光纤通信系统
简述光纤通信系统的组成和优点。

简述光纤通信系统的组成和优点。
光纤通信系统由光源、光纤传输介质、光电转换器、光纤连接器和光纤收发器等组成。
1. 光源:产生光信号的装置,一般使用激光器或发光二极管。
2. 光纤传输介质:用于传输光信号的细长光纤,由玻璃或塑料制成。
3. 光电转换器:将光信号转换为电信号的装置,一般使用光电二极管或光电倍增管。
4. 光纤连接器:用于连接光纤的装置,保证光信号的传输。
5. 光纤收发器:将电信号转换为光信号并进行发送和接收的装置,一般包括光电转换器和光源。
光纤通信系统的优点包括:
1. 大带宽:光纤传输介质具有很高的传输带宽,可以同时传输大量的数据。
2. 低损耗:与传统的电缆相比,光纤传输的信号损耗很小,可以实现远距离传输。
3. 抗干扰性强:光纤通信系统对电磁干扰和信号衰减的抗干扰能力较强,传输质量稳定可靠。
4. 安全性高:光纤通信采用光信号传输,不会产生电磁辐射,不易被窃听和干扰,保障通信的安全性。
5. 体积小、重量轻:光纤通信系统的设备相对较小巧轻便,便于安装和维护。
6. 适用范围广:光纤通信系统适用于各种通信需求,包括电话、互联网、电视信号传输等。
光纤通信系统

系统中仅具有原则旳电接口,而无原则旳光接口。 • 但在SDH系统中,SDH信号速率与其线路速率是相同
旳。
4
4.1.2 IM-DD光纤通信系统旳构 造
1.光发射机 2.光接受机 3.光纤通信系统
5
1.光发射机
(1) 光源旳调制特征 • 光源所采用旳调制方式涉及内调制和外调制
第4章 光纤通信系统
4.1 IM-DD光纤通信系统 4.2 衰减和色散队中继距离旳影响 4.3 噪声及敏捷度分析
1
4.1 IM-DD光纤通信系统
4.1.1 光纤通信中旳线路码型 4.1.2 IM-DD光纤通信系统旳构造
2
4.1.1 光纤通信中旳线路码型
• 在数字光纤通信系统中所传播旳信号是数字信 号,而由互换机送来旳电信号符合ITU-T所要求 旳脉冲编码调制(PCM)通信系统中旳接口码速 率和码型 。
36
2.光接受机
⑥ 光接受机旳动态范围和自动增益控制 • 光接受机旳自动增益控制(AGC)就是用反馈环路来控
制主放大器旳增益,在采用雪崩管旳光接受机中还经 过控制雪崩管旳高压来控制雪崩管旳雪崩增益。
37
2.光接受机
• 图4-23 自动增益控制工作原理方框图
38
2.光接受机
⑦ 解扰、解复用和码型变换电路 • 在光发射机中首先进行码型变换。 • 在光发射机中对数字码流进行扰码处理。 • 还需将判决器输出旳信号进行解扰码和码型变
21
2.光接受机
② 前置放大器 • 因为这个放大器与光电检测器紧紧相连,故称前置放
大器。 • 对多数放大器旳前级提出尤其旳要求是非常必要旳,
它应具有低噪声、高增益旳特征,这么才干得到较大 旳信噪比。 • 因为跨阻型前置放大器不但具有宽频带、低噪声旳优 点,而且其动态范围也比高阻型前置放大器改善诸多, 所以在光纤通信中得到广泛旳使用。
光纤通信系统的组成

光纤通信系统的组成
光纤通信系统是一种高速、高带宽、可靠性强的通信方式,由多个组件构成。
下面将介绍光纤通信系统的主要组成部分:
1. 光纤传输介质:光纤传输介质是光纤通信系统的核心,是传输光信号的媒介。
光纤通信系统中,采用的是光纤传输,光纤传输的优点是传输距离远、传输速度快、带宽大、信号损耗小等优点。
2. 光发射器:光发射器是将电信号转化为光信号的设备,它能将电信号通过调制方式转化成脉冲光信号,再通过光纤传输到接收端。
3. 光接收器:光接收器是将光信号转化为电信号的设备,它可以将光信号转化为电信号,再通过解调方式转化为原始的电信号。
4. 光纤收发器:光纤收发器是将光纤接收器和光发射器集成在一起的设备,将光信号转化为电信号,再通过光纤传输到接收端。
5. 光纤连接器:光纤连接器是将光纤连接在一起的设备,它可以将不同的光纤连接起来,实现光纤通信系统的扩展和连接。
6. 光纤交换机:光纤交换机是一种网络设备,它可以将光纤通信系统中不同的光信号进行转换、分发和管理,实现不同光纤之间的通信和交换。
以上是光纤通信系统的主要组成部分,其中光纤传输介质是光纤通信系统的核心,其他组件都是为了实现光信号的传输、转换和管理等功能而存在的。
随着技术的不断发展,光纤通信系统将会变得更加智能化、高速化和可靠化。
- 1 -。
光纤通信系统

第一节 光纤通信旳发展概况
光波旳波长在微米级,频率为10^14 HZ数 量级.由电磁波谱中能够看出,紫外线、可见光、 红外线均属于光波旳范围.
