纳米陶瓷材料制备技术教案

合集下载

纳米陶瓷材料制备技术

纳米陶瓷材料制备技术

纳米陶瓷材料制备技术邱安宁5990519118 F9905104陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用.但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使它的应用受到了较大的限制,随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性.英国著名材料专家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径,因此纳米陶瓷的研究就成了当今材料科学研究的热点领域.纳米材料一般指尺寸为1~100nm,处于原子团族和宏观物体交接区域内的粒子.而从原子团族制备材料的方法,称这为纳米技术.纳米材料由于具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应而产生奇异的力学、电学、磁学、热学、光学和化学活性等特性,它既是一种新材料又是新材料的重要原料[3 ].所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上.由于界面占有可与颗粒相比拟的体积百分比,小尺寸效应以及界面的无序性使它具有不同于传统陶瓷的独特性能.本文将描述纳米陶瓷的主要制备技术及加工中的理论问题,并利用在材料加工的原理就其典型应用进行讨论。

2.1决定陶瓷性能的主要因素决定陶瓷性能的主要因素组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响.图1是陶瓷材料的晶粒尺寸与强度的关系图,其中的实线部分是现在已达到的,而延伸的虚线部分则是希望达到的[2 ].从图中可见晶粒尺寸的减小将使材料的力学性能有数量级的提高,同时,由于晶界数量级的大大增加,使可能分布于晶界处的第二相物质的数量减小,晶界变薄使晶界物质对材料性能的负影响减小到最低程度;其次,晶粒的细化使材料不易造成穿晶断裂,有利于提高材料韧性;再次,晶粒的细化将有助于晶粒间的滑移,使材料具有塑性行为.因此,纳米陶瓷将使材料的强度、韧性和超塑性大大提高,长期以来人们追求的陶瓷增韧和强化问题在纳米陶瓷中可望得到解决[4, 5].由于纳米材料中有大量的界面,这些界面为原子提供了短程扩散途径及较高的扩散速率,并使得材料的烧结驱动力也随之剧增,这大大加速了整个烧结过程,使得烧结温度大幅度降低.纳米陶瓷烧结温度约比传统晶粒陶瓷低6 0 0℃,烧结过程也大大缩短[3 , 5],以纳米TiO2 陶瓷为例,不需要加任何助剂,1 2nmTiO2 粉可以在低于常规烧结温度40 0~6 0 0℃下进行烧结,同时陶瓷的致密化速率也迅速提高[3 ].通过对Y2 O3 浓度为3%的ZrO2 纳米粉末的致密化和晶粒生长这2个高温动力学过程进行研究表明,由于晶粒尺寸小,分布窄,晶界与气孔的分离区减小以及烧结温度的降低使得烧结过程中不易出现晶粒的异常生长.控制烧结的条件,已能获得晶粒分布均匀的陶瓷体[6].美国和西德同时报道,成功地制备了具有清洁界面的纳米陶瓷TiO2 (1 2nm),与粒度为1 . 3μmTiO2 陶瓷相比得到相同硬度,而烧结温度降低,因而,纳米粉末的出现,大大改变了材料的烧结动力学,使陶瓷烧结得以很大的改善[5].所谓超塑性是指在拉伸试验中,在一定的应变速率下,材料产生较大的拉伸形变,一般陶瓷中,并不具备金属那样的晶格滑移系统,很难具备超塑性,在纳米材料中利用晶界表面众多的不饱和链,造成沿晶界方向的平移,超塑性就可能实现.如Nieh等人在四方二氧化锆中加入Y2 O3 的陶瓷材料中观察到超塑性达80 0 % ,Si3 N4纳米陶瓷同样存在超塑性行为,是微米级Si3 N4陶瓷的2 1 . 4% [2 , 5].上海硅酸盐研究所研究发现,纳米3Y-TZP陶瓷(1 0 0nm左右)在经室温循环拉伸试验后,其样品的断口区域发生了局部超塑性形变,形变量高达380 % ,并从断口侧面观察到了大量通常出现在金属断口的滑移线[2 ]. tsuki等人对制得的Al2 O3 -SiC纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2 O3 晶界处的纳米SiC粒子发生旋转并嵌入Al2 O3 晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2 O3 -SiC纳米复相陶瓷的蠕变能力[7].最近研究发现,随着粒径的减小,纳米TiO2 和ZnO陶瓷的形变敏感度明显提高,如图2所示,由于这些试样气孔很少,可以认为这种趋势是细晶陶瓷所固有的.最细晶粒处的形变率敏感度大约为0 .0 4,几乎是室温下铅的 1 / 4,表明这些陶瓷具有延展性,尽管没有表现出室温超塑性,但随着晶粒的进一步减少,这一可能是存在的[4].由于纳米陶瓷的晶粒尺寸极小,纳米材料具有极大的晶面,晶面的原子排列混乱,纳米晶粒易在其它晶粒上运动,使纳米陶瓷在受力时易于变形而不呈现脆性.室温下的纳米TiO2 陶瓷晶体表现出很高的韧性,压缩至原长度的 1 / 4仍不破碎.