第三章纳米材料的制备方法

合集下载

零维纳米材料

零维纳米材料
第三章 零维纳米材料
原子团簇
7
第三章 零维纳米材料
原子团簇
8
第三章 零维纳米材料
纯C60固体是绝缘体,用碱金属掺杂之后就成为具 有金属性的导体 ,适当的掺杂成分可以使 C60固 体成为超导体
Hebard等首先发现了临界温度( Tc)为18K的 K3C60超导体
随后改变掺杂元素, 获得了Tc更高的超导体。因 此C60的研究热潮立即应运而来
纳米材料学基础 本章内容
(第三章)
1
零维纳米材料
2
零维纳米材料的制备技术
3
零维纳米材料的物理化学性质
1
第三章 零维纳米材料
1、零维纳米材料
零维纳米材料是指在三个维数上都进入了纳米尺 度范围的材料
零维纳米材料主要包括: 1、团簇(clusters) 2、纳米微粒(nanoparticle)
2
这些原子、离子或分子与金属熔体对流与扩散 使金属蒸发。
23
第三章 零维纳米材料
物理制备方法
物理气相沉积 (PVD)

单源单层蒸发 真空蒸发 单源多层蒸发
多源反应共蒸发
溅射沉积
直流溅射 真空溅射 射频溅射
磁控溅射
离子束溅射
单离子束(反应)溅射 双离子束(反应)溅射 多离子束反应共溅射
24
第三章 零维纳米材料
真空蒸发沉积
蒸发: 在高真空中用加热蒸发的方法使源物质转化
第三章 零维纳米材料
原子团簇
团簇作为一类新的化学物种,直到20世纪80年代才被发现
������ 团簇是指几个至几百个原子的聚集体, 其粒径小于或 等于1 nm,如Fen, CunSm , CnHm和碳族(C60,C70)等等。

纳米材料

纳米材料

绪论1、纳米科技的提出:源自于费曼大师1959年在美国物理学会年会上的一次演讲。

Richard Feynman:世界上首位提出纳米科技构想的科学家。

2、纳米材料(1)纳米材料的定义:物质结构在三维空间至少有一维处于纳米尺度,或由纳米结构单元组成且具有特殊性质的材料(也是以维数划分纳米材料的原因)(2)纳米尺度:1-100 nm范围的几何尺;纳米的单位:1 nm = 10^-9 m,即千分之一微米(μm)。

(3)纳米结构单元:具有纳米尺度结构特征的物质单元,包括纳米团簇、纳米颗粒、纳米管、纳米线、纳米棒、纳米片等(4)纳米材料的维度:○1零维:纳米团簇、纳米颗粒、量子点(三维尺度均为纳米级,没有明显的取向性,近等轴状)○2一维:纳米线、纳米棒、纳米管(单向延伸、二维尺度为纳米级、第三维尺度不限,、直径大于100 nm,具有纳米结构)○3二维:纳米片、纳米带、超晶格、纳米薄膜(一维尺度为纳米级,面状分布,,厚度大于100 nm,具有纳米结构)○4三维:纳米花、四脚针等(包含纳米结构单元,三维尺寸均超过纳米尺度,由不同型低维纳米结构单元复合形成)(5)纳米材料的分类○1具有纳米尺度外形的材料○2以纳米结构单元作为主要结构组分所构成的材料3、久保理论:即金属的超微粒子将出现量子限域效应,显示出与块体金属显著不同的性能;金属纳米粒子,量子限域效应。

4、扫描隧道电子显微镜(STM):将探针靠近导电材料表面进行扫描,获得表面图像。

分辨率达0.1~0.2 nm,可以直接观察和移动原子。

5、原子力显微镜(AFM):利用针尖和材料原子间的相互微弱作用力来获得材料表面的形貌图像。

可用于研究半导体、导体和绝缘体。

AFM三大特点:原子级高分辨率、观察活生命样品和加工样品的力行为成就。

6、纳米科技的研究内容:纳米科学、纳米技术与纳米工程分支学科:纳米力学:研究物体在纳米尺度的力学性质纳米物理学:研究物质在纳米尺度上的物理现象及表征纳米化学:研究纳米尺度范围的化学过程及反应纳米生物学:利用纳米的手段解决生物学问题,在分子水平揭示细胞内外的物质、能量与信息交换机制;纳米医学:利用纳米科技解决医学问题的边缘交叉学科纳米材料学:包括纳米材料的成分、结构、性能与使用效能四个方面。

