纳米材料制备方法综述

合集下载

材料科学领域纳米材料设计方法综述

材料科学领域纳米材料设计方法综述

材料科学领域纳米材料设计方法综述引言:随着纳米科学与技术的迅猛发展,纳米材料引起了广泛关注,并在各个领域展现出巨大的潜力。

纳米材料具有特殊的物理、化学和生物学性质,以及较大的比表面积和界面效应等独特特性。

纳米材料的设计方法和制备技术对于开发新型材料、提高材料性能和创新功能材料具有重要意义。

在材料科学领域,纳米材料的设计方法一直是研究热点之一。

本文将对目前纳米材料设计方法进行综述,包括理论模拟计算方法、实验设计方法以及混合方法等。

一、理论模拟计算方法1. 密度泛函理论(DFT)密度泛函理论是纳米材料设计中经常采用的一种计算方法。

它基于量子力学原理,通过求解Schrödinger方程获得材料的电子结构和物理性质。

DFT可以预测纳米材料的能带结构、原子和分子间的相互作用等重要性质,并能够通过模拟计算进行材料的优化和组装。

然而,DFT也存在一些局限性,如计算复杂度较高,对于大尺寸纳米材料的计算非常困难。

2. 分子动力学模拟(MD)分子动力学模拟是一种基于经典力学原理的计算方法,适用于研究纳米材料的结构和动力学行为。

通过分子间的相互作用力和运动方程,可以模拟出纳米材料的力学性质、热力学性质等。

分子动力学模拟可以预测纳米材料的形貌,优化材料的构型,研究材料的力学响应等。

然而,分子动力学模拟也存在一些局限性,如模拟的时间尺度和空间尺度有限。

二、实验设计方法1. Top-down方法Top-down方法是一种将大尺寸的材料通过加工和刻蚀等方法逐渐减小至纳米尺寸的方法。

例如,通过光刻和电子束曝光等技术,可以在大面积的材料上制备出纳米图案。

Top-down方法适用于制备尺寸较大的纳米材料,具有操作简单、可扩展性强的优点。

但是,这种方法对原料材料的选择和加工工艺的控制要求较高。

2. Bottom-up方法Bottom-up方法是指通过分子自组装和化学合成等方法逐步构建起纳米尺寸的材料。

通过控制反应条件和材料的自组装过程,可以精确调控纳米材料的形貌和结构。

纳米材料的制备方综述

纳米材料的制备方综述

把自己的题目写在此地兰州交通大学2013年7月15日纳米材料的制备方法一、前言纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。

早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。

纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。

当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。

自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。

纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。

应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。

使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。

因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。

利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。

纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。

高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。

纳米材料的自组装综述

纳米材料的自组装综述

纳米材料的自组装综述纳米材料的自组装是一种具有巨大潜力的新兴领域,通过利用分子间的相互作用和动力学行为来自组装出具有特殊结构和性质的纳米材料。

自组装方法不仅能够制备出高度有序的纳米结构,还能够在纳米尺度上控制物质的形貌、结构和性能,因此被广泛应用于纳米科学、纳米技术和材料科学等领域。

自发性自组装是指纳米材料在适当条件下,由于分子间的相互作用和动力学行为,自行组装形成特定的纳米结构。

自发性自组装方法包括溶液中的自组装、蒸发结晶法、自组装膜的自发生成等。

其中,溶液中的自组装是一种常见的方法,通过溶液中的分子之间的静电相互作用、范德华力、水合作用等力来实现自组装。

在适当的溶剂和浓度条件下,纳米材料可以通过纳米粒子的互相吸引和排斥形成特定结构。

蒸发结晶法是一种将溶液中的纳米材料通过蒸发水分使其自行形成纳米结构的方法。

自组装膜的自发生成是指将自组装分子散布在固体基底上,通过控制其组装行为,使其在固体基底上形成自组装膜。

外界控制下的自组装是指通过外界参数的调控来实现纳米材料的自组装。

外界控制下的自组装方法包括利用电场、磁场、光场、温度等外界参数的调控来实现纳米材料的组装行为。

例如,电场可以通过调控分子之间的电荷来实现纳米材料的组装行为;磁场可以通过控制磁性纳米材料的相互作用来实现纳米材料的组装行为;光场可以通过控制光的强度、波长和方向来实现纳米材料的组装行为;温度可以通过调控纳米材料的热运动来实现纳米材料的组装行为。