另外,在微米级的陶瓷中引入纳米相,可以抑制基体晶粒长大,使组织结构均化,有利于改善陶瓷材料的力学性能.1 988年Izaki等首先用纳米碳化硅补强氮化硅陶瓷使氮化硅陶瓷力学性能显著改善[3 ].3.制备工艺和方法为获得纳米陶瓷,必须首先制备出小尺寸的纳米级陶瓷粉末,随着世界各国对纳米材料研究的深入,它的制备方法也日新月异,出现了热化学气相反应法、激光气相法、等离子体气相合成法、化学沉淀法、高压水热法、溶胶-凝胶法等新方法,以上各种方法都各有优缺点,为了便于控制反应的条件及粉末的产率、粒径与分布等,实际上也常采用两种或多种制备技术.3.1热化学气相反应法(CVD法)是目前世界上用于制备纳米粉体的常用方法,CVD法制备纳米粉体工艺是一个热化学气相反应和形核生长的过程.在远高于热力学计算临界反应温度条件下,反应产物蒸气形成很高的过饱和蒸气压,使得反应产物自动凝聚形成大量的核,这些核在加热区不断长大聚集成颗粒,在合适的温度下会晶化成为微晶.随着载气气流的输运和真空的抽送,反应产物迅速离开加热区进入低温区,颗粒生长、聚集、晶化过程停止,最后进入收集室收集起来,就可获得所需的纳米粉体 .此工艺过程可通过调节浓度、流速、温度和组成配比等工艺参数获得最佳工艺条件,实现对纳米粉体组成、形貌、尺寸和晶相等的控制.3.2激光气相法(LICVD法)激光气相法是以激光为快速加热热源,利用反应气体分子对特定波长激光束的吸收布产生热解或化学反应,在瞬时完成气相反应的成核、长大和终止,形成超细微粒.通常采用连续波CO2 激光器,加热速率快,高温驻留时间短,迅速冷却,可获得均匀超细,最低颗粒尺寸小于 1 0nm的粉体.该方法反应中心区域与反应器之间被原料气隔离,污染小,能够获得稳定质量的粒径范围为小于50nm的超细粉末,晶粒粒径尺寸可控,同种成分的粉体,激光法可通过合成参数控制粉体的晶型.并适合于制备用液体法和固相法不易直接得到的非氧化物(氮化物,碳化物等),缺点是原料制造价格高,设备要求高,费用贵.3.3等离子体气相合成法(PCVD)pcvd法是制备纳米陶瓷粉体的主要手段之一,它具有高温急剧升温和快速冷却的特点,是制备超细陶瓷粉体的常用手段.目前采用得最多的是热等离子法.等离子气相合成法又分为直流电弧等离子体法(DC法),高频等离子体法(RF法)和复合等离子体法.其中的复合等离子法则是采用DC等离子体法和RF等离子体法二者合一的方式,利用二相相互补充来制备超细陶瓷粉体.该法制得的纳米粉纯度高,稳定性好,效率高 .ee等人采用复合等离子体法,用多级注入的方法以制备Si3 N4和Si3 N4/SiC复合粉体,最终得到颗粒尺寸在1 0~30nm的Si3 N4纳米粉体.在Si3 N4纳米粉体制备过程中,采用分级注入方式对产物中总氮含量、游离硅含量和a-Si3 N4含量都有很大影响.采用三级注入方式,产物基本都是无定型Si3 N4.等离子体法制备技术容易实现批量生产,产率高达 2 0 0~ 1 0 0g/h[1 1 ].高压水热法可有效克服粉末在煅烧过程中颗粒的长大及超细粉末易团聚的弱点.可将化学深沉法制备的Zr(OH)4置于高压中处理,使氢氧化物进行相变,控制高压处理的温度和压力,可制得颗粒尺寸为 1 0~ 1 5nm,形状规则的氧化锆超细粉末.通过对不同前驱体,不同酸碱度及不同矿化剂参与条件下,氧化锆相形成,晶粒生成等机理的研究表明,水热法是极有应用前景的粉末制备工艺3.5溶胶-凝胶(SOL-GEL)法此方法的基本工艺过程包括:醇盐或无机盐水解→SOL-GEL→干燥、焙烧→纳米粉体.有人用醇盐水解SOL-GEL制备出平均粒径小于6nm的TiO2 纳米粉末.也可利用有机金属化合物作起始原料,制备非氧化物超细陶瓷粉体[1 3 ].目前大多数人认为溶液的pH值、溶液浓度、反应温度和反应时间4个主要参数对溶胶-凝胶化过程有重要影响,适当地控制这4个参数可制备出高质量的纳米粉末.如纳米Al2 O3 粉可用低浓度的硝酸铝和氢氧化钠溶液反应生成偏铝酸钠,硝酸中和至pH值为7. 6 ,得到Al(OH)3 凝胶,过滤洗涤后,再加入硝酸形成Al(OH)3 溶胶,在溶胶中通入氨气,至pH值为1 0 ,分离凝胶干燥、焙烧得到纳米Al2 O3 粉体.用此法制备Al2 O3 粉体可通过蒸馏或重结晶技术保证原料的纯度,整个工艺过程不引入杂质离子,有利于高纯纳米粉的制备[1 4].该法在生产上应用较广,但原料价格高,高温热处理时,易使颗粒快速团聚等,故同时可引入冷冻、加压干燥法或形成乳浊液等技术来减小粉体颗粒的团聚.CVD法、LICVD法、PCVD法和SOL-GEL法是制备非氧化物纳米陶瓷粉体主要方法.CVD法对设备要求不高,操作简便,而且便于放大,但较难获得 2 0nm以下的粉体.PCVD法和SOL-GEL法对设备要求较高,但易于获得均匀超细(小于2 0nm)的高纯度、污染小的纳米粉体.SOL-GEL法是最便利的方法,易于大规模生产,缺点是纯度难以保证.3.典型应用(碳化硅及氮化硅纳米粉体制备工艺)3.1热化学气相反应法(CVD法)制备Si C,Si3 N4的硅源主要是硅卤化物和硅烷类物质,如Si Cl4,Si H4,(CH3 )2 Si Cl2 ,Si(CH3 )4等。