目前光纤通信使用旳波长范围是在近红外区 内,即波长为0.8~1.8um.可分为短波长和长 波长波段,短波段是指波长为0.85um,长波长 段是指1.31um和1.55um,这是目前所采用旳三 个通信窗口.
光缆
电端机
光端机 光源
电端机
中继器
光检测器
光源
光端机 光检测器
一、光源和光电检测器
1、光源 38页
在光纤通信系统中光源是光发送部分
旳“心脏”,是实现光纤通信旳主要器件之
一.对光源旳要求是:寿命长;有足够旳
输出光功率;电光转换效率应不低于目前
半导体电子器件旳转换率(约10﹪);发射
波长必须在低损耗传播窗口附近;发光面
4、可靠性较高.
LD和LED旳比较
1、激光器优于发光二极管旳方面是:
1)激光器旳响应速度快,可用于较高旳调制速度;
2)激光器旳光谱较窄,应用于单模光纤时,光在光 纤中旳传播引起旳色散小,可用于大容量通信;
3)耦合到光纤中旳功率高,传播旳距离远。 LD不足于LED旳方面是: 1)温度特征差; 2)易损坏,寿命短; 3)激光器旳成本高,价格昂贵。发光二极管便宜; 4)LD旳调制线不如LED. 所以大容量、远距离光纤通信宜用激光管;小容量、
二、按光纤旳模式分类
1、多模光纤通信系统,采用石英多模梯度光纤作为传播线,因 传播频率受到限制,一般应用于140Mbit/s下列旳系统.
2 、单模光纤通信系统,采用石英单模光纤作为传播线,传播容 量大,距离长,目前建设旳光纤通信系统都是这一类型旳.
光纤通信系统

形成光缆
5
中继器
中继器
由于光纤的传输损耗和散射 效应,光信号在传输过程中 会逐渐衰减,因此需要使用 中继器来放大和整形光信号,
以实现长距离传输
中继器通常由掺铒光纤放大 器(EDFA)和光-电-光转换器
组成
掺铒光纤放大器可以对光信 号进行放大,提高光信号的 能量
光纤通信系统主要由光发信机、 光收信机、光缆、中继器等组
成
2
光发信机
光发信机
光发信机是实现电信 号转换为光信号的设 备,主要由光源、驱 动电路和调制电路组
成
光源是发信机的核 心器件,目前常用 的光源有半导体激 光器和发光二极管
驱动电路的作用是 为光源提供足够的 电流,使其发出稳
定的光信号
调制电路的作用是 将电信号加载到光 信号上,实现电信
的可靠性和效率
5
绿色光纤:在光纤的制造和使用过程中,需要注重环保和 节能,推动光纤通信系统的绿色发展
光纤通信系统的关键技术和发展趋势
总的来说,光纤通信系统将继续向着高速、大容量、智 能化、环保等方向发展
未来,随着技术的不断进步和应用需求的不断增加,光 纤通信系统将会得到更加广泛的应用和推广,为人们提
光纤通信系统
-
1 概述 2 光发信机 3 光收信机 4 光缆 5 中继器 6 光纤通信系统的优点和缺点 7 光纤通信系统的应用和发展趋势 8 光纤通信系统的前景展望 9 光纤通信系统的关键技术和发展趋势
1
概述
概述
光纤通信系统是一种利用光波 在光纤中传输信息的通信方式
由于光纤具有传输容量大、抗 干扰能力强、传输距离长等优 点,光纤通信系统已成为现代 通信网的主要传输方式之一
光纤通信系统

什么是光纤通信系统什么是光纤通信系统?本文将从光纤通信系统的构成,发展,优点,光纤通信技术的发展趋势方面来进行阐述。
光纤即为光导纤维的简称。
光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。
从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。
光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。
传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。
光导纤维通信简称光纤通信。
可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。