纳米材料的自组装不仅能够制备出具有特殊结构和性能的纳米材料,还能够为纳米技术和材料科学的发展提供新的方法和途径。

自组装方法可以实现纳米材料的可控制备和自组装膜的可控形成,为纳米技术的实现和材料科学的发展提供了重要的基础。

此外,纳米材料的自组装还具有很多独特的优势,例如可以在大面积上实现纳米尺度的组装、可以制备出高度有序的纳米结构、可以通过改变组装条件来调控纳米材料的性能等。

总之,纳米材料的自组装是一种具有巨大潜力的新兴领域,通过自发性自组装和外界控制下的自组装方法,可以实现纳米材料的有序组装和控制形貌、结构和性能。

纳米材料分散的综述

纳米材料分散的综述

纳米材料分散的综述一、纳米材料简介纳米材料是指尺寸在纳米级别的材料,具有优异的物理、化学和机械性能。

由于其独特的性质,纳米材料在能源、环保、医疗、信息技术等领域具有广泛的应用前景。

二、纳米材料制备方法纳米材料的制备方法多种多样,主要包括物理法、化学法以及生物法。

物理法包括机械球磨法、真空蒸发法等;化学法包括溶液法、气相法等;生物法则利用生物分子的自我组装和生物模板法。

不同的制备方法适用于不同类型的纳米材料,且具有各自的优势和局限性。

三、纳米材料的应用领域纳米材料因其优异的性能被广泛应用于以下领域:1.能源领域:太阳能电池、燃料电池、储能电池等;2.环保领域:空气净化器、水处理设备等;3.医疗领域:药物输送、生物成像、癌症治疗等;4.信息技术领域:电子器件、量子计算等。

四、纳米材料的分散技术纳米材料的分散技术是实现其应用的关键。

纳米材料由于其高比表面积和表面能,容易发生团聚,因此需要对其进行分散。

分散技术可分为物理分散和化学分散。

物理分散包括机械搅拌、超声波分散等;化学分散则是利用表面活性剂或偶联剂进行分散。

五、纳米材料分散的物理化学原理纳米材料分散的物理化学原理主要包括表面能作用、静电力作用和空间位阻作用。

表面能作用是纳米材料分散的主要驱动力,静电力作用则是在带电纳米粒子间的相互作用,空间位阻作用则是利用高分子物质对纳米粒子进行稳定分散。

六、纳米材料分散的方法与技术纳米材料分散的方法与技术主要包括以下几种:1.机械搅拌分散:通过机械搅拌的方式将纳米材料分散在溶剂中,可加入适量的表面活性剂或分散剂以增强分散效果。

