增长率为x,则根据题意所列方程正确的是()A.28(1+x)2=40B.28(1+x)2=40﹣28C.28(1+2x)=40D.28(1+x2)=4020.(3分)如图所示的计算程序中,y与x之间的函数关系所对应的图象()A.B.C.D.三、解答题21.(6分)计算:+(π﹣3.14)0﹣tan60°+|1﹣|.22.(6分)先化简,再求值:,其中x=2+,y=2﹣.23.(8分)如图,▱ABCD中,点E在边AB上,点F在AB的延长线上,且AE=BF.求证:∠ADE=∠BCF.四、(本大题共3小题,第24题9分,第25题9分,第26题8分,共26分)24.(9分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.25.(9分)阅读对一个人的成长的影响是巨大的,一本好书往往能改变人的一生.某中学为了解学生阅读课外书籍的情况.决定围绕“在艺术类、科技类、动漫类、小说类、其它类课外书籍中,你最喜欢的课外书籍是哪一类?(只写一类)”的问题,在全校范围内随机抽取部分同学进行问卷调查,并将调查问卷适当整理后绘制成如图1所示的条形统计图和如图2所示的扇形统计图.(1)请你将条形统计图和扇形统计图补充完整;(2)若该校共有1600名学生,请你估计这1600人中喜欢动漫类书籍的约有多少人?(3)小东从图书馆借回2本动漫书和3本科技书放进一个空书包里准备回家阅读,那么他从书包里任取2本,恰好都是科技类图书的概率是多少?(请用“画树状图”或“列表”的方法写出分析过程)26.(8分)穿越青海境内的兰新高速铁路正在加紧施工.某工程队承包了一段全长1957米的隧道工程,甲、乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲、乙两组共掘进57米.(1)求甲乙两班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天比原来多掘进0.3米,乙组平均每天比原来多掘进0.2米.按此施工进度,能够比原来少用多少天完成任务?五、解答题(共2小题,满分20分)27.(10分)请你认真阅读下面的小探究系列,完成所提出的问题.(1)如图1,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD 的顶点D重合,角尺的一边交CB于点F,将另一边交BA的延长线于点G.求证:EF=EG.(2)如图2,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF EG(用“=”或“≠”填空)(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图3,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,BC=3,求的值.28.(10分)如图所示,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.2014年青海省中考数学试卷参考答案与试题解析一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)的倒数是﹣4;=3.【考点】17:倒数;24:立方根.【专题】11:计算题.【分析】利用倒数及立方根定义计算即可得到结果.【解答】解:∵﹣×(﹣4)=1,∴﹣的倒数为﹣4;∵33=27,∴=3.故答案为:﹣4,3【点评】本题考查了如何求一个数的倒数和立方根,解题的关键是准确掌握倒数和立方根的概念.2.(4分)分解因式:a3b﹣9ab=ab(a+3)(a﹣3);不等式组的解集是﹣2<x<3.【考点】55:提公因式法与公式法的综合运用;CB:解一元一次不等式组.【专题】11:计算题.【分析】原式提取ab,再利用平方差公式分解即可;分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:a3b﹣9ab=ab(a2﹣9)=ab(a+3)(a﹣3);,不等式①的解集为x>﹣2,不等式②的解集为x<3,∴不等组的解集为﹣2<x<3.故答案为ab(a+3)(a﹣3),﹣2<x<3【点评】本题考查了分解因式和解一元一次不等式,对于因式分解解题的关键是理解因式分解的分析步骤,对于不等式组解题关键是正确解出每个不等式的解集.3.(2分)据青海省湿地保护管理中心和世界自然基金会公布的调查数据表明,我省湿地总面积的最新数据为8140000公顷,居世界第一,该数据用科学记数法表示为8.14×106公顷.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵8140000的整数位数为7,∴8140000=8.14×106.故答案为8.14×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2分)方程的解是x=5.【考点】B3:解分式方程.【专题】11:计算题.【分析】在方程两侧同时乘以最简公分母(x+3)(x﹣1)去掉分母转化为整式方程,求出解即可.