实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。
光纤通信系统的构成一个实用的光纤通信系统,配置各种功能的电路、设备和辅助设施,如接口电路、复用设备、管理系统以及供电设施等,才能投入运行。
要根据用户需求、要传输的业务种类和所采用传输体制的技术水平等来确定具体的系统结构。
因此,光纤通信系统结构的形式是多种多样的,但其基本结构仍然是确定的。
有种通信系统主要是由3部分组成:光发射机、光纤光缆和光接收机。
由于光纤只能传光信号不能传电信号,因此,这种通信系统在发送端必须先把电信号变成光信号,在接收端再把光信号变为电信号,即电/光和光/电变换。
其电/光和光/电变换的基本方式是直接强度调制和直接检波。
实现过程如下:输入的电信号既可以是模拟信号(如视频信号、电视信号),也可以是数字信号(如计算机数据、PCM 信号);调制器将输入的电信号转换成适合驱动光源器件的电流信号并用来驱动光源器件,对光源器件进行直接强度调制,完成电/光变换的功能;光源输出的光信号直接耦合到传输光纤中,经一定长度的光纤传输后送达接收端;在接收端,光电检测器对输入的光信号进行直接检波,将光信号转换成相应的电信号,再经过放大恢复等电处理过程,弥补线路传输过程中带来的信号损伤(如损耗、波形畸变),最后输出和原始输入信号相一致的电信号,从而完成整个传输过程。
简述光纤通信系统的结构和各部分功能

简述光纤通信系统的结构和各部分功能光纤通信系统是一种基于光纤传输信号的通信系统,由多个部分组成,每个部分都有各自的功能。
下面将对光纤通信系统的结构和各部分功能进行简述。
一、光纤通信系统的结构光纤通信系统一般由光发射器、光纤传输介质、光接收器和光网络设备组成。
1. 光发射器:光发射器是光纤通信系统中的发送端,它将电信号转换成光信号并通过光纤传输介质发送出去。
光发射器的主要功能是将电信号转换为适合光纤传输的光信号,并能够调节光信号的强度和频率。
2. 光纤传输介质:光纤传输介质是光纤通信系统中的传输媒介,它能够将光信号传输到目标地点。
光纤传输介质具有高带宽、低损耗和抗干扰等特点,使得光信号能够在长距离传输过程中保持较高的质量。
3. 光接收器:光接收器是光纤通信系统中的接收端,它接收光纤传输介质中传输的光信号,并将其转换为电信号。
光接收器的主要功能是将光信号转换为电信号,并能够对电信号进行放大和解调等处理。
4. 光网络设备:光网络设备包括光纤交换机、光开关等,它们用于光纤通信系统的网络管理和控制。
光网络设备的主要功能是实现光信号的路由选择、调度和管理,以及对光信号进行调制和解调等处理。
二、各部分功能的详细描述1. 光发射器的功能:光发射器主要负责将电信号转换为适合光纤传输的光信号,并能够调节光信号的强度和频率。
它包括以下几个主要功能:- 光源发生器:产生光信号的光源,常见的有激光二极管、LED等。
- 调制电路:对电信号进行调制,将其转换为光信号。
- 驱动电路:控制光源的开关和调节光信号的强度。
2. 光纤传输介质的功能:光纤传输介质主要负责将光信号传输到目标地点,具有高带宽、低损耗和抗干扰等特点。
其主要功能包括:- 光纤芯:传输光信号的核心部分,由高折射率的材料构成。
- 光纤包层:包裹光纤芯,起到保护和传导光信号的作用。
- 光纤护套:保护光纤传输介质免受外界环境的影响。
3. 光接收器的功能:光接收器主要负责接收光纤传输介质中传输的光信号,并将其转换为电信号。
光纤通信系统的基本概念、组成及特点。

光纤通信系统的基本概念、组成及特点。
光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。
光纤通信系统由三部分组成:光发射机、光接收机和光纤链路。
光发射机由模拟或数字电接口、电压—电流驱动电路和光源组件组成。