2.超声波分散:利用超声波的振动能将纳米材料打散在溶剂中,可有效破解团聚现象。

3.化学分散:利用化学反应改变纳米材料的表面性质,如通过偶联剂对纳米材料进行改性,使其具有更好的分散稳定性。

4.溶剂热法:在高温高压条件下,利用溶剂的性质将纳米材料溶解分散在溶剂中。

此方法可用于制备一些具有特殊性质的纳米材料。

三维纳米材料制备技术综述

三维纳米材料制备技术综述

三维纳米材料制备技术综述随着纳米科技的高速发展,越来越多的纳米材料被广泛应用于各个领域。

而在纳米科技研究中,三维纳米材料制备技术是一个焦点和研究热点。

三维纳米材料具有高比表面积、优异的物理和化学性能,因此在能源、催化、传感器等领域有广泛的应用前景。

本文将综述目前主要的三维纳米材料制备技术。

首先,自下而上的构筑是一种重要的制备三维纳米材料的方法。

该方法主要通过分子自组装、溶胶凝胶法和水热合成等方法来实现。

其中,分子自组装方法是将有机分子通过相互作用力自动组装成三维结构,形成纳米尺度的材料。

溶胶凝胶法是将固体溶胶通过溶胶液体在溶胶凝胶转变过程中形成结构独特的凝胶。

水热合成是利用水热条件下形成热力学稳定的材料。

这些方法制备的三维纳米材料具有结构稳定、形貌可控和高比表面积等显著特点。

其次,模板法也是一种常用的制备三维纳米材料的方法。

模板法主要包括模板刻蚀法和模板填充法两种。

模板刻蚀法是利用已有的模板,在模板表面沉积材料后进行刻蚀,形成三维纳米结构。

常见的模板包括纳米颗粒、聚合物模板和胶体晶体等。

模板填充法是将材料填充到模板的孔隙中,并通过去除模板来得到三维纳米材料。

这种方法制备的三维纳米材料具有孔隙结构和高比表面积,可用于催化剂和电化学电极等领域。

再次,电化学沉积也是一种常见的制备三维纳米材料的方法。

该方法主要利用外加电压或电流在电解质溶液中将金属离子还原成固体金属,使其沉积在电极上,形成纳米材料。

通过控制电化学条件,可以得到不同形貌和结构的三维纳米材料。

这种方法制备的纳米材料具有良好的结晶性和导电性,在电极材料和传感器等领域有广泛应用。

最后,还有一些其他的制备方法,如气相沉积、热处理和光刻技术等。

气相沉积是通过在气相中沉积材料,形成纳米尺度的材料。

热处理是通过控制温度和热处理时间来改变材料的结构和形貌。

光刻技术是利用光敏剂对光的化学反应,制备出具有微米和纳米结构的材料。

综上所述,制备三维纳米材料的技术有很多种,每种方法都有其特点和适用范围。

纳米材料的制备方法

纳米材料的制备方法

纳米材料的制备方法
纳米材料是一种具有纳米尺度特征的材料,其在材料科学领域具有重要的应用
价值。

制备纳米材料的方法多种多样,包括物理方法、化学方法、生物方法等。

下面将介绍几种常见的纳米材料制备方法。

首先,物理方法是一种常见的纳米材料制备方法。

其中,溅射法是一种常用的
物理方法。

通过在真空环境中,利用高能粒子轰击靶材,使靶材表面的原子或分子脱落,从而在基底上形成纳米薄膜。

此外,还有气溶胶法、机械合金化等物理方法也被广泛应用于纳米材料的制备过程中。

其次,化学方法也是一种常见的纳米材料制备方法。

溶胶-凝胶法是一种常用
的化学方法。

通过将溶胶中的溶质在溶剂中溶解,并在一定条件下使其成为凝胶,然后通过热处理或化学处理,形成纳米材料。

此外,还有水热法、溶剂热法等化学方法也被广泛应用于纳米材料的制备过程中。

另外,生物方法也是一种新兴的纳米材料制备方法。

生物合成法是一种常用的
生物方法。

通过利用微生物、植物或动物等生物体内的代谢活性,将金属离子还原成金属纳米颗粒,从而实现纳米材料的制备。

此外,还有基因工程法、生物矿化法等生物方法也被广泛应用于纳米材料的制备过程中。

总的来说,纳米材料的制备方法多种多样,每种方法都有其独特的优势和适用
范围。

在实际应用中,可以根据需要选择合适的制备方法,以获得所需的纳米材料。

随着纳米材料制备技术的不断发展和创新,相信纳米材料将在材料科学领域发挥越来越重要的作用。

纳米粒子的制备方法综述

纳米粒子的制备方法综述

纳⽶粒⼦的制备⽅法综述纳⽶粒⼦的制备⽅法综述摘要:纳⽶材料是近期发展起来的⼀种多功能材料。

在纳⽶材料的当前研究中,其制备⽅法占有极其重要的地位,新的制备⼯艺过程的研究与控制对纳⽶材料的微观结构和性能具有重要的影响。

本⽂主要概述了纳⽶材料传统的及最新的制备⽅法。

纳⽶材料制备的关键是如何控制颗粒的⼤⼩和获得较窄且均匀的粒度分布。

[1]Abstract :Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution .关键词:纳⽶材料制备⽅法Key words :Nanometer material produce-methods正⽂:纳⽶材料的制备⽅法主要包括物理法,化学法和物理化学法等三⼤类。