【解答】解:在方程两侧同时乘以最简公分母(x+3)(x﹣1)去分母得,2x﹣2=x+3,解得x=5,经检验x=5是分式方程的解.故答案为:x=5.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.(2分)如图,为了测量一水塔的高度,小强用2米的竹竿做测量工具,移动竹竿,使竹竿、水塔的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8米,与水塔相距32米,则水塔的高度为10米.【考点】SA:相似三角形的应用.【分析】由已知可得BC∥DE,因此△ABC∽△ADE,利用相似三角形的性质可求得水塔的高度.【解答】解:∵BC⊥AD,ED⊥AD,∴BC∥DE,∴△ABC∽△ADE,∴,即,∴DE=10,即水塔的高度是10米.故答案为:10.【点评】本题考查了考查了相似三角形的判定和性质,解题的关键是能利用比例式求解线段长.6.(2分)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,那么点D到BC的距离是3.【考点】KF:角平分线的性质;KQ:勾股定理.【分析】首先过点D作DE⊥BC于E,由在Rt△ABC中,∠A=90°,BD平分∠ABC,根据角平分线的性质,即可得DE=AD,又由勾股定理求得AD的长,继而求得答案.【解答】解:过点D作DE⊥BC于E,∵在Rt△ABC中,∠A=90°,BD平分∠ABC,即AD⊥BA,∴DE=AD,∵在Rt△ABC中,∠A=90°,AB=4,BD=5,∴AD==3,∴DE=AD=3,∴点D到BC的距离是3.故答案为:3.【点评】此题考查了角平分线的性质与勾股定理的应用.此题难度不大,注意数形结合思想的应用,注意掌握辅助线的作法.7.(2分)若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2014= 1.【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据轴对称的性质,点M和点N的纵坐标相等,横坐标互为相反数,可以求得a、b的值,从而可得a+b的值.【解答】解:∵点M(3,a)关于y轴的对称点是点N(b,2),∴b=﹣3,a=2,∴a+b=﹣1,∴(a+b)2014=(﹣1)2014=1.故答案为:1.【点评】本题考查了轴对称的性质和幂的运算,解题的关键是先求得a、b的值.8.(2分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P=50度.【考点】M5:圆周角定理;MC:切线的性质.【分析】连接OA,OB.根据圆周角定理和四边形内角和定理求解.【解答】解:连接OA,OB.PA、PB切⊙O于点A、B,则∠PAO=∠PBO=90°,由圆周角定理知,∠AOB=2∠C=130°,∵∠P+∠PAO+∠PBO+∠AOB=360°,∴∠P=180°﹣∠AOB=50°.【点评】本题利用了切线的概念,圆周角定理,四边形的内角和为360度求解.9.(2分)从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是.【考点】X4:概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.本题先找出4的倍数只有4和8这两个数,然后用2除以10即可.【解答】解:∵1,2,3,…,10这10个自然数中只有4和8是4的倍数,因此从1,2,3,…,10这10个自然数中任取一个数,则它是4的倍数的概率是.故答案为:.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.10.(2分)如图,已知∠C=∠D,∠CAB=∠DBA,AD交BC于点O,请写出图中一组相等的线段AD=BC.【考点】KD:全等三角形的判定与性质.【专题】26:开放型.【分析】易证△CAB≌△DBA,根据全等三角形对应边相等的性质可得BC=AD,即可解题.【解答】解:在△CAB和△DBA中,,∴△CAB≌△DBA(AAS),∴BC=AD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△CAB≌△DBA是解题的关键.11.(2分)如图所示,坐在象棋棋盘上建立直角坐标系,使“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),则“兵”位于点(﹣4,1).【考点】D3:坐标确定位置.【分析】根据“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),可知原点在这两个棋子的上方两个单位长度的直线上且在马的左边,距离马的距离为1个单位的直线上,两者的交点就是原点O.【解答】解:∵“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),∴原点在这两个棋子的上方两个单位长度的直线上且在马的左边,距离马的距离为1个单位的直线上,两者的交点就是原点O,∴“兵”位于点(﹣4,1).故答案为:(﹣4,1).