第38讲 不定方程

第38讲  不定方程
第38讲  不定方程

第六讲 函数与方程

函数与方程 一、函数的零点: 定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。 特别提醒: 函数零点个数的确定方法: 1、判断二次函数的零点个数一般由判别式的情况完成; 2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行; 3、对于一般函数零点的个数的判断问题不仅要在闭区间[] ,a b 上是连续不间断的,且f(a)?f (b )<0,还必须结合函数的图像和性质才能确定。函数有多少个零点就是其对应的方程有多少个实数解。 二、二分法: 定义:对于区间[] ,a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。 特别提醒: 用二分法求函数零点的近似值 第一步:确定区间[] ,a b ,验证:f(a)?f (b )<0,给定精确度; 第二步:求区间[] ,a b 得中点1x ; 第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)?f (x 1)<0,则令1b x =; 若f(x 1)?f (b )<0,则令1a x = 第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则 重复第二、三、四步。 (20-40分钟) 类型一求函数的零点 例1:求函数y =x -1的零点:

六年级奥数第28讲:不定方程

简单的不定方程 所谓有定方程,是指未知数的个数多于方程个数的方程(组)。解不定方程的方法是: (1)根据整除知识,缩小未知数的取值范围,然后试算求解。 (2)分析末位数字,缩小未知数的取值范围,寻求方程的整数解。 (3)求出一个未知数用另一个未知数表示的式子,然后试算求解。 (4)直接根据方程确定未知数的取值范围,通过试算求解。 例1、马小富在甲公司打工,几个月后又在乙公司兼职。甲公每月付给他薪金470元,乙公司每月付给他薪金350元。年终,马小富从两家公司共获薪金7 620元。问他在甲公司打工多少个月,在乙公司兼职多少个月。 做一做:有A、B、C三种商品若干,价值共300元,其中A商品单价为16元,B商品单价为158元,C商品单价为19元。那么,全部C商品至少价值多少元?最多价值多少元? 例2、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都损耗1毫米铜管,那么,只有当锯得的38毫米铜管和90毫米的铜管各为多少段时,所损耗的铜管才能最少?

做一做:一个同学把他生日的月份乘以31,日期乘以12,然后加起来的和是170,你知道他出生于何月何日吗? 例3、某单位的职工到效外植树,其中的男职工,也有女职工,并有3 1的职工各带一个孩子参加,男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们共种了216棵树,那么其中女职工有多少人? 做一做:一群猴子采摘水蜜桃。猴王不在的时候,一只大猴子1小时可采摘15千克,一只小猴子1小时可采摘11千克;猴王在场监督的时候,大猴子的51和小猴子的5 1必须停止采摘,去伺候猴王,有一天采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共摘3 382千克水密桃。问:在这个猴群中,共有大猴子多少只? 例4、小明用5天时间看完一本200页的故事书。已知第二天看的页数比第一天多,第三天看的页数是第一天、第二天看的页数之和,第四天看的页数是第五天至少看了多少页?

数论--综合-第6讲初等数论竞赛班学生版

第六讲 初等数论 初等数论是主要用算术方法研究整数最基本性质的一个数学分支,是数学中最古老的分支之一.近几十年来,初等数论在计算机科学、组合数学、代数编码、信号的数字处理等领域得到广泛应用.同时,初等数论在各类数学竞赛中占有重要地位,以国际数学奥林匹克为例,约有四分之一的题目是主要用初等数论知识来解的. 一、 基础知识 1. 整除理论 性质1:如果a b ,b c ,那么a c ; 性质2:若a b ,a c ,则对于任意整数x 、y 都有a bx cy + 2. 质数与合数 性质1:设n 为大于1的正整数,p 是n 的大于1的约数中最小的正整数,则p 为质数; 性质2:如果对任意1到n 之间的质数p ,都有p 不整除n ,那么n 为质数,这里n 为大于1的正整数; 性质3:质数有无穷多个; 性质4:质数中只有一个数是偶数,即2; 3. 同余 定义:如果a 、b 除以m (正整数)所得得余数相同,那么称a 、b 对模m 同余,记作 (mod )a b m ≡ 性质1:如果(mod )a b m ≡,则m a b -; 性质2:若(mod )a b m ≡,(mod )c d m ≡则(mod )a c b d m +≡+ (mod )a c b d m -≡-,(mod )ac bd m ≡ 性质3:(mod )a b m ≡,n 为正整数,则(mod )n n a b m ≡ 4. 费尔马小定理 Fermat 小定理:设p 为质数,a 为整数,则(mod )p a a p ≡.特别地,如果a 不能被p 整除,则 11(mod )p a p -≡ 二、 例题部分 例1(★★,2006年希望杯初二培训题)已知一个五位数用4,5,6,7,8五个数码各一次组成,如64875等,在这样的五位数中,能被55整除的有几个,它们分别是多少? 《数理天地》2005增刊P22,80 例2(★★,86年全国)设a 、b 、c 是三个互不相等的正整数,求证:在33a b ab -,33b c bc -,33c a ca -