第三章:纳米材料基本理论

第三章:纳米材料基本理论

组装法
强迫组装 自组装

强迫组装
自组装
分立能级
量子尺寸效应
当粒子尺寸下降到某一值时,金属
费米能级附近的电子能级由准连续 变为离散能级的现象和纳米半导体 微粒存在不连续的最高被占据分子 轨道和最低未被占据的分子轨道能 级,能隙变宽现象均称为量子尺寸 效应.
量子尺寸效应
当能级间距大于热能、磁能、静磁能、静 电能、光子能量或超导态的凝聚能时,这 时必须要考虑量子尺寸效应,这会导致纳 米微粒磁、光、声、热、电以及超导电性 与宏观特性有着显著的不同. 纳米微粒的比热、磁化率与所含的电子奇 偶性有关,光谱线的频移,催化性质与粒 子所含电子数的奇偶有关. 导体变绝缘体等.
2.表面效应
表面效应
表面原子百分数
纳米粒子直径(nm)
2.表面效应
不同表面原子不同配位缺失

表面效应



随着粒径减小,表面原子数迅速增加.这是由于粒径小, 表面积急剧变大所致. 粒径为10 nm时,比表面积为90m2/g,粒径为5 nm时, 比表面积为 180m2/g,粒径下降2nm,比表面积猛增到 450m2/g. 这样高的比表面,使处于表面的原子数越来越多,同时, 表面能迅速增加. 由于表面原-子数增多,原子配位不足及高的表面能,使 这些表面原子具有高的活性,极不稳定,很容易与其他原 子结合. 例如金属的纳米粒子在空气中会燃烧,无机的纳米粒子暴 露在空气中会吸附气体,并与气体进行反应.

1. 分类:物理方法和化学方法
几种化学方法简介
1)化学气相沉积法(Chemical Vapor Deposition, CVD) 利用气态或蒸汽态的物质在气相或气固界面上反应生成固 态沉积物的技术。 20世纪60年代John M Blocher Jr等首先提出Vapor Deposition,根据过程的性质分为PVD 和CVD。 CVD技术被广泛应用于半导体和集成电路技术: ♣CVD是目前超纯多晶硅的唯一生产方法; ♣化合物半导体的制备,比如III-V族半导体; ♣各种搀杂半导体薄膜的生长,以及绝缘薄膜的生长

纳米粉体材料的制备

纳米粉体材料的制备
但易开裂。
3-8
Preparation of nanoparticles
(一)溶胶制备工艺
1、 有机途径
组成: 母体——醇盐,浓度10~50%;
溶剂——乙醇; 催化剂——盐酸、醋酸等 螯合剂——乙酰丙酮 水——用量一定要控制
特点:水、溶剂挥发,干燥龟裂;
薄膜厚度受限; 但可反复涂覆。
3-9
Preparation of nanoparticles
优缺点
A 样品的晶型结构完整,原料便宜;
B 设备简单、适于批量生产;
C 粉末易团聚,制备较为困难。
3 - 36
Preparation of nanoparticles
2) 水热法(高温水解法)
定义:指在高温(100~1000℃)高压(10~100Mpa)下,利用
溶液中物质化学反应进行的合成。
水的作用:作为一种组分参与反应(即是溶剂又是矿化
研究进展:己制备出多种单质、无机化合物和复合材料超细微粉
末;目前已进入规模生产阶段,美国的MIT(麻省理工学)于1986 年已建成年产几十吨的装置。
3 - 33
Preparation of nanoparticles
4 液相法 特点:化学组成可控 → 高纯、均相 成核速度可控 → 合成温度低 形状大小可控 → 纳米颗粒
分类:溶胶凝胶法;沉淀法;水热法等。
3 - 34
Preparation of nanoparticles
1)沉淀-共沉淀法
定义:含阳离子的溶液中加入沉淀剂后,使离子沉淀的 方法。(以沉淀反应为基础) 分类: 单组分沉淀:溶液只含一种阳离子,得到单组分沉淀。 单相共沉淀:溶液含多种阳离子,沉淀为化合物 (固溶体)。 共沉淀:溶液中含多种阳离子,沉淀产物为混合物。