【点评】本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.(4分)一组按照规律排列的式子:,…,其中第8个式子是,第n个式子是.(n为正整数)【考点】42:单项式.【专题】2A:规律型.【分析】根据分子的底数都是x,而指数是从1开始的奇数;分母是底数从1开始的自然数的平方.【解答】解:,…,其因此第8个式子是,第n个式子是.故答案为,.【点评】本题考查了单项式,解题的关键是根据分子和分母分别寻找规律:分子的底数都是x,而指数是从1开始的奇数;分母是底数从1开始的自然数的平方.二、选择题(本大题共8小题,每小题3分,共24分)13.(3分)下列计算正确的是()A.a2+a3=a5B.C.(a2)3=a5D.(a3)2=a6【考点】35:合并同类项;47:幂的乘方与积的乘方;6A:分式的乘除法.【分析】结合选项分别进行合并同类项、幂的乘方和积的乘方等运算,然后选择正确选项.【解答】解:A、不符合同底数幂乘法公式,故本选项错误;B、,故本选项错误;C、(a2)3=a2×3=a6,故本选项错误;D、(a3)2=a3×2=a6,故本选项正确.故选:D.【点评】本题考查了幂的乘方和积的乘方以及同底数幂乘法,解题的关键是掌握各知识点的运算法则.14.(3分)如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.15°B.60°C.45°D.75°【考点】R2:旋转的性质.【分析】根据∠AOD=∠DOB﹣∠AOB求解.【解答】解:∵将△AOB绕点O按逆时针方向旋转60°后得到△COD,∴∠BOD=60°,∵∠AOB=15°,∴∠AOD=∠DOB﹣∠AOB=60°﹣15°=45°.故选:C.【点评】本题考查了图形的旋转的性质,解题的关键是一个旋转图形的对应点的连线所夹的角相等,都等于旋转角.15.(3分)如图,点P1、P2、P3分别是双曲线同一支图象上的三点,过这三点分别作y轴的垂线,垂足分别是A1、A1、A3,得到的三个三角形△P1A1O、△P2A2O、△P3A3O.设它们的面积分别为S1、S2、S3,则它们的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S1=S2=S3D.S2>S3>S1【考点】G5:反比例函数系数k的几何意义.【专题】11:计算题.【分析】直接根据反比例函数比例系数k的几何意义求解.【解答】解:∵点P1在双曲线上,∴P1A1•OA1=|k|,∴S1=P1A1•OA1=|k|,同理S2=|k|、S3=|k|,∴S1=S2=S3,故选:C.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.16.(3分)下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.17.(3分)如图,∠1=∠2,∠3=30°,则∠4等于()A.120°B.130°C.145°D.150°【考点】JB:平行线的判定与性质.【专题】11:计算题.【分析】由∠1=∠2,利用同位角相等两直线平行得到a与b平行,再由两直线平行同位角相等得到∠3=∠5,求出∠5的度数,即可求出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠5=∠3=30°,∴∠4=180°﹣∠5,=150°,故选:D.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.18.(3分)如图是一个几何体的三视图,根据图纸标注的数据,求得这个几何体的侧面积是()A.12πB.15πC.24πD.30π【考点】MP:圆锥的计算;U3:由三视图判断几何体.【分析】由三视图可知,该几何体是一个圆锥,根据圆锥的侧面积公式求解.【解答】解:由三视图可知,该几何体是一个圆锥,且底面圆的半径是6,母线长是5,∴底面的周长是2π•3=6π,∴侧面积为:=15π,故选:B.【点评】本题考查了三视图和几何体侧面积的计算等知识点,解题的关键是根据三视图想象出该几何体的形状.19.(3分)某商场四月份的利润是28万元,预计六月份的利润将达到40万元.设利润每月平均增长率为x,则根据题意所列方程正确的是()A.28(1+x)2=40B.28(1+x)2=40﹣28C.28(1+2x)=40D.28(1+x2)=40【考点】AC:由实际问题抽象出一元二次方程.【专题】123:增长率问题.【分析】根据“下一个月份的利润等于前一个月份的利润×(1+x)”列方程即可.【解答】解:五月份的利润为28(1+x),六月份的利润为28(1+x)(1+x)=28(1+x)2,故选:A.【点评】本题考查了列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x”的含义以及找到题目中的等量关系.20.(3分)如图所示的计算程序中,y与x之间的函数关系所对应的图象()A.B.C.D.【考点】F3:一次函数的图象.【分析】先根据程序框图列出正确的函数关系式,然后再根据函数关系式来判断其图象是哪一个.