第8讲 函数与方程

第八讲《函数与方程》 【学习目标】理解零点与方程实数解的关系,掌握函数的概念,性质,图像和方法的综合问题,熟悉导数与零点的结合,方程,不等式,数列与函数结合的问题。【基础知识回顾】: 1、 2.用二分法求方程近似解的一般步骤:

【基础知识自测】 1、已知不间断函数)(x f 在区间[]b a ,上单调,且)()(b f a f ?<0,则方程0)(=x f 在区间??b a ,上 ( ) (A ) 至少有一实根 ( B ) 至多有一实根 (C )没有实根 ( D )必有唯一的实根 2、函数x x f x 2ln )(- =的零点所在的大致区间是( ) (A ) (1,2) ( B ) (2,3) ( C ) (e,3) ( D )(e,+∞) 4、若函数)(x f 的图像与函数)(x g 的图像有且只有一个交点,则必有( ) (A )、函数)(x f y =有且只有一个零点 (B )、函数)(x g y =有且只有一个零点 C 、函数)()(x g x f y +=有且只有一个零点 D 、函数)()(x g x f y -=有且只有一个零点 5、已知y=x(x-1)(x+1)的图像如图所示,令f(x)=x(x-1)(x+1)+0.01,则下列关于f(x)=0的解得叙述正确的是 ① 有三个实根 ② 当x>1时,恰有一实根 ③当0

初二数学竞赛辅导资料(共12讲)

初二数学竞赛辅导资料(共12讲) 目录 本内容适合八年级学生竞赛拔高使用重点落实在奥赛方面的基础知识和基本技能培训和提高本内容难度适中讲练结合由浅入深讲解与练习同步重在提高学生的数学分析能力与解题能力另外在本次培训中内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容其中《因式分解》为初二下册内容但是考虑到它的重要性和工具性将在本次培训进行具体解读注有标注的为选做内容 本次培训具体计划如下以供参考 第一讲实数一 第二讲实数二 第三讲平面直角坐标系函数 第四讲一次函数一 第五讲一次函数二 第六讲全等三角形 第七讲直角三角形与勾股定理 第八讲株洲市初二数学竞赛模拟卷未装订在内另发 第九讲竞赛中整数性质的运用 第十讲不定方程与应用 第十一讲因式分解的方法

第十二讲因式分解的应用 第十三讲考试未装订在内另发 第十四讲试卷讲评 第1讲实数一 知识梳理 一非负数正数和零统称为非负数 1几种常见的非负数 1实数的绝对值是非负数即a≥0 在数轴上表示实数a的点到原点的距离叫做实数a的绝对值用a来表示设a为实数则 绝对值的性质 ①绝对值最小的实数是0 ②若a与b互为相反数则a=ba=ba=b ③对任意实数a则a≥a a≥-a ④a·b=ab b≠0 ⑤a-b≤a±b≤a+b 2实数的偶次幂是非负数 如果a为任意实数则≥0n为自然数当n=1≥0 3算术平方根是非负数即≥0其中a≥0 算术平方根的性质 a≥0 = 2非负数的性质 1有限个非负数的和积商除数不为零是非负数

2若干个非负数的和等于零则每个加数都为零 3若非负数不大于零则此非负数必为零 3对于形如的式子被开方数必须为非负数 4推广到的化简 5利用配方法来解题开平方或开立方时将被开方数配成完全平方式或完全立方 例题精讲 ◆专题一利用非负数的性质解题 例1已知实数xyz满足求x+y+z的平方根 巩固 1已知则的值为______________ 2若 的值 拓展 设abc是实数若求abc的值 ◆专题二对于的应用 例2已知xy是实数且 例3 已知适合关系式求的值 巩固 1已知b=且的算术平方根是的立方根是试求的平方根和立方根 2已知则