下⾯分别从三个⽅⾯介绍纳⽶材料的制备⽅法。

物理制备⽅法早期的物理制备⽅法是将较粗的物质粉碎,其最常见的物理制备⽅法有以下三种:1.真空冷凝法⽤真空蒸发、加热、⾼频感应等⽅法使原料⽓化或形成等离⼦体,然后骤冷。

纳米材料制备方法综述

纳米材料制备方法综述

纳米材料制备方法综述
纳米材料由于其特殊性质,近年来受到人们极大的关注。

随着纳米科技的发展,纳米材料的制备方法已日趋成熟。

纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。

一、气相法
气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。

气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。

二、液相法
液相法是以均匀的溶液相为出发点,通过各种途径是溶液和溶剂分离,溶质形成一定形状和大小的颗粒或所需材料的前驱体,再通过干燥或热分解后得到纳米颗粒,该法主要用于氧化物纳米材料的制备。

常用的液相法包括沉淀法,水热法,微乳液法,喷雾法和溶胶-凝胶法。

三、固相法
固相法合成与制备纳米材料是固体材料在不发生熔化、气化的情况下使原始晶体细化或反应生成纳米晶体的过程。

目前,发展出的固相法主要有高能球磨法、固相反应法、大塑性变形法、非晶晶化法及表面纳米化等方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料制备方法综述摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。

随着纳米科技的发展,纳米材料的制备方法已日趋成熟。

纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。

目前,各国科学家在纳米材料的研究方面已取得了显著的成果。

纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。

关键字:纳米材料,制备,固相法,液相法,气相法近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。

纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。

为此,本文综述了纳米材料制备的各种方法并说明其优缺点。

目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。

一、气相法气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。

气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。

1、物理气相沉积(PVD)在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。

采用PVD可制备出高质量的纳米材料粉体。

PVD可分为制备出高质量的纳米粉体。

PVD可分为蒸气-冷凝法和溅射法。

1.1蒸气-冷凝法此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。

通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。

此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。

1.2溅射法用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。

由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。

用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔点和低熔点金属。

常规的热蒸发法只能适用于低熔点金属;能制备多组元的化合物纳米微粒,如A152Ti48、Cu91Mn9及ZrO2等;通过加大被溅射的阴极表面可提高纳米微粒的获得量。

2、化学气相沉积(CVD)该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,具有均匀性好,可对整个基体进行沉积等优点。

其缺点是衬底温度高。

随着其它相关技术的发展,由此衍生出来的许多新技术,如分子束外延(MBE)、金属有机化合物气相沉积(MOCVD)、化学束外延(CBE)、激光诱导化学气相沉积(PICVD)。

2.1分子束外延(MBE)在超高真空系统中相对地放置衬底和几个分子束源炉,将组成化合物的各种元素和掺杂元素等分别放入不同的炉源内,加热炉源使它们以一定的速度和束流强度比喷射到加热的衬底表面上,在表面互相进行晶体的外延生长。

该法可制备出不同的超晶格材料,外延表面和界面可达分子级的平整度。

结合适当的掩膜、激光诱导技术,还可实现3维图形结构的外延生长。

但MBE生长速度较低,一般为0.1~1 um/h。

2.2金属有机化合物气相沉积(MOCVD)MOCVD是用H2将金属有机化合物蒸气和气态的非金属氢化物经过开关网络送入反应室中加热的衬底上,通过加热分解在衬底表面生长出来外延层的技术。