【解答】解:根据程序框图可得y=(﹣x)×3+2=﹣3x+2,化简,得y=﹣3x+2,y=﹣3x+2的图象与y轴的交点为(0,2),与x轴的交点为(,0).故选:C.【点评】本题考查了一次函数图象,利用程序框图列出函数关系式、以及函数的图象等知识点,解题的关键是首先根据框图写出正确的解析式.三、解答题21.(6分)计算:+(π﹣3.14)0﹣tan60°+|1﹣|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=+1﹣+﹣1=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(6分)先化简,再求值:,其中x=2+,y=2﹣.【考点】6D:分式的化简求值.【分析】根据分式的运算法则先化简原式,然后将x和y的值代入化简后的式子求值即可.【解答】解:===,当x=2+,y=2﹣时,原式==﹣1.【点评】此题考查分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.23.(8分)如图,▱ABCD中,点E在边AB上,点F在AB的延长线上,且AE=BF.求证:∠ADE=∠BCF.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【专题】14:证明题.【分析】根据平行四边形的性质得出AD=BC且AD∥BC,推出∠DAE=∠CBF,根据全等三角形的判定推出△ADE≌△BCF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC且AD∥BC,∴∠DAE=∠CBF,在△ADE和△BCF中∴△ADE≌△BCF(SAS)∴∠ADE=∠BCF.【点评】本题考查了全等三角形的判定和性质,平行四边形的性质,平行线的性质的应用,解题的关键是能将求证角相等的问题转化为寻找其所在的三角形全等,注意:平行四边形的对边互相平行且相等.四、(本大题共3小题,第24题9分,第25题9分,第26题8分,共26分)24.(9分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.【考点】MD:切线的判定;MO:扇形面积的计算.【专题】11:计算题.【分析】(1)连接OP,如图,利用等腰三角形的性质由OD=OP得到∠OPD=∠ODP,而∠APC=∠AOD,则∠OPD+∠APC=∠ODP+∠AOD,由于∠ODP+∠AOD=90°,易得∠APO=90°,于是根据切线的判定定理即可得到AP 是⊙O的切线;(2)在Rt△APO中,利用勾股定理计算出,AO=8,即PO=,则∠A=30°,可计算出∠POA=60°,∠OPC=30°,再利用垂径定理PC=CD,且∠POD=120°,OC=PO=2,接着在Rt△OPC中计算出PC=2,得到PD=2PC=,然后根据扇形面积公式和S阴影=S扇形OPBD﹣S△OPD进行计算即可.【解答】(1)证明:连接OP,如图,∵OD=OP,∴∠OPD=∠ODP,∵∠APC=∠AOD,∴∠OPD+∠APC=∠ODP+∠AOD,又∵PD⊥BE,∴∠ODP+∠AOD=90°,∴∠OPD+∠APC=90°,即∠APO=90°,∴OP⊥AP,∴AP是⊙O的切线;(2)解:在Rt△APO中,∵AP=,PO=4,∴AO=,即PO=,∴∠A=30°,∴∠POA=60°,∴∠OPC=30°又∵PD⊥BE,∴PC=CD,∴∠POD=120°,OC=PO=2,在Rt△OPC中,∵OC=2,OP=4,∴PC==2,∴PD=2PC=,∴S阴影=S扇形OPBD﹣S△OPD==.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了垂径定理和扇形的面积公式.25.(9分)阅读对一个人的成长的影响是巨大的,一本好书往往能改变人的一生.某中学为了解学生阅读课外书籍的情况.决定围绕“在艺术类、科技类、动漫类、小说类、其它类课外书籍中,你最喜欢的课外书籍是哪一类?(只写一类)”的问题,在全校范围内随机抽取部分同学进行问卷调查,并将调查问卷适当整理后绘制成如图1所示的条形统计图和如图2所示的扇形统计图.(1)请你将条形统计图和扇形统计图补充完整;(2)若该校共有1600名学生,请你估计这1600人中喜欢动漫类书籍的约有多少人?(3)小东从图书馆借回2本动漫书和3本科技书放进一个空书包里准备回家阅读,那么他从书包里任取2本,恰好都是科技类图书的概率是多少?(请用“画树状图”或“列表”的方法写出分析过程)【考点】VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【分析】(1)由条形统计图可知选择艺术类的有两人,而由扇形统计图可知选择艺术类的占总人数的4%,因此用(2÷4%)可求得抽样的人数,从而根据扇形统计图中百分比可求得科技类和小说类的人数,根据扇形统计图又可求得动漫和其他类的百分比.(2)用总人数乘喜欢动漫类书籍的百分比求解即可,(3)利用树状图得出所有的情况,再求出P(两本书都是科技类书)即可.