六年级奥数考点:不定方程问题

考点:不定方程问题 一、知识要点 当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。如5x-3y=9就是不定方程。这种方程的解是不确定的。如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。如5x-3y=9的解有: x=2.4 x=2.7 x=3.06 x=3.6 y=1 y=1.5 y=2.1 y=3 如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。 解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。 对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。 解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。 二、精讲精练 【例题1】求3x+4y=23的自然数解。 先将原方程变形,y=23-3x 4 。可列表试验求解: 所以方程3x+4y=23的自然数解为 X=1 x=5

Y=5 y=2 练习1 1、(课后)求3x+2y=25的自然数解。 2、求4x+5y=37的自然数解。 3、求5x-3y=16的最小自然数解。 【例题2】求下列方程组的正整数解。 5x+7y+3z=25 3x-y-6z=2 这是一个三元一次不定方程组。解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。 5x+7y+3z=25 ① 3x-y-6z=2 ② 由①×2+②,得13x+13y=52 X+y=4 ③ 把③式变形,得y=4-x。 因为x、y、z都是正整数,所以x只能取1、2、3. 当x=1时,y=3 当x=2时,y=2 当x=3时,y=1 把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。 x=2,y=2时,z也无正整数解。 x=3时,y=1时,z=1.

六年级奥数—— 不定方程

第六讲 不定方程 【知识要点】 1、许多数学家需要用方程或方程组来求解。要想获得未知数的唯一解,能独立列出的方程个数必须与未知数的个数相等。如果方程个数少于未知数的个数,则称之为不定方程或不定方程组,以为此时未知数一般有无数多个解,解是不确定的。但如果结合具体问题,增加一些对解的限制条件,如只求自然数解等,这样的不定方程的解就只有有限个或唯一一个了。必须注意,限制条件中,有些是明显的,有些则是隐藏的。 2、求不定方程的自然数解或正整数解,关键是充分利用整除特征,尝试找出第一解;对于其他的所有解,可通过解的规律,逐一罗列出来,并不困难。 【例题精讲】 例1:求下列方程的整数解(x >0,y >0)。 (1)5x+10y=14; (2)11x+3y=89. 【思路点拨】 5和10有公因数5,而14没有公因数5,所以原方程无整数解;y=29- 3211-x ,11x -2能被3整除且x <9。 模仿练习:(1)求满足方程5x+3y=40的自然数解。 (2)设A 和B 都是自然数,且满足11A +7B =77 57,求A+B 的值。 例2:某单位职工到郊外植树,其中3 1的职工各带了一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵树,他们共种了216棵树,那么其中有女职工多少人? 【思路点拨】 设有女职工x 人,男职工y 人,那么有孩子 3 y x +人,这个条件说明3|x+y 。 模仿练习:某小学共有大、中、小宿舍12间,能住80人。每间大宿舍能住8人,每间中宿舍能住7人,每间小宿舍能住5人。问中、小宿舍共有多少间? 例3:有四个自然数A 、B 、C 、D ,它们的和不超过400.A 除以B 商5余5;A 除以C 商6余6;A 除以D 商7余7,这四个自然数的和是多少? 【思路点拨】 A=5B+5=6C+6=7D+7,A 一定是5,6,7的公倍数。 模仿练习:有三张扑克牌,牌的数字各不相同,并且都小于10,把三张牌洗好后,分别发给甲、乙、丙三人,每人记下自己牌的数字,再重新洗牌、发牌、记数。这样反复几次后,三人各自记录的数字和分别是13、15、23。问这三张牌的数字是多少?

第二讲函数与方程(答案)