此方法的优点是采用气态源,生长速率比MBE快得多,有利于大面积超薄层、超晶格等材料的批量生产。

不足在于平整度及厚度不好控制,且所用气体源有毒、易燃,使用中必须中必须注意安全。

2.3化学束外延(CBE)CBE是在MBE设备上使用气态源取代固态源,兼有MBE和MOCVD的优点,还可生长出MBE难以控制生长的,但又十分重要的磷化物超晶格材料,能消除MBE材料中经常出现的由Ga源引起的椭圆形缺陷,均匀性好。

3、电阻加热法欲蒸发的物质(如金属、CaF2、NaCl、FeF2等离子化合物、过渡族金属氮化物及氧化物等)置于坩埚内。

通过钨电阻加热器或石墨加热器等加热装置逐渐加热蒸发,产生元物质烟雾,由于惰性气体的对流,烟雾向上移动,并接近充液氮的冷却棒(冷阱, 77K),在接近冷却棒的过程中,元物质蒸汽首先形成原子簇.然后形成单个纳米微粒。

最后在冷却棒表面上积聚起来,用聚四氛乙烯刮刀刮下并收集起来获得纳米粉。

该方法加热方式简单,工作温度受坩埚材料的限制,还可能与坩埚反应。

所以一般用来制备Al、Cu、Au等低熔点金属的纳米粒子。

4、高频感应电流加热法该法以高频感应线圈为热源,使坩埚内的导电物质在涡流作用下加热,在低压惰性气体中蒸发,蒸发后的原子与惰性气体原子碰撞冷却凝聚成纳米颗粒。

由于采用坩埚,所以一般也只是制备低熔点金属的低熔点物质。

5、混合等离子加热法此制备方法是采用RF(射频)等离子与DC直流等离子组合的混合方式来获得纳米粒子, 由中心石英管外的感应线圈产生高频磁场(几MHz)将气体电离产生RF等离子体.内载气携带的原料经等离子体加热、反应生成纳米粒子并附着在冷却壁上。

DC(直流)等离子电弧束来防止RF等离子弧所受干扰,故此称为‘混合等离子”法。

制备的钠米粉末的纯度较高。

6、通电加热蒸发法此法是通过碳棒与金属相接触,通电加热使金属熔化.金属与高温碳棒反应并蒸发形成碳化物超微粒子。

这是实验室制备纳米碳化物常用技术。

优点是可控制惰性气体种类或蒸气压得到不同颗粒度的粒子。

不足是对于高熔点金属(Hf、Ta、W、M o、Nb等)只能得到非晶纳米。

二、液相法液相法是以均匀的溶液相为出发点,通过各种途径是溶液和溶剂分离,溶质形成一定形状和大小的颗粒或所需材料的前驱体,再通过干燥或热分解后得到纳米颗粒,该法主要用于氧化物纳米材料的制备。

常用的液相法包括沉淀法,水热法,微乳液法,喷雾法和溶胶-凝胶法。

1、沉淀法在一种或多种离子的可溶性盐溶液,加入沉淀剂(OH-,CO32- , C2O42-等),形成不溶性氢氧化物、碳酸盐、草酸盐等沉淀物,然后将沉淀物过滤,洗涤,烘干及焙烧,即可得氧化物粉体。

该法简单易行,但是纯度低,颗粒半径大。

共沉淀法还可分为单相共沉淀法(形成单一化合物沉淀)、混合物共沉淀法(形成2种以上化合物沉淀)和均相沉淀法(均匀,缓慢地沉淀)。

2、水热法水热法是通过高温高压在水溶液或蒸汽等流体中合成物质,再经分离和热处理得到纳米微粒。

水热条件下离子反应和水解反应可以得到加速和促进,使一些在常温下反应速度很慢的热力学反应,在水热条件下可以实现快速反应。

依据反应类型不同分为: 水热氧化、还原、沉淀、合成、水解、结晶等。

该法制得的纳米粒子纯度高、分散性好、晶形好且大小可控。

郭景坤等人采用高压水热处理,将化学制得的Zr(OH)4胶体置于高压釜中,控制合适的温度和压力,使氢氧化物进行相变,成功地得到了 10~15nm 的形状规则的 ZrO2超微粒。