精密加工用纳米b4c研磨陶瓷制备关键技术与应用

精密加工用纳米b4c研磨陶瓷制备关键技术与应用

精密加工用纳米b4c研磨陶瓷制备关键技术与应用在当今工业领域中,精密加工技术的发展已成为了提高生产效率和产品质量的重要手段之一。

而纳米B4C研磨陶瓷作为一种新型材料,因其硬度高、耐磨性好等特点,被广泛应用于精密加工领域。

本文将在从浅入深的方式探索精密加工用纳米B4C研磨陶瓷制备的关键技术和应用,旨在更好地理解这一主题。

1. 纳米B4C研磨陶瓷的基本性质Boron Carbide,化学式为B4C,是一种硬度极高的陶瓷材料。

其硬度仅次于金刚石和氮化硼,且具有良好的导热性、耐磨性和耐腐蚀性,因而被广泛应用于领域。

而纳米B4C由于具有更小的颗粒尺寸和更均匀的结构,使得其性能相较于传统B4C材料提升了许多。

2. 纳米B4C研磨陶瓷在精密加工中的应用精密加工工艺要求对材料的硬度和耐磨性有很高的要求,而纳米B4C研磨陶瓷正是满足了这一需求。

在电子、航空航天等领域,纳米B4C研磨陶瓷被广泛应用于磨削、抛光、切割等工序,提高了加工效率和加工质量。

3. 纳米B4C研磨陶瓷的制备关键技术纳米B4C研磨陶瓷的制备主要包括材料选择、粉末制备、成型和烧结等工艺。

在材料选择上,需要选择优质的硼和碳源材料,并通过物理或化学方法将其制备成纳米级别的B4C粉末。

成型和烧结工艺也是影响纳米B4C研磨陶瓷质量的重要因素。

4. 个人观点和总结精密加工用纳米B4C研磨陶瓷制备的关键技术与应用,对于提高工业生产效率、改善产品质量具有重要意义。

通过对纳米B4C研磨陶瓷的深入了解,可以更好地指导实际生产中的工艺和应用。

对于纳米材料研究领域也有着重要的推动作用。

以上是我对精密加工用纳米B4C研磨陶瓷制备关键技术与应用的一些认识和观点,希望能对您有所帮助。

精密加工用纳米B4C研磨陶瓷制备关键技术与应用是一个非常重要的课题,这种新型材料在精密加工领域具有巨大的潜力。

本文将继续探讨该主题,并深入分析纳米B4C 研磨陶瓷的制备关键技术和应用,以及对工业生产的影响。

纳米陶瓷材料ppt课件

纳米陶瓷材料ppt课件

纳米陶瓷材料的应
04
用领域
航空航天领域
飞机发动机部件
纳米陶瓷材料具有优异的耐高温 性能,可用于制造飞机发动机的 部件,如涡轮叶片、燃烧室等。
轻量化结构材料
纳米陶瓷材料具有较低的密度和良 好的力学性能,可用于制造轻量化 的结构材料,如飞机框架、机身等 。
隐身材料
纳米陶瓷材料可以吸收电磁波,用 于制造隐身材料,如隐形飞机的外 壳、雷达吸收层等。
抗疲劳性
由于其纳米级的结构,使 得陶瓷材料在承受反复应 力时具有更高的抗疲劳性 。
热学性能
高热导率
纳米陶瓷材料具有很高的热导率 ,使其在高温环境下保持稳定的 热性能。
抗热冲击
由于其微小的热容量,使得纳米 陶瓷材料在经历快速温度变化时 不易破裂。
光学性能
透明性
某些纳米陶瓷材料具有优秀的透明性 ,可与玻璃相媲美。
汽车工业领域
发动机部件
纳米陶瓷材料可用于制造汽车发 动机的部件,如活塞、气缸套、
涡轮增压器等。
轻量化结构材料
纳米陶瓷材料可用于制造轻量化 的汽车结构材料,如刹车片、离
合器片等。
耐磨材料
纳米陶瓷材料具有较好的耐磨性 能,可用于制造汽车零部件,如
轴承、齿轮等。
能源领域
燃料电池
纳米陶瓷材料可以作为燃料电池的隔膜材料,提 高燃料电池的性能和寿命。
拓展应用领域及市场
总结词
纳米陶瓷材料具有广泛的应用前景,需要拓 展新的应用领域和市场。
详细描述
纳米陶瓷材料具有优异的物理、化学和机械 性能,使其在许多领域具有潜在的应用价值 。未来需要加强研究和开发,发掘新的应用 领域和市场,并推动纳米陶瓷材料的商业化 应用。
加强基础研究及理论探索