纳米粉体的制备(气相方法)

纳米粉体的制备(气相方法)

§3.1.1 气体冷凝法
• 根据加热源进行分类: 不同的加热方法制备出的超微粒的量、品种、粒径 大小及分布等存在一些差别。 • • • • • • • 1)电阻加热; 2)高频感应加热; 3)阴极溅射加热; 4)激光加热; 5)微波加热; 6)等离子体加热 ……
气体冷凝法根据加热源分类
• (1) 电阻加热:(电阻丝) • 电阻加热法通常使用螺旋纤维或舟状的电阻发 热体。如图
• 采用等离子体加热蒸发法可以制备出金属、合 金或金属化合物纳米粒子的优点: • 等离子体温度高,几乎可以制取任何金属的微 粒。 • 金属或合金可以直接蒸发、急冷而形成原物质 的纳米粒子,为纯粹的物理过程;而金属化合 物,如氧化物、碳化物、氮化物的制备,一般 需经过金属蒸发化学反应急冷,最后形成 金属化合物纳米粒子。 • 缺点:等离子体喷射的射流容易将金属熔融物 质本身吹飞,这是工业中应解决的技术难点。
气体冷凝法根据加热源分类
(3) 溅射法
• 溅射法制备纳米微粒的原理:如图 • 用两块金属板分别作为阳极和阴极,阴极为蒸 发用的材料,在两电极间充入Ar气(40~250 Pa), 两电极间施加的电压范围为0.3~1.5 kV。 • 由于两电极间的辉光放电使Ar离子形成,在电 场的作用下Ar离子冲击阴极靶材表面(加热靶 材),使靶材原子从其表面蒸发出来形成超微粒 子,并在附着面上沉积下来。
• ② 影响因素: • SiC超微粒的获得量随电流的增大而增多。 例如,在400 Pa的Ar气中,当电流为400 A, SiC超微粒的收率为约0.58 g/min。 • 惰性气体种类不同超微粒的大小也不同。 He气中形成的SiC为小球形,Ar气中为大颗粒。 • 用此种方法还可以制备Cr,Ti,V,Zr等结晶 性碳化物纳米微粒,而Mo,Nb,Ta和W等高 熔点金属只能得到非晶态纳米微粒。