3、微乳液法该方法是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相。

这样可使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴内,从而可形成球形颗粒,并避免颗粒间进一步团聚。

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。

4、喷雾法喷雾法是将溶液通过各种物理手段进行雾化获得纳米粒子的一种化学与物理相结合的方法。

它的基本过程包括溶液的制备、喷雾、干燥、收集和热处理,其特点是颗粒分布比较均匀,具体的尺寸范围取决于制备工艺和喷雾的方法。

喷雾法可根据雾化和凝聚过程分为喷雾干燥法、雾化水解法和雾化焙烧法。

5、溶胶-凝胶法溶胶—凝胶法是用易水解的金属化合物(无机盐或金属盐)在某种溶剂中与水发生反应,经过水解与缩聚过程逐渐凝胶化,再经干燥、烧结等后处理得到所需的材料,其基本反应有水解反应和聚合反应,它可在低温下制备纯度高、粒径分布均匀、化学活性高的单、多组份混合物(分子级混合),并可制备传统方法不能或难以制备的产物。

三、固相法固相法合成与制备纳米材料是固体材料在不发生熔化、气化的情况下使原始晶体细化或反应生成纳米晶体的过程。

目前,发展出的固相法主要有高能球磨法、固相反应法、大塑性变形法、非晶晶化法及表面纳米化等方法。

1、高能球磨法1988年,日本京都大学首光采用高能球磨法制备A1一Fe纳米晶材料,是将粗粉体和硬球(钢球、陶瓷球、或玛瑙球)按比例放进球磨机的密封容器内, 利用球磨机的转动或振动,使硬球对原料进行强烈的撞击、研磨和搅拌,把金属或合金粉末粉碎为纳米级微粒的方法。

2、固相反应法固相反应法是指由一种或一种以上的固相物质在热能、电能或机械能的作用下发生合成或分解而生成纳米材料的方法。

固相反应法的典型应用是将金属盐或金属氧化物按一定比例充分混合,研磨后进行煅烧,通过发生合成反应直接制得超微粉或再次粉碎制得纳米粉。

固相法的设备简单,但是生成的粉容易结团,常需要二次粉碎。

3、大塑性变形法俄罗斯科学家R.Z.Valiev 1988年首先报道了利用大塑性变形法获得纳米和亚微米结构的金属和合金。

在大塑性变形过程中,材料产生剧烈塑性变形,导致位错增殖、运动、湮灭、重排等一系列过程,晶粒不断细化达到纳米量级。

此种方法的优点是可以生产出尺寸较大的样品(如板、棒等),而且样品中不含有孔隙类缺陷,晶界洁净。

不足之处一是样品中含有较大的残余应力,适用范围受到材料变形难易程度的限制;另一是晶粒尺寸稍大,一般为100~22 nm。

4、非晶晶化法非晶晶化法是采用快速凝固法将液态金属制备非晶条带,再将非晶条带经过热处理使其晶化获得纳米晶条带的方法。

由非晶晶化法制备的纳米晶体材料晶界清洁,无任何污染,样品中不含微空隙。

非晶晶化法必须首先获得非晶态材料,因而局限在那些化学成分上能形成非晶结构的材料,且大多数只能获得条带状或粉末状样品,很难获得大尺寸块状材料。

5、表面纳米化由于实际应用中材料失效大多数发生在材料的表面,所以材料表面结构和性能的优化能够大大提高材料的整体性,为此,卢柯等人提出了金属材料表面纳米的新概念,将材料的表层晶粒细化至纳米量级而基体仍然保持原粗晶状态,这样不仅能大幅度提高材料的表面性能(如表面强硬度,耐磨性等),而且表层的纳米组织可以显著提高其化学反应活性,使表面化学处理温度下降。

相关文档
最新文档