【解答】解:(1)∵抽样人数为2÷4%=50,∴科技类的人数为50×10%=5,小说类的人数为50×40%=20,动漫的百分比为12÷50=24%,其他类的百分比为8÷50=16%所以图形如下:(2)喜欢动漫类书籍的人数约为1600×24%=384人.(3)树状图为:∴P(两本书都是科技类书)=.【点评】本题考查条形统计图、扇形统计图、利用频率进行估算、概率的计算,解题的关键是能看懂条形统计图和扇形统计图的关系.26.(8分)穿越青海境内的兰新高速铁路正在加紧施工.某工程队承包了一段全长1957米的隧道工程,甲、乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲、乙两组共掘进57米.(1)求甲乙两班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天比原来多掘进0.3米,乙组平均每天比原来多掘进0.2米.按此施工进度,能够比原来少用多少天完成任务?【考点】8A:一元一次方程的应用;9A:二元一次方程组的应用.【分析】(1)设甲、乙两个班组平均每天分别掘进x米、y米,根据甲组比乙组每天多掘进0.5米,经过6天施工,甲、乙两组共掘进57米,列方程组求解;(2)设按原来的施工进度和改进技术后的进度分别还需要a天、b天完成任务,分别求出甲乙所用的时间,然后求出比原来少用的天数.【解答】解:(1)设甲、乙两个班组平均每天分别掘进x米、y米,由题意得,解得答:甲乙两个班组平均每天分别掘进5米、4.5米;(2)设按原来的施工进度和改进技术后的进度分别还需要a天、b天完成任务,则a=(1957﹣57)÷(5+4.5)=200(天),b=(1957﹣57)÷(5+4.5+0.2+0.3)=190(天),则a﹣b=10(天).答:能比原来少用10天.【点评】本题考查了二元一次方程的应用,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程求解.五、解答题(共2小题,满分20分)27.(10分)请你认真阅读下面的小探究系列,完成所提出的问题.(1)如图1,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD 的顶点D重合,角尺的一边交CB于点F,将另一边交BA的延长线于点G.求证:EF=EG.(2)如图2,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF=EG(用“=”或“≠”填空)(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图3,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,BC=3,求的值.【考点】LO:四边形综合题.【分析】(1)证明△EAG≌△ECF即可得出结论;(2)过点E作EM⊥AB于点M,作EN⊥BC于点N,由(1)同理证出△EMG≌△ENF得出结论;(3)过点E作EM⊥AB于点M,作EN⊥BC于点N,由(2)得出经验,证得结论则需要通过由平行线得出比例式和两三角形相似得出比例式来解决.【解答】解:(1)证明:∵∠AEF+∠AEG=90°,∠AEF+∠CEF=90°,∴∠AEG=∠CEF,又∵∠GAE=∠C=90°,EA=EC,∴△EAG≌△ECF(ASA)∴EG=EF(2)EF=EG;过点E作EM⊥AB于点M,作EN⊥BC于点N,如图2所示,则∠MEN=90°,EM=EN,∴∠GEM=∠FEN,又因为∠EMG=∠ENF=90°,∴△EMG≌△ENF∴EF=EG.故答案为:=.(3)过点E作EM⊥AB于点M,作EN⊥BC于点N,如图3所示:则∠MEN=90°,EM∥BC,EN∥AB,∴,∴,又∵∠GEM+∠MEF=90°,∠FEN+∠MEF=90°,∴∠FEN=∠GEM,∴Rt△GME∽Rt△FNE,∴【点评】本题考查了正方形的性质、全等三角形的判定和应用,相似三角形的判定和应用,解题的关键是能从第(1)问的解答中获得解决后两问的经验.28.(10分)如图所示,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据顶点坐标公式即可求得a、b、c的值,即可解题;(2)易求得点B、C的坐标,即可求得OC的长,即可求得△ABC的面积,即可解题;(3)作PE⊥x轴于点E,交AC于点F,可将△APC的面积转化为△AFP和△CFP的面积之和,而这两个三角形有共同的底PF,这一个底上的高的和又恰好是A、C两点间的距离,因此若设设E(x,0),则可用x来表示△APC 的面积,得到关于x的一个二次函数,求得该二次函数最大值,即可解题.【解答】解:(1)设此函数的解析式为y=a(x+h)2+k,∵函数图象顶点为M(﹣2,﹣4),∴y=a(x+2)2﹣4,又∵函数图象经过点A(﹣6,0),∴0=a(﹣6+2)2﹣4解得a=,∴此函数的解析式为y=(x+2)2﹣4,即y=x2+x﹣3;(2)∵点C是函数y=x2+x﹣3的图象与y轴的交点,∴点C的坐标是(0,﹣3),又当y=0时,有y=x2+x﹣3=0,解得x1=﹣6,x2=2,∴点B的坐标是(2,0),则S=|AB|•|OC|=×8×3=12;△ABC。