第二讲 函数与方程 A: 题型一 判断给定函数有无零点以及零点个数的确定 1.判断下列函数在给定区间上是否存在零点: (1)f (x )=x 2-3x -18,x ∈[1,8]; (2)f (x )=x 3-x -1,x ∈[-1,2]; (3)f (x )=log 2(x +2)-x ,x ∈[1,3]. 解(1)方法一 因为f(1)=-20<0,f(8)=22>0, 所以f(1)·f(8)<0,故f(x)=x 2-3x-18,x ∈[1,8]存在零点. 方法二 令x 2-3x-18=0,解得x=-3或6, 所以函数f(x)=x 2-3x-18,x ∈[1,8]存在零点. (2)∵f (-1)=-1<0,f(2)=5>0, ∴f (x )=x 3-x-1,x ∈[-1,2]存在零点. (3)∵f (1)=log 2(1+2)-1>log 22-1=0. f(3)=log 2(3+2)-3<log 28-3=0.∴f (1)·f (3)<0 故f(x)=log 2(x+2)-x 在x ∈[1,3]上存在零点. 2.求下列函数的零点: (1)y =x 3-7x +6;(2)y =x +x 2-3. 解(1)∵x 3-7x+6=(x 3-x)-(6x-6) =x(x 2-1)-6(x-1)=x(x+1)(x-1)-6(x-1) =(x-1)(x 2+x-6)=(x-1)(x-2)(x+3) 解x 3-7x+6=0,即(x-1)(x-2)(x+3)=0 可得x 1=-3,x 2=1,x 3=2. ∴函数y=x 3-7x+6的零点为-3,1,2. (2)∵x+.) 2)(1(23322 x x x x x x x --=+-=- 解x+,032=-x 即x x x )2)(1(--=0,可得x=1或x=2. ∴函数y=x+x 2-3的零点为1,2. (3)32)(2+--=x x x f ;(4)1)(4-=x x f (5)322--=x x y (6)x x y 1 - =(7)72)(+=x x f (8)2223+--=x x x y (9)6423++-=x x x y 2.(1)求函数x x x x f 23)(23+-=的零点的个数; 答案1 (2)求函数x x x f 64)(3-=的零点的个数; (3)求函数x x x f 4 )(- =的零点的个数; (4)求方程02424=--x x 在区间[-1,3]内至少有几个实数解; (5)求函数123+--=x x x y 在[0,2]上的零点的个数;

六年级奥数不定方程

六年级奥数不定方程Prepared on 21 November 2021

第六讲不定方程 【知识要点】 1、许多数学家需要用方程或方程组来求解。要想获得未知数的唯一解,能独立列出的方程个数必须与未知数的个数相等。如果方程个数少于未知数的个数,则称之为不定方程或不定方程组,以为此时未知数一般有无数多个解,解是不确定的。但如果结合具体问题,增加一些对解的限制条件,如只求自然数解等,这样的不定方程的解就只有有限个或唯一一个了。必须注意,限制条件中,有些是明显的,有些则是隐藏的。 2、求不定方程的自然数解或正整数解,关键是充分利用整除特征,尝试找出第一解;对于其他的所有解,可通过解的规律,逐一罗列出来,并不困难。 【例题精讲】 例1:求下列方程的整数解(x>0,y>0)。 (1)5x+10y=14; (2)11x+3y=89. 【思路点拨】 5和10有公因数5,而14没有公因数5,所以原方程无整数解;y=29- 32 11 x,11x-2能被3整除且x<9。 模仿练习:(1)求满足方程5x+3y=40的自然数解。

(2)设A 和B 都是自然数,且满足11A +7B =77 57,求A+B 的值。 例2:某单位职工到郊外植树,其中3 1的职工各带了一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵树,他们共种了216棵树,那么其中有女职工多少人 【思路点拨】 设有女职工x 人,男职工y 人,那么有孩子 3y x +人,这个条件说明3|x+y 。 模仿练习:某小学共有大、中、小宿舍12间,能住80人。每间大宿舍能住8人,每间中宿舍能住7人,每间小宿舍能住5人。问中、小宿舍共有多少间 例3:有四个自然数A 、B 、C 、D ,它们的和不超过除以B 商5余5;A 除以C 商6余6;A 除以D 商7余7,这四个自然数的和是多少 【思路点拨】 A=5B+5=6C+6=7D+7,A 一定是5,6,7的公倍数。 模仿练习:有三张扑克牌,牌的数字各不相同,并且都小于10,把三张牌洗好后,分别发给甲、乙、丙三人,每人记下自己牌的数字,再重新洗牌、发牌、记数。这样反复几次后,三人各自记录的数字和分别是13、15、23。问这三张牌的数字是多少 例4:求解不定方程组? ??=++=++)2(36753)1(52975z y x z y x 的正整数解。 【思路点拨】

第12讲 函数与方程

函数与方程 1、 掌握函数的零点和二分法的定义. 2、 会用二分法求函数零点的近似值。 一、函数的零点: 定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。 特别提醒: 函数零点个数的确定方法: 1、判断二次函数的零点个数一般由判别式的情况完成; 2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行; 3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)?f (b )<0,还必须结合函数的图像和性质才能确定。函数有多少个零点就是其对应的方程有多少个实数解。 二、二分法: 定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。