模拟或数字电接的作用是实现口阻抗匹配和信号电平匹配(限制输入信号的振幅)作用。
光源—光纤耦合器的作用是把光源发出的光耦合到光纤或光缆中。
光接收机由光检测器组件、放大电路和模拟或数字电接口组成。
光检测器组件包括一段光纤(尾纤或光纤跳线)、光纤—光检波器耦合器、光检测器和电流—电压转换器。
光检测器将光信号转化为电流信号。
然后再通过电流—电压转换器,变成电压信号输出。
模拟或数字电接口对输出电路其阻抗匹配和信号电平匹配作用。
光纤链路由光纤光缆、光纤连接器、光缆终端盒、光缆线路盒和中继器等组成。
光纤光缆由石英或塑料光纤、金属包层和外套管组成。
光纤通信系统的特点有:1.频带宽、传输容量大,损耗小、中继距离长,重量轻、体积小,抗电磁干扰性能好,泄漏小、保密性好,节约金属材料,有利于资源合理使用。
2.传输损耗小:在光纤通信系统中,由于采用了石英等材质作为光纤材料,其传输损耗比普通金属线要小得多。
3.传输容量大:由于光纤通信系统采用光信号传输,因此其传输容量比普通金属线要大得多。
4.抗电磁干扰性能好:由于光纤通信系统采用光信号传输,因此其抗电磁干扰性能比普通金属线要好得多。
5.保密性好:由于光纤通信系统采用光信号传输,因此其保密性比普通金属线要好得多。
6.节约金属材料:由于光纤通信系统采用石英等材质作为光纤材料,因此可以节约大量的金属材料。
7.易于安装和维护:由于光纤通信系统采用光信号传输,因此其安装和维护相对容易。
8.适用于远距离传输:由于光纤通信系统采用石英等材质作为光纤材料,因此可以适用于远距离传输。
9.适用于大规模网络:由于光纤通信系统采用光信号传输,因此可以适用于大规模网络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业导论课程报告题目:光纤通信系统组成及其功能
学院信息工程学院
专业班级
学号
学生姓名
任课老师
完成日期2016年12月6日
光纤通信也作光纤通信,是指一种利用光与光纤传递资讯的一种方式,属于有线通信的一种。
光经过调变后便能携带资讯。
自1980年代起,光纤通信系统对于电信工业产生了革命性的作用,同时也在数位时代里扮演着非常重要的角色。
光纤通信具有传输容量大,保密性好等许多优点。
光纤通信现在已经成为当今最主要的有线通信方式。
将需传送的信息在发送端输入到发送机中,将信息叠加或调制到作为信息信号载体的载波上,然后将已调制的载波通过传输媒质传送到远处的接收端,由接收机解调出原来的信息。
根据信号调制方式的不同,光纤通信可以分为数字光纤通信,模拟光纤通信。
光纤通信的产业包括了光纤光缆,,光器件,光设备,光通信仪表,光通信集成电路等多个领域。
利用光纤作为通讯之用通常举经过下列几个步骤:
1.以发射器产生光讯号;
2.以光纤传递讯号,同时必须确保光讯号在光纤中
不会衰减或是严重变形。
3.以接收器接受光讯号,并且转换成电讯号。
光纤通讯的历史:自古以来人类对于长距离的通讯
需求就不曾削减。
随着时间的前进,从烽火到电报,再到1940年的第一条同轴电缆正式服役,这些通讯系统的复杂度与精细度也不断的进步。
但是这些通讯的方式各有其极限,使用电气讯号传递资讯虽然快捷,但是传输距离会因为电气讯号容易衰减而需要大量的中继器。
微波通讯虽然可以使用空气做介质,可是也会受到载波频率的限制。
到了二十世纪中叶,人们才了解使用光来传递资讯,能带来很多过去没有的显著好处。
然而,当时并没有同调性高的发光源,也没有适合作为传递光讯号的介质,所以光通讯一直只是一个概念。
直到I960年代,雷射的发明才解决了第一项难题。
1970年代康宁公司发展出高品质低衰减的光纤则解决了第二项问题,此时讯号在光纤中传递的衰减量的一次低于光纤通讯之父高馄所提出的每公里衰减20分贝的关卡,证明了光纤作为通信介质的可能性。
与此同时使用砷化镓作为材料的半导体雷射也被发明出来,并且凭借着体积小的优势而大量运用于光纤通讯系统中。