南宁市2014年中考数学试题及答案(图片版)

南宁市2014年中考数学试题及答案(图片版)

2014年南宁市初中毕业升学数学答案 本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。

第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.答案:A2. 答案:D3. 答案:C4. 答案:D5. 答案:B6. 答案:A7. 答案:D8. 答案:A9. 答案:B10. 答案:B11. 答案:C12. 答案:A第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13. 答案:<14. 答案:60°15. 答案:)3(2-a a16. 答案:32 17. 答案:31018. 答案:2)21(a + 三、(本大题共2小题,每小题满分6分,共12分)19. 计算:()21-︒-45sin 4+3-+8原式=1-4×22+3+22= 4 20. 答案:去分母得:)2)(2(2)2(-+=-+x x x x化简得:2x =-2,求得x =-1经检验:x =-1是原方程的解∴ 原方程的解是X=-1四、(本大题共2小题,每小题满分8分,共16分)21. 如图8,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1) 请画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1;(2) 请画出△ABC 关于原点对称的△A 2B 2C 2;(3) 在x 轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写...出.P 的坐标.答案:(1)△A 1B 1C 1如图所示;(2)△A 2B 2C 2如图所示;(3)△PAB 如图所示,点P 的坐标为:(2,0)22.答案 (1)8÷16%= 50(名)(2) 体育活动人数:50-8-10-12-5=15(名)(补全条形统计图如图所示)(3) 360°×(10÷50)=72°(4) 500×(12÷50)=120(名)答:500名学生中估计采用“听音乐”的减压方式的学生人数为120名五、(本大题满分8分)23. 答案:(1) ∵ AB ∥FC ,∴∠ADE =∠CFE又∵∠错误!未找到引用源。