特别提醒: 用二分法求函数零点的近似值 第一步:确定区间[],a b ,验证:f(a)?f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ; 第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)?f (x 1)<0,则令1b x =; 若f(x 1)?f (b )<0,则令1a x = 第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则 重复第二、 三、四步。 类型一求函数的零点 例1:求函数y =x -1的零点: 解析:令y =x -1=0,得x =1, ∴函数y =x -1的零点是1. 答案:1 练习1:求函数y =x 3 -x 2 -4x +4的零点. 答案:-2,1,2. 练习2:函数f (x )=2x +7的零点为( ) A .7 B .7 2 C .-72 D .-7 答案:C 类型二 零点个数的判断 例2:判断函数f (x )=x 2-7x +12的零点个数 解析:由f (x )=0,即x 2-7x +12=0得 Δ=49-4×12=1>0, ∴方程x 2 -7x +12=0有两个不相等的实数根3,4, ∴函数f (x )有两个零点,分别是3,4. 答案:2个 练习1:二次函数y =ax 2 +bx +c 中,a ·c <0,则函数的零点个数是( )

六年级数学重点内容 不定方程

六年级数学重点内容不定方程 专题简析: 当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。如5x-3y=9就是不定方程。这种方程的解是不确定的。如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。如5x-3y=9的解有: x=2.4 x=2.7 x=3.06 x=3.6 ……… y=1 y=1.5 y=2.1 y=3 如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。 解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。 对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。 解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。 例1. 求3x+4y=23的自然数解。 先将原方程变形,y=23-3x 4 。可列表试验求解: X=1 x=5 Y=5 y=2 练习一 1、求3x+2y=25的自然数解。

2、求4x+5y=37的自然数解。 3、求5x-3y=16的最小自然数解。 例2 求下列方程组的正整数解。 5x+7y+3z=25 3x-y-6z=2 这是一个三元一次不定方程组。解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。 5x+7y+3z=25 ① 3x-y-6z=2 ② 由①×2+②,得13x+13y=52 X+y=4 ③ 把③式变形,得y=4-x。 因为x、y、z都是正整数,所以x只能取1、2、3. 当x=1时,y=3 当x=2时,y=2 当x=3时,y=1 把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。 x=2,y=2时,z也无正整数解。 x=3时,y=1时,z=1. 所以,原方程组的正整数解为 x=1 y=1 z=1 练习2 求下面方程组的自然数解。 1、-2z=7 2、 7x+9y+11z=68 3x+2y+4z=21 5x+7y+9z=52 4、5x+7y+4z=26 3x-y-6z=2

数论--综合-第6讲初等数论竞赛班教师版

第六讲初等数论 初等数论是主要用算术方法研究整数最基本性质的一个数学分支,是数学中最古老的分支之一.近几十年来,初等数论在计算机科学、组合数学、代数编码、信号的数字处理等领域得到广泛应用.同时,初等数论在各类数学竞赛中占有重要地位,以国际数学奥林匹克为例,约有四分之一的题目是主要用初等数论知识来解的. 一、基础知识 1.整除理论 性质1:如果a\b t b\c t那么d|c; 性质2:若a\c t则对于任意整数x、y都有a\bx+cy 2.质数与合数 性质1:设n为大于1的正整数,p是n的大于1的约数中最小的正整数,则p为质数; 性质2:如果对任意1到亦之间的质数p,都有p不整除n,那么n为质数,这里n为大于1的正整 数; 性质3:质数有无穷多个; 性质4:质数中只有一个数是偶数,即2; 3.同余 定义:如果a、b除以m (正整数)所得得余数相同,那么称a、b对模m同余,记作 a=b (mod in) 性质X如果a三b (mod 则m\a-bt 性质2:若a = b (mod m) f c = d (mod 加)贝i]a + c = b + d (mod nt) a-c 三b-d (mod /H),ac = bd (mod ni) 性质3:a = b (mod m), n 为正整数,则a n = b" (mod m) 4.费尔马小定理 Fermat小定理:设p为质数,a为整数,则/三?(mod “).特别地,如果a不能被p整除,则三l(mod p) 二、例题部分 例1 (2006年希望杯初二培训题)已知一个五位数用4, 5, 6, 7, 8五个数码各一次组成,如64875 等,在这样的五位数中,能被55整除的有几个,它们分别是多少? 《数理天地》2005增刊P22, 80 例2 (★★, 86年全国)设a、b. c是三个互不相等的正整数,求证:在—b'c — bF, c3a-ca3三个数中,至少有一个数能被10整除;