纳米陶瓷粉体制备流程

纳米陶瓷粉体制备流程

纳米陶瓷粉体制备流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!纳米陶瓷粉体制备流程。

1. 原料制备:选择高纯度的陶瓷原料(如氧化锆、氧化铝、氧化硅等)。

纳米陶瓷的制备过程

纳米陶瓷的制备过程

纳米陶瓷的制备过程如下:
1. 纳米粉体的制备:纳米粉体的制备是纳米陶瓷生产中最重要的一步,在某种程度上可以说,纳米粉体决定了纳米陶瓷烧结后的质量。

目前,纳米粉体制备方法主要有两种,一种是气相合成法,包括化学气相合成法、高温裂解法和雾转化法。

这是一种极为实用的纳米粉体制备方法。

纳米氧化物粉或非氧化物粉可以通过这种方法制备。

气相合成法最大的优点是制备的纳米粉纯度高,烧结后的纳米陶瓷表面纯度高。

一种是凝结合成法,主要用于制备复合氧化物纳米陶瓷材料。

2. 纳米陶瓷的烧结:在获得所需纳米粉体后,需要对其进行烧结以形成纳米陶瓷材料。

烧结过程通常在高温下进行,以促进原子间的扩散和重新排列,以获得所需的结构和性能。

以上信息仅供参考,如需了解更多信息,建议咨询纳米陶瓷领域的专业人士。

一种纳米陶瓷结合剂的制备方法

一种纳米陶瓷结合剂的制备方法

一种纳米陶瓷结合剂的制备方法引言:纳米陶瓷结合剂是一种能够在纳米尺度下有效连接陶瓷颗粒的材料,具有高强度、高硬度和耐高温等特点。

本文将介绍一种制备纳米陶瓷结合剂的方法。

材料和设备:本实验所需材料有:纳米氧化锆粉体、聚合物溶剂、表面活性剂等。

所需设备有:球磨机、离心机、烘箱等。

步骤:1. 准备纳米氧化锆粉体:将所需的纳米氧化锆粉体进行筛选,以去除杂质和大颗粒,得到均匀细小的粉末。

2. 添加聚合物溶剂:将纳米氧化锆粉体加入聚合物溶剂中,搅拌均匀,以使粉体分散在溶剂中。

3. 球磨处理:将混合物放入球磨机中进行球磨处理。

球磨过程中,通过机械力和摩擦力使纳米氧化锆粉体颗粒与聚合物溶剂中的聚合物发生反应,形成粘结剂。

4. 离心分离:将球磨后的混合物离心分离,去除其中的未反应物和大颗粒。

得到的上清液即为纳米陶瓷结合剂。

5. 干燥处理:将纳米陶瓷结合剂放入烘箱中进行干燥处理,以去除残留的溶剂和水分,得到纯净的纳米陶瓷结合剂。

6. 质量检测:对制备得到的纳米陶瓷结合剂进行质量检测,包括表面活性剂残留、粘结剂含量、颗粒分布等指标的测试。

结果与讨论:通过上述步骤,成功制备得到了一种纳米陶瓷结合剂。

该结合剂具有均匀分散的纳米颗粒和高效的粘结性能。

实验结果表明,球磨时间、球磨速度和球磨介质的选择对制备纳米陶瓷结合剂的性能有重要影响。

适当的球磨条件可以使纳米颗粒更好地与聚合物发生反应,提高结合剂的粘结能力。

结论:本文介绍了一种制备纳米陶瓷结合剂的方法,通过球磨处理和离心分离可以得到高质量的纳米陶瓷结合剂。

该方法制备的纳米陶瓷结合剂具有优异的粘结性能和高分散性,可广泛应用于陶瓷材料的加工和制备过程中。