新疆2014年中考数学试题及答案(图片版)

新疆2014年中考数学试题及答案(图片版)

新疆维吾尔自治区、新疆生产建设兵团2014年中考数学试卷参考答案一、选择题1-5 ACDDC 6-9 CBBA二、填空题10.﹣5<x<﹣2.11.>.12.30.13.24.14..15.2.三、解答题(一)16. 解:原式=﹣1+2+1﹣=.17. 解:方程两边都乘以(x+3)(x﹣3),得3+x(x+3)=x2﹣93+x2+3x=x2﹣9解得x=﹣4检验:把x=﹣4代入(x+3)(x﹣3)≠0,∴x=﹣4是原分式方程的解.18. 解:(1)这些车的平均速度是:(40×2+50×3+60×4+70×5+80×1)÷15=60(千米/时);(2)70千米/时出现的次数最多,则这些车的车速的众数70千米/时;(3)共有15个,最中间的数是第8个数,则中位数是60千米/时.19. 解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.四、解答题(二)20. 解:(1)由作图知:PQ为线段AC的垂直平分线,∴AE=CE,AD=CD,∵CF∥AB∴∠EAC=∠FCA,∠CFD=∠AED,在△AED与△CFD中,,∴△AED≌△CFD;(2)∵△AED≌△CFD,∴AE=CF,∵EF为线段AC的垂直平分线,∴EC=EA,FC=FA,∴EC=EA=FC=FA,∴四边形AECF为菱形.21. (1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵A B为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=4,∴⊙O的半径为4.22. 解:(1)填空:A,B两地相距420千米;(2)由图可知货车的速度为60÷2=30千米/小时,货车到达A地一共需要2+360÷30=14小时,设y2=kx+b,代入点(2,0)、(14,360)得,解得,所以y2=30x﹣60;(3)设y1=mx+n,代入点(6,0)、(0,360)得解得,所以y1=﹣60x+360由y1=y2得30x﹣60=﹣60x+360解得x=答:客、货两车经过小时相遇.23. 解:(1)令y=0,则﹣x+8=0,解得x=6,x=0时,y=y=8,∴OA=6,OB=8,∴点A(6,0),B(0,8);(2)在Rt△AOB中,由勾股定理得,AB===10,∵点P的速度是每秒2个单位,点Q的速度是每秒1个单位,∴AP=2t,AQ=AB﹣BQ=10﹣t,∴点Q到AP的距离为AQ•sin∠OAB=(10﹣t)×=(10﹣t),∴△AQP的面积S=×2t×(10﹣t)=﹣(t2﹣10t)=﹣(t﹣5)2+20,∵﹣<0,0<t≤3,∴当t=3时,△AQP的面积最大,S最大=﹣(3﹣5)2+20=;(3)若∠APQ=90°,则cos∠OAB=,∴=,解得t=,若∠AQP=90°,则cos∠OAB=,∴=,解得t=,∵0<t≤3,∴t的值为,此时,OP=6﹣2×=,PQ=AP•tan∠OAB=(2×)×=,∴点Q的坐标为(,),综上所述,t=秒时,以点A,P,Q为顶点的三角形与△ABO相似,此时点Q的坐标为(,).。

2014年福建省福州中考数学试题及答案

2014年福建省福州中考数学试题及答案

2014年福建省福州中考数学试题及答案[fz]2014年福建省福州中考数学试题及答案一、选择题1. 设集合A={x|-1<x<5},则Ax={__________}。

(A) x≤-1(B) -1<x<5(C) x>5(D) -1≤x正确答案:(B)解析:根据题意,可知A集合中所有的x值都满足-1<x<5,因此A 对应的数轴上区间表示为-1<x<5。