六年级奥数之不定方程

不定方程1.求3x+4y=23的自然数解。 2.求3x+2y=25的自然数解。 3.求4x+5y=37的自然数解。 4.求5x-3y=16的最小自然数解。 5.求下列方程组的正整数解。 5x+7y+3z=25

3x-y-6z=2 6.求下面方程组的自然数解。 1、 4x+3y-2z=7 2、 7x+9y+11z=68 3x+2y+4z=21 5x+7y+9z=52 3、 5x+7y+4z=26 3x-y-6z=2 7.一个商人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。如果弹子数为99,盒子数大于9,问两种盒子各有多少个? 8.某校6(1)班学生48人到公园划船。如果每只小船可坐3人,

每只大船可坐5人。那么需要小船和大船各几只?(大、小船都有) 9.甲级铅笔7角钱一枝,乙级铅笔3角钱一枝,小华用六元钱恰好可以买两种不同的铅笔共几枝? 10.小华和小强各用6角4分买了若干枝铅笔,他们买来的铅笔中都是5分一枝和7分一枝的两种,而且小华买来的铅笔比小强多,小华比小强多买来多少枝? 11.买三种水果30千克,共用去80元。其中苹果每千克4元,橘子每千克3元,梨每千克2元。问三种水果各买了多少千克?

12.有红、黄、蓝三种颜色的皮球共26只,其中蓝皮球的只数是黄皮球的9倍,蓝皮球有多少只? 13.用10元钱买25枝笔。已知毛笔每枝2角,彩色笔每枝4角,钢笔每枝9角。问每种笔各买几枝?(每种都要买) 14.晓敏在文具店买了三种贴纸;普通贴纸每张8分,荧光纸每张1角,高级纸每张2角。她一共用了一元两角两分钱。那么,晓敏的三种贴纸的总数最少是多少张? 15.某次数学竞赛准备例2枝铅笔作为奖品发给获得一、二、三等奖的学生。原计划一等奖每人发6枝,二等奖每人发3枝,三等奖每人发2枝。后又改为一等奖每人发9枝,二等奖每人发4枝,

第6讲 不定方程解应用题

第6讲不定方程解应用题 解题思路:把不定方程化为某个未知数的表达式,根据整除性等求解。 例1有三张扑克牌,牌的数字互不相同,并且都在10以内.把三张牌洗好后,分别发给甲、乙、丙三人.每人记下自己牌的数字,再重新洗牌、发牌、记数.这样反复几次后,三人各自记录的数字和分别为13、15、23.请问这三张牌的数字是什么? 例2采购员用一张1万元支票去购物.购单价590元的A种物若干,又买单价670元的B种物若干,其中B种个数多于A种个数,找回了几张100元和几张10元的(10元的不超过9张).如把购A种物品和B种物品的个数互换,找回的100元和10元的钞票张数也恰好相反.问购A物几个,B物几个? 例3 现有3米长和5米长钢管各6根,安装31米长的管道,问怎样接用最省料? 例4 55人去游园划船,小船每只坐4人,大船每只坐7人,问要使船正好坐满,租大、小船各多少只? 例5王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问他每种各买了多少包? 例6 100匹马驮100筐物品,一匹大马驮3筐,一匹中马驮2筐,两匹小马驮1筐.问大、中、小马各多少?

习题 1.小明问小强:“你养了几只兔和鸡?”小强说:“我养的兔比鸡多,鸡兔共24条腿,你猜猜我养了几只兔和鸡?” 2.李明带6元钱到花店买花.如果月季花1元钱一盆,茉莉花8角钱一盆,要把6元钱刚好用完.问能买月季花和茉莉花各多少盆? 3.甲种铅笔7分钱一支,乙种铅笔3分钱一支,张明用6角钱恰好买两种不同的铅笔共多少支? 4.李大伯下山去小商店买东西.下午1时离开家,先走了一段山路,来到山脚下,又走了一段平路,到了小商店.半小时后,他离开商店沿原路返回家,下午3时半到家.已知平地每小时走4千米,上山每小时走3千米,下山每小时走6千米.请问:李大伯去商店买东西走了多少千米的路? 5.大汽车能容纳54人,小汽车能容纳36人,现有378人,问大、小汽车各要几辆才能使每个人都上车且每个车上无空座?