本文的研究对于纳米陶瓷结合剂的制备和应用具有一定的指导意义,有助于提高陶瓷材料的性能和应用领域的拓展。

陶瓷纳米复合材料的制备及性能研究

陶瓷纳米复合材料的制备及性能研究

陶瓷纳米复合材料的制备及性能研究陶瓷纳米复合材料是当前材料科学领域的一个热门研究方向。

它具有优异的力学性能、化学稳定性和高温耐受性,广泛应用于航天、电子、汽车等领域。

本文将从制备技术和性能研究两个方面探讨陶瓷纳米复合材料。

一、制备技术陶瓷纳米复合材料的制备主要有两种技术:混合法和合成法。

混合法通过将纳米粒子和陶瓷颗粒混合,在高温下进行烧结得到复合材料。

这种方法简单易行,但容易造成颗粒分布不均匀的问题。

合成法则是通过纳米颗粒和陶瓷材料的化学反应,得到具有纳米尺寸的陶瓷颗粒。

这种方法能够控制纳米颗粒的形状和分布,但合成工艺复杂,成本较高。

在制备陶瓷纳米复合材料过程中,选择合适的纳米粒子和陶瓷材料是十分关键的。

纳米粒子的选择应考虑其尺寸、形状和稳定性,以确保其能够均匀分散在陶瓷基体中。

陶瓷材料的选择应根据所需的性能,如强度、硬度和导热性等来确定。

同时,制备过程中的参数控制也非常重要,包括压力、温度和时间等因素。

二、性能研究陶瓷纳米复合材料的性能研究主要包括力学性能和热性能两个方面。

在力学性能方面,陶瓷纳米复合材料展现出了优异的强度和硬度。

纳米颗粒的加入能够有效地增加材料的强度,同时还能够防止裂纹的扩展。

通过调整纳米颗粒的尺寸和比例,可以进一步控制材料的力学性能。

此外,纳米颗粒的增加还能够提高材料的韧性和抗疲劳性能,使其更加适用于高应力和长时间使用的环境。

在热性能方面,陶瓷纳米复合材料具有良好的高温性能和导热性能。

大量纳米颗粒的加入能够增加界面的数量,从而增强材料的导热性能。

同时,纳米颗粒的尺寸效应还能降低材料的导热系数,从而减少热膨胀和热应力的产生。

这使得陶瓷纳米复合材料在高温应用中具有重要的意义,例如航天推进剂和高速发动机等领域。

此外,陶瓷纳米复合材料还具有很多其他优异性能,如耐腐蚀性、耐磨损性和耐久性等。

这些性能的提升使得陶瓷纳米复合材料在各个领域有着广泛的应用前景。

总结陶瓷纳米复合材料的制备和性能研究是当前材料科学领域一个重要的研究方向。

纳米材料制备与应用案例分析教案

纳米材料制备与应用案例分析教案

纳米材料制备与应用案例分析教案纳米材料制备与应用案例分析教案一、教学目标1.让学生了解纳米材料的基本概念和性质。

2.掌握纳米材料的制备方法和技术。

3.分析纳米材料在各领域的应用案例。

4.培养学生的创新思维和实际应用能力。

二、教学内容1.纳米材料的基本概念与性质2.纳米材料的制备方法和技术3.纳米材料的应用案例分析三、教学步骤1.导入新课:通过展示一些常见的纳米产品(如纳米涂层、纳米药物等),引导学生思考这些产品背后的纳米材料制备和应用问题。