2. 已知集合A={x|x>0},若Ax={x|x≤2},则数a的取值范围是__________。

(A) a>2(B) a≤2(C) a≤0(D) 0<a≤2正确答案:(B)解析:Ax对应的数轴上的区间为x≤2,因此a的取值范围是a≤2。

3. 平面直角坐标系中,曲线y=x^2-2与y=3的图象相交于点A和点B,点A坐标为__________。

(A) (-1, 3)(B) (-√3, 3)(C) (√3, 3)(D) (1, 3)正确答案:(A)解析:根据题意,当y=x^2-2与y=3相交时,x^2-2=3,解得x=-1,代入y=3得到坐标(-1, 3)。

4. 在平面直角坐标系中,点(2, -3)关于原点的象在第几象限?(A) 第一象限(B) 第二象限(C) 第三象限(D) 第四象限正确答案:(C)解析:关于原点对称的象的x坐标和y坐标都为原坐标的相反数,所以点(2, -3)关于原点的象为(-2, 3),即位于第三象限。

5. 若a>0,b<0,c<0,且a<b<c,则下列集合关系中正确的是__________。

(A) {x|x>a} ⊂ {x|x<b} ⊂ {x|x<c}(B) {x|x<c} ⊂ {x|x<b} ⊂ {x|x>a}(C) {x|x>a} ⊂ {x|x<c} ⊂ {x|x<b}(D) {x|x<c} ⊂ {x|x>a} ⊂ {x|x<b}正确答案:(A)解析:由题意可知a<b<c,所以集合关系应为{x|x>a} ⊂ {x|x<b} ⊂{x|x<c}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014中考数学试题及答案
2014年的中考数学试题是中考考试中很重要的一部分,通过解答这些试题,考生可以展示他们对数学知识的掌握和运用能力。

本文将为大家提供2014中考数学试题及答案的全面解析。

一、选择题
1. 下列各选项中,能够构成等差数列的是:
A) 1,2,3,5
B) 2,4,8,16
C) 1,3,5,7
D) 1,4,9,16
答案:B
解析:等差数列是指数列中的每两个相邻的数之间的差值都相等。

选项B中,每两个相邻的数之间的差值是2,因此选项B构成等差数列。

2. 设n是一个正整数,若n的各位数字之和等于8,那么n的可能取值是:
A) 17
B) 26
C) 35
D) 53
答案:C
解析:题目中要求n的各位数字之和等于8,只有选项C中的
3+5=8,因此选项C是符合条件的。

二、填空题
1. 若三角形的三条边长分别为a,b,c,且满足a<b<c,那么相应的三个角A,B,C的大小关系是:_____。

A) A<B<C
B) A>B<C
C) A<B>C
D) A<C<B
答案:D
解析:由三角形的性质可知,两边之和大于第三边,即a+b>c,所以角C是最大的,即A<C。

又由于a<b<c,所以角B对应的边是最长边,即A<C<B。

2. 若对于一元二次方程ax^2+bx+c=0,其判别式Δ=b^2-4ac<0,那么方程的解为____。

A) 两个虚数根
B) 两个实数根
C) 一个实数根
D) 没有实数根
答案:A
解析:对于判别式Δ=b^2-4ac<0的情况,方程的解为两个虚数根。

三、解答题
1. 小明在做一道数学题时,他将一个数字x加到应该加到另一个数
字的前后,结果变成15。

那么,这个数字x是多少?
答案:假设原本的数字是n,根据题目所给条件,可以得到以下方程:
n + x = 15
解这个方程可以得到:
x = 15 - n
所以,这个数字x是15减去原本的数字n。

2. 某公司在2014年的销售额比上一年增长了20%,如果该公司在2013年的销售额为100万,那么2014年的销售额是多少?
答案:假设2014年的销售额为x万,根据题目所给条件,可以得
到以下方程:
x = 100 + 100 × 20%
解这个方程可以得到:
x = 100 + 20
所以,2014年的销售额为120万元。

综上所述,本文对2014中考数学试题及答案进行了解析和解答。

通过对这些试题的学习和理解,考生可以更好地掌握数学知识和解题技巧,提高自己在中考数学中的表现。

希望本文对考生们有所帮助!。

相关文档
最新文档