纳米银颗粒的制备及其生物应用

纳米银颗粒的制备及其生物应用

纳米银颗粒的制备及其生物应用第一章纳米银颗粒的制备近年来,纳米技术的快速发展为制备纳米材料提供了新的思路和手段。

纳米银颗粒是一种重要的纳米材料,具有优异的物理化学性质和广泛的生物应用价值。

本章将介绍几种常见的纳米银颗粒制备方法。

1. 溶胶-凝胶法溶胶-凝胶法是制备纳米银颗粒的一种常用方法。

其基本原理是在水相中加入氢氧化钠、硝酸银等化学试剂,调节溶液的pH值和温度,使之发生聚合反应,最终制得纳米银颗粒。

2. 化学还原法化学还原法是制备纳米银颗粒的常见方法之一。

该方法基于还原剂对银离子的还原作用,使银离子逐渐为金属银还原成纳米银颗粒。

3. 光化学法光化学法是使用光去还原银离子制备纳米银颗粒的方法。

其具体原理是利用光照后的电子能量使得还原剂对银离子进行还原,形成纳米银颗粒。

第二章纳米银颗粒的生物应用纳米银颗粒具有优异的物理化学性质和生物学特性,已被广泛应用于医学领域、生物成像、抗菌材料等领域。

1.抗菌作用纳米银颗粒具有较强的抗菌作用,对多种细菌、真菌和病毒等有杀灭作用。

其抗菌机制主要是通过破坏细胞膜和细胞壁、电子转移和氧化应激等方式实现。

2.生物成像纳米银颗粒在生物成像中表现出较好的成像效果。

其主要原因是纳米银颗粒表面的等离子体共振(SPR)效应,使得其在近红外区域具有强烈的吸收和散射光信号,因此在纳米粒子标记的生物体内成像效果非常突出。

3.治疗肿瘤近年来,纳米银颗粒因其优异的物理化学性质和生物学特性被广泛应用于肿瘤治疗。

研究表明,纳米银颗粒可以抑制肿瘤细胞增殖,并对肿瘤组织产生热效应,从而达到治疗作用。

第三章纳米银颗粒的应用前景随着纳米技术的不断发展,纳米银颗粒在医学、生物学、环境保护等领域有着广阔的应用前景。

纳米银颗粒在医药领域可以应用于抗菌材料、诊断成像和疾病治疗等方面,同时也可作为环境净化材料、电子材料、植物保护等领域的新兴应用。

总之,纳米银颗粒作为一种重要的纳米材料,在生物医学应用、环境治理等领域有着广泛的应用前景。

纳米材料的制备方法

纳米材料的制备方法

纳米材料的制备方法
纳米材料是一种具有纳米尺度特征的材料,其在材料科学领域具有重要的应用
价值。

制备纳米材料的方法多种多样,包括物理方法、化学方法、生物方法等。

下面将介绍几种常见的纳米材料制备方法。

首先,物理方法是一种常见的纳米材料制备方法。

其中,溅射法是一种常用的
物理方法。

通过在真空环境中,利用高能粒子轰击靶材,使靶材表面的原子或分子脱落,从而在基底上形成纳米薄膜。

此外,还有气溶胶法、机械合金化等物理方法也被广泛应用于纳米材料的制备过程中。

其次,化学方法也是一种常见的纳米材料制备方法。

溶胶-凝胶法是一种常用
的化学方法。

通过将溶胶中的溶质在溶剂中溶解,并在一定条件下使其成为凝胶,然后通过热处理或化学处理,形成纳米材料。

此外,还有水热法、溶剂热法等化学方法也被广泛应用于纳米材料的制备过程中。

另外,生物方法也是一种新兴的纳米材料制备方法。

生物合成法是一种常用的
生物方法。

通过利用微生物、植物或动物等生物体内的代谢活性,将金属离子还原成金属纳米颗粒,从而实现纳米材料的制备。

此外,还有基因工程法、生物矿化法等生物方法也被广泛应用于纳米材料的制备过程中。

总的来说,纳米材料的制备方法多种多样,每种方法都有其独特的优势和适用
范围。

在实际应用中,可以根据需要选择合适的制备方法,以获得所需的纳米材料。

随着纳米材料制备技术的不断发展和创新,相信纳米材料将在材料科学领域发挥越来越重要的作用。

第三章_胶体及纳米材料制备

第三章_胶体及纳米材料制备

① 机械分散法
就是用粉碎设备将大块物质粉碎成要求的尺寸。
常用的粉碎设备有气流磨、各种类型高速机械冲击式粉碎机、各种类型搅拌磨、振动磨、球磨、胶 体磨等。常见的分级设备见《胶体与表面化学》第10页表2-1。