2.知识讲解:a. 纳米材料的基本概念:讲解纳米材料的定义、分类和基本性质。

b. 纳米材料的制备方法:介绍物理法(如机械研磨法、激光脉冲法等)、化学法(如溶液法、气相法等)及其他生物法等制备技术。

c. 纳米材料的应用领域:介绍纳米材料在能源、环保、医疗、信息技术等领域的应用案例。

3.案例分析:选取几个典型的纳米材料制备和应用案例进行详细讲解,如碳纳米管的制备及在电子器件中的应用、纳米药物的制备及在肿瘤治疗中的应用等。

4.实践活动:组织学生进行小组讨论,探讨纳米材料在日常生活中的应用以及未来可能的发展趋势。

5.课堂小结:总结纳米材料的制备方法、应用领域以及在各领域中的优势和挑战,加深学生对纳米材料制备与应用的理解。

四、教学评估1.通过小组报告的方式,让学生展示自己对于纳米材料某一应用领域的深入了解,并鼓励他们提出创新性的应用设想。

2.布置相关论文或报告,要求学生针对某一纳米材料的制备方法或应用进行深入研究,培养他们的科研能力和文献综述能力。

3.在课程结束时,组织学生进行小测验,检测他们对纳米材料基本概念和性质的掌握情况。

五、教学反思1.总结本次教学的成功和不足之处,为下一次教学提供改进方向。

2.思考如何更好地激发学生的学习兴趣和创新思维,提高他们的实际应用能力。

3.结合学生的反馈意见,对教学内容和方法进行调整,使教案更加符合学生的需求和学习特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米陶瓷材料制备技术邱安宁5990519118 F99051041.概述陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用.但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使它的应用受到了较大的限制,随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性.英国著名材料专家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径,因此纳米陶瓷的研究就成了当今材料科学研究的热点领域.纳米材料一般指尺寸为1~100nm,处于原子团族和宏观物体交接区域内的粒子.而从原子团族制备材料的方法,称这为纳米技术.纳米材料由于具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应而产生奇异的力学、电学、磁学、热学、光学和化学活性等特性,它既是一种新材料又是新材料的重要原料[3 ].所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上.由于界面占有可与颗粒相比拟的体积百分比,小尺寸效应以及界面的无序性使它具有不同于传统陶瓷的独特性能.本文将描述纳米陶瓷的主要制备技术及加工中的理论问题,并利用在材料加工的原理就其典型应用进行讨论。