1976年,第一条速率为4407Mbit/s的光纤通信系统在美国亚特兰大的地下管道中诞生。
经过了五年的研发期,第一个商用的光纤通讯系统在
1980年问世。
这个人类史上第一个光纤通讯系统使用波长800纳米的砷化镓雷射作为光源,传输的速率达到45Mb/s,每十公里需要一个中继器增强讯号。
第二代的商用光纤通讯系统也在1980年代初期就发展出来,使用波长1300纳米的磷化砷锢镓雷射。
早期的光纤通讯系统虽然受到色散的问题而影响了讯号品质,但是1980年代末,EDFA的诞生, 堪称光通信历史的一个里程碑似的事件,它使光纤通讯可以直接进行光中继,使长距离高速传输成为可能,并促使了DWDM 的诞生。
第三代的光纤通讯系统改用波长1550纳米的雷射作为光源,而且讯号的衰减已经降至每公里0.2 分贝。
之前使用的磷化砷锢镓雷射的光纤通讯系统常常遭遇到脉波延散问题,而科学家则设计出色散迁移光纤来解决这些问题,这种光纤在传递1550 纳米的光波时,色散几乎为零,因其可以将雷射光的光谱限制在单一纵模。
这些技术上的突破使得第三代光纤通讯系统的传输速率达到2.5Gb/s,而且中继器的间隔可达到100公里远。
第四代光纤通讯系统引进了光放大器,进一步减少
中继器的需求,另外,波分复用技术则大幅度增加传
输速率。
这两项技术的发展让光纤通讯系统的容量以每六个月增加一倍的方式大幅跃进,到了2001年时已经到达10Tb/s的惊人速率,足足是80年代光纤通讯系统的200之多。
近年来,传输速率已经增加到了14Tb/s,每隔160公里才需要一个中继器。
第五代光纤通讯系统发展的重心'在于扩展波长分波多工器的波长操作范围。
传统的波长范围,也就是一般俗称的"C band”约是1530纳米至1570纳米之间,新一代的无水光纤低损耗的波段则延伸到1300纳米至1650纳米之间。
另外一个发展中的技术是引进光弧子的概念,利用光纤的非线性效应,让脉波能够抵抗色散而维持原本的波形。
1990至2000年间,光纤通讯产业受到互联网泡沫的影响而大幅成长。
此外一些新兴的网络应用,如随选视讯使得互联网带宽的成长甚至超过摩尔定律所预期集成电路芯片中晶体管增加的速率。
而自互联网泡沫破灭至2006年为止,光纤通讯产业透
过企业整并壮大规模,以及委外生产的方式降低成本来延续生命。
现在的发展前沿就是全光网络了,使光通信完全的代替电信号通讯系统,当然,这还有很长的路要走。
光纤通讯系统应用:光纤常被电话公司用于传递电话、互联网,或是有线电视的讯号,有时候利用一条光纤就可以同时传递上述的所有讯号。
与传统的铜线相比,光纤的讯号衰减与遭受干扰的情形都改善很多,特别是长距离以及大量传输的使用场合中,光纤的优势更为明显。
然而,在城市之间利用光纤的通讯基础建设通常施工难度以及材料成本难以控制,完工后的系统维运复杂度与成本也居高不下。
因此,早期光纤通讯系统多半应用在长途的通讯需求中,这样才能让光纤的优势彻底发挥,并且抑制住不断增加的成本。
从2000年光通讯市场崩溃后,光纤通讯的成本也不断下探,目前已经和铜缆为骨干的通讯系统不相上下。
对于光纤通讯产业而言,1990年放大器正式进入商业市场的应用后,很多超长距离的光纤通讯才得以真正实现,例如越洋的海底电缆。
到了2002年时,越洋海底电缆的总长已经超过25万公里,每秒能携带的资料量超过2.56Tb,而且根据电信业者的统计,这些数据从2002年后仍然不断的大幅成长中。
通过上述内容我认真了解光纤通讯系统的原理和应用,随着时代的发展和进步,光纤通讯系统随着人们的需求而不断的改进,发展。
同时也认真了解了相关方面
的知识。
光纤通讯系统需要发射器和接收器,以光纤来作为传递讯号进行传递,我们对发射器,传输过程的光缆线,接收器进行相应方面的改进从而达到了加强光通信的传输速率,以及减少了中继器的需求量。
如今,光纤通讯系统追求的是全光社会,任重而道远。