这种方法的效率较差,物料颗粒最细也就磨到1m左右。在研磨过程中及时将达到要求的颗粒分离出 去也非常关键。
机械分散示意图
② 电分散法
主要用于制备金属水溶胶。 该法将欲分散的金属作为阳极,浸入水中,通入直流电(一般电流5-10A,电压40-60V),调节两电极 间的距离,使其相互靠近而产生电弧,电弧温度很高,使电极表面金属气化,金属蒸气遇冷水而冷凝成胶 体系统。在制备时可在水中加入少量的碱作稳定剂,而形成稳定的溶胶。
晶体成长速度v2:
v2 K2D(cS)
式中:D为溶质分子的扩散系数
由此式可看出,v2也与过饱和度成正比。但其对v2的影响要比对v1的影响要小,而介质对扩散系数D 的影响很大,从而对v2的影响也很大。
在凝聚过程中,v1、v2是相互联系的,当v1>>v2时,溶液中会形成大量晶核,所得粒子的分散度较大, 有利于形成溶胶;反之,v1<<v2时,所得晶核很少,而晶体生长速度很快,粒子容易长大并产生沉淀。
1.分散法
⑴ 分散法特点: ③ 在分散过程中,随着分散时间延长,颗粒变小,比表面积增大,颗粒团聚的趋势增强,达
到一定程度后,分散作用与聚集作用达到平衡,颗粒不再变细。 要提高效率,需要添加合适的分散剂(稳定剂、助磨剂),以降低粒子表面能。
1.分散法 ⑵ 分散方法
机械分散法 电分散法 超声波分散法 胶溶法
A g+N H 2N H 2 A g 2 H A u C l 4 3 H 2 O 2 2 A u 8 H C l 3 O 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章纳米材料的制备方法
纳米材料的制备方法可以分为物理方法、化学方法和生物方法三类。

物理方法包括机械法、气相法和溶液法等;化学方法包括沉淀法、溶胶-凝胶法、化学气相沉积法等;而生物方法主要是利用生物体或生物分子在生物环境下合成纳米材料。

机械法是指通过力的作用将宏观材料制备成纳米尺寸的材料,常见的方法有高能球磨法和挤压法。

高能球磨法是通过高能球磨机将粗颗粒材料和球磨介质一起置于球磨罐中进行强烈碰撞实现的。

挤压法则是将粗颗粒材料置于特定的装置中,通过外力作用使材料变形而制备纳米材料。

气相法是通过气相反应将气态物质制备成纳米材料,常见的方法有气相沉积法和气溶胶法两种。

气相沉积法是将气态前体输送到反应器中,在特定温度和压力条件下发生化学反应,生成纳米颗粒。

气溶胶法则是将气态前体生产成准稳态悬浮液,再经过控制条件使气溶胶中的颗粒在特定条件下成长。

溶液法是通过将溶液中溶解的化合物沉淀出来形成纳米颗粒的方法,常见的方法有沉淀法和溶胶-凝胶法。

沉淀法是将两种反应物溶解在溶液中,然后通过添加沉淀剂使沉淀物形成纳米颗粒。

溶胶-凝胶法则是将溶胶转变成凝胶,在适当条件下控制凝胶的形成和热处理过程,最终制备成纳米材料。

化学气相沉积法是通过在可控的气相条件下,将气态前体沉积在衬底上生成纳米颗粒的方法,主要应用于金属和半导体纳米材料的制备。

该方法需要控制反应气体的成分和温度,以及反应时间和衬底的性质。

生物方法是指利用生物体或生物分子在生物环境下合成纳米材料,包
括微生物法和生物模板法两种。

微生物法是利用微生物在代谢过程中产生
的酶或其他生物分子对金属离子进行还原或沉淀,形成金属纳米材料。


物模板法则是利用生物体的分子结构作为模板,在其表面沉积纳米材料,
通过控制反应条件可以得到不同形状和尺寸的纳米材料。

总结而言,纳米材料的制备方法多种多样,从物理方法到化学方法再
到生物方法,每种方法都有其独特的优势和适用范围。

在制备纳米材料时,需要考虑材料性质、制备条件以及后续应用等因素,以选择最适合的制备
方法。

随着纳米科技的发展,对纳米材料制备方法的研究也将不断深入,
为纳米材料的应用提供更多的可能性。

相关文档
最新文档