2.加工中的理论问题2.1决定陶瓷性能的主要因素决定陶瓷性能的主要因素组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响.图1是陶瓷材料的晶粒尺寸与强度的关系图,其中的实线部分是现在已达到的,而延伸的虚线部分则是希望达到的[2 ].从图中可见晶粒尺寸的减小将使材料的力学性能有数量级的提高,同时,由于晶界数量级的大大增加,使可能分布于晶界处的第二相物质的数量减小,晶界变薄使晶界物质对材料性能的负影响减小到最低程度;其次,晶粒的细化使材料不易造成穿晶断裂,有利于提高材料韧性;再次,晶粒的细化将有助于晶粒间的滑移,使材料具有塑性行为.因此,纳米陶瓷将使材料的强度、韧性和超塑性大大提高,长期以来人们追求的陶瓷增韧和强化问题在纳米陶瓷中可望得到解决[4, 5].2.2扩散及烧结由于纳米材料中有大量的界面,这些界面为原子提供了短程扩散途径及较高的扩散速率,并使得材料的烧结驱动力也随之剧增,这大大加速了整个烧结过程,使得烧结温度大幅度降低.纳米陶瓷烧结温度约比传统晶粒陶瓷低6 0 0℃,烧结过程也大大缩短[3 , 5],以纳米TiO2 陶瓷为例,不需要加任何助剂,1 2nmTiO2 粉可以在低于常规烧结温度40 0~6 0 0℃下进行烧结,同时陶瓷的致密化速率也迅速提高[3 ].通过对Y2 O3 浓度为3%的ZrO2 纳米粉末的致密化和晶粒生长这2个高温动力学过程进行研究表明,由于晶粒尺寸小,分布窄,晶界与气孔的分离区减小以及烧结温度的降低使得烧结过程中不易出现晶粒的异常生长.控制烧结的条件,已能获得晶粒分布均匀的陶瓷体[6].美国和西德同时报道,成功地制备了具有清洁界面的纳米陶瓷TiO2 (1 2nm),与粒度为1 . 3μmTiO2 陶瓷相比得到相同硬度,而烧结温度降低,因而,纳米粉末的出现,大大改变了材料的烧结动力学,使陶瓷烧结得以很大的改善[5].2.3纳米陶瓷的超塑性所谓超塑性是指在拉伸试验中,在一定的应变速率下,材料产生较大的拉伸形变,一般陶瓷中,并不具备金属那样的晶格滑移系统,很难具备超塑性,在纳米材料中利用晶界表面众多的不饱和链,造成沿晶界方向的平移,超塑性就可能实现.如Nieh等人在四方二氧化锆中加入Y2 O3 的陶瓷材料中观察到超塑性达80 0 % ,Si3 N4纳米陶瓷同样存在超塑性行为,是微米级Si3 N4陶瓷的2 1 . 4% [2 , 5].上海硅酸盐研究所研究发现,纳米3Y-TZP陶瓷(1 0 0nm左右)在经室温循环拉伸试验后,其样品的断口区域发生了局部超塑性形变,形变量高达380 % ,并从断口侧面观察到了大量通常出现在金属断口的滑移线[2 ]. tsuki等人对制得的Al2 O3 -SiC纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2 O3 晶界处的纳米SiC粒子发生旋转并嵌入Al2 O3 晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2 O3 -SiC纳米复相陶瓷的蠕变能力[7].最近研究发现,随着粒径的减小,纳米TiO2 和ZnO陶瓷的形变敏感度明显提高,如图2所示,由于这些试样气孔很少,可以认为这种趋势是细晶陶瓷所固有的.最细晶粒处的形变率敏感度大约为0 .0 4,几乎是室温下铅的 1 / 4,表明这些陶瓷具有延展性,尽管没有表现出室温超塑性,但随着晶粒的进一步减少,这一可能是存在的[4].2.4纳米陶瓷增韧由于纳米陶瓷的晶粒尺寸极小,纳米材料具有极大的晶面,晶面的原子排列混乱,纳米晶粒易在其它晶粒上运动,使纳米陶瓷在受力时易于变形而不呈现脆性.室温下的纳米TiO2 陶瓷晶体表现出很高的韧性,压缩至原长度的 1 / 4仍不破碎.另外,在微米级的陶瓷中引入纳米相,可以抑制基体晶粒长大,使组织结构均化,有利于改善陶瓷材料的力学性能.1 988年Izaki等首先用纳米碳化硅补强氮化硅陶瓷使氮化硅陶瓷力学性能显著改善[3 ].3.制备工艺和方法为获得纳米陶瓷,必须首先制备出小尺寸的纳米级陶瓷粉末,随着世界各国对纳米材料研究的深入,它的制备方法也日新月异,出现了热化学气相反应法、激光气相法、等离子体气相合成法、化学沉淀法、高压水热法、溶胶-凝胶法等新方法,以上各种方法都各有优缺点,为了便于控制反应的条件及粉末的产率、粒径与分布等,实际上也常采用两种或多种制备技术.3.1热化学气相反应法(CVD法)是目前世界上用于制备纳米粉体的常用方法,CVD法制备纳米粉体工艺是一个热化学气相反应和形核生长的过程.在远高于热力学计算临界反应温度条件下,反应产物蒸气形成很高的过饱和蒸气压,使得反应产物自动凝聚形成大量的核,这些核在加热区不断长大聚集成颗粒,在合适的温度下会晶化成为微晶.随着载气气流的输运和真空的抽送,反应产物迅速离开加热区进入低温区,颗粒生长、聚集、晶化过程停止,最后进入收集室收集起来,就可获得所需的纳米粉体 .此工艺过程可通过调节浓度、流速、温度和组成配比等工艺参数获得最佳工艺条件,实现对纳米粉体组成、形貌、尺寸和晶相等的控制.3.2激光气相法(LICVD法)激光气相法是以激光为快速加热热源,利用反应气体分子对特定波长激光束的吸收布产生热解或化学反应,在瞬时完成气相反应的成核、长大和终止,形成超细微粒.通常采用连续波CO2 激光器,加热速率快,高温驻留时间短,迅速冷却,可获得均匀超细,最低颗粒尺寸小于 1 0nm的粉体.该方法反应中心区域与反应器之间被原料气隔离,污染小,能够获得稳定质量的粒径范围为小于50nm的超细粉末,晶粒粒径尺寸可控,同种成分的粉体,激光法可通过合成参数控制粉体的晶型.并适合于制备用液体法和固相法不易直接得到的非氧化物(氮化物,碳化物等),缺点是原料制造价格高,设备要求高,费用贵.3.3等离子体气相合成法(PCVD)pcvd法是制备纳米陶瓷粉体的主要手段之一,它具有高温急剧升温和快速冷却的特点,是制备超细陶瓷粉体的常用手段.目前采用得最多的是热等离子法.等离子气相合成法又分为直流电弧等离子体法(DC法),高频等离子体法(RF法)和复合等离子体法.其中的复合等离子法则是采用DC等离子体法和RF等离子体法二者合一的方式,利用二相相互补充来制备超细陶瓷粉体.该法制得的纳米粉纯度高,稳定性好,效率高 .ee等人采用复合等离子体法,用多级注入的方法以制备Si3 N4和Si3 N4/SiC复合粉体,最终得到颗粒尺寸在1 0~30nm的Si3 N4纳米粉体.在Si3 N4纳米粉体制备过程中,采用分级注入方式对产物中总氮含量、游离硅含量和a-Si3 N4含量都有很大影响.采用三级注入方式,产物基本都是无定型Si3 N4.等离子体法制备技术容易实现批量生产,产率高达 2 0 0~ 1 0 0g/h[1 1 ].3.4高压水热法高压水热法可有效克服粉末在煅烧过程中颗粒的长大及超细粉末易团聚的弱点.可将化学深沉法制备的Zr(OH)4置于高压中处理,使氢氧化物进行相变,控制高压处理的温度和压力,可制得颗粒尺寸为 1 0~ 1 5nm,形状规则的氧化锆超细粉末.通过对不同前驱体,不同酸碱度及不同矿化剂参与条件下,氧化锆相形成,晶粒生成等机理的研究表明,水热法是极有应用前景的粉末制备工艺3.5溶胶-凝胶(SOL-GEL)法此方法的基本工艺过程包括:醇盐或无机盐水解→SOL-GEL→干燥、焙烧→纳米粉体.有人用醇盐水解SOL-GEL制备出平均粒径小于6nm的TiO2 纳米粉末.也可利用有机金属化合物作起始原料,制备非氧化物超细陶瓷粉体[1 3 ].目前大多数人认为溶液的pH值、溶液浓度、反应温度和反应时间4个主要参数对溶胶-凝胶化过程有重要影响,适当地控制这4个参数可制备出高质量的纳米粉末.如纳米Al2 O3 粉可用低浓度的硝酸铝和氢氧化钠溶液反应生成偏铝酸钠,硝酸中和至pH值为7. 6 ,得到Al(OH)3 凝胶,过滤洗涤后,再加入硝酸形成Al(OH)3 溶胶,在溶胶中通入氨气,至pH值为1 0 ,分离凝胶干燥、焙烧得到纳米Al2 O3 粉体.用此法制备Al2 O3 粉体可通过蒸馏或重结晶技术保证原料的纯度,整个工艺过程不引入杂质离子,有利于高纯纳米粉的制备[1 4].该法在生产上应用较广,但原料价格高,高温热处理时,易使颗粒快速团聚等,故同时可引入冷冻、加压干燥法或形成乳浊液等技术来减小粉体颗粒的团聚.CVD法、LICVD法、PCVD法和SOL-GEL法是制备非氧化物纳米陶瓷粉体主要方法.CVD法对设备要求不高,操作简便,而且便于放大,但较难获得 2 0nm以下的粉体.PCVD法和SOL-GEL法对设备要求较高,但易于获得均匀超细(小于2 0nm)的高纯度、污染小的纳米粉体.SOL-GEL法是最便利的方法,易于大规模生产,缺点是纯度难以保证.3.典型应用(碳化硅及氮化硅纳米粉体制备工艺)3.1热化学气相反应法(CVD法)制备Si C,Si3 N4的硅源主要是硅卤化物和硅烷类物质,如Si Cl4,Si H4,(CH3 )2 Si Cl2 ,Si(CH3 )4等。

后两者同时含有硅源和碳源。

碳源、氮源一般选用CH4,C2 H2 ,NH3 ,N2 等,反应一般需在还原性H2 条件下进行。

CVD法不仅可以制备Si C,Si3 N4等单相粉体,而且被广泛用来制备各种复合粉体。

Endo[1 2 ]等人,采用Si2 (CH3 )4H2 作为Si,C源制备Si C纳米粉体,在70 0~1 40 0℃条件下,获得粒径在5~2 0 0 nm范围,由βSi C微晶无序排列而成的Si C颗粒。

相关文档
最新文档