专题二 函数概念与基本初等函数 第五讲函数与方程 (1)

专题二 函数概念与基本初等函数Ⅰ 第五讲 函数与方程 一、选择题 1.(2018全国卷Ⅰ)已知函数0()ln 0?=?>? ,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)- B .[0,)+∞ C .[1,)-+∞ D .[1,)+∞ 2.(2017新课标Ⅲ)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .12- B .13 C .12 D .1 3.(2017山东)已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y x m = 的图象有且只有一个交点,则正实数m 的取值范围是 A .(])0,123,?+∞? B .(][)0,13,+∞ C .()223,?+∞? D .([)23,+∞ 4.(2016年天津)已知函数()f x =2(4,0,log (1)13,0 3)a x a x a x x x ?+,且1a ≠)在R 上单 调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是 A .(0,23] B .[23,34] C .[13,23]{34} D .[13,23){34 } 5.(2015安徽)下列函数中,既是偶函数又存在零点的是 A .y cos x = B .y sin x = C .y ln x = D .2 1y x =+ 6.(2015福建)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 A .6 B .7 C .8 D .9

【6年级奥数课本(上)】第07讲 不定方程

小学奥数创新体系6年级 (上册授课课本) 最 新 讲 义 小学奥数

第七讲 不定方程 不定方程,顾名思义就是“不确定”的方程,这里的不确定主要体现在方程的解上.之前我们学习的方程一般都有唯一解,比如方程3419x +=只有一个解5x =,方程组25238x y x y +=??+=?只有一组解12 x y =??=?. 什么样的方程,解不唯一呢?举个简单的例子,二元一次方程25x y +=的解就不唯一,因为每当y 取定一个数值时,x 就会有相应的取值和它对应,使方程成立,这样一来就会有无穷多组解.通常情况下,当未知数的个数大于方程个数时..............,这个方程(或......方程组)就会有无穷多个解............ . 可是方程的解那么多,究竟哪个才是正确的呢?应该说,如果不加任何额外的限制条件,这 无穷多个解都是正确的.但在实际情况中,我们通常会限定方程的解必须是自然数,这样一来,往往就只有少数几个解能符合要求,甚至在某些情况下所有的解都不对. 练一练 求下列方程的自然数解: (1)25x y +=; (2)238x y +=; (3)321x y +=; (4)4520x y +=.

本讲我们要学习的就是这样的一类方程(或方程组):它们所含未知数的个数往往大于方程的个数,而未知数本身又有一定的取值范围,这个范围通常都是自然数——这类方程就是“不定方程”. 形如ax by c +=(a 、b 、c 为正整数)的方程是二元一次不定方程的标准形式.解这样的方程,最基本的方法就是枚举.那怎样才能枚举出方程的全部自然数解呢?我们下面结合例题来进行讲解. 例1. 甲级铅笔7角一支,乙级铅笔3角一支,张明用5元钱买这两种铅笔,钱恰好花完.请 问:张明共买了多少支铅笔? 「分析」设张明买了甲级铅笔x 支,乙级铅笔y 支,可以列出不定方程:7350x y +=,其中x 和y 都是自然数.怎么求解呢? 练习1、(1)求3535x y +=的所有自然数解;(2)求1112160x y +=的所有自然数解. 一般地,如果x m y n =??=?是ax by c +=的一组解,那么x m b y n a =+??=-? (当n a ≥时)也是ax by c +=的一组解.这是因为()()()()a m b b n a am ab bn ab am bn c ++-=++-=+=.另外,x m b y n a =-??=+? (当m b ≥时)也是ax by c +=的一组解,理由相同. 这条性质有什么用呢?我们以求2350x y +=的自然数解为例,我们容易看出它有 一组自然数解1010x y =??=?.应用上面的规律,x 每次增加3,y 每次减少2(只要y 还是自然数),所得结果仍然是2350x y +=的一组解,所以138x y =??=?、166x y =??=?、194x y =??=?、222x y =??=?、250x y =??=?都是2350x y +=的自然数解.另外x 每次减少3(只要x 还是自然数),y 每次增加2,所得结果也是2350x y +=的自然数解,所以712x y =??=?、414x y =??=?、116x y =??=? 也都是2350x y +=的自然数解.而且这样就已经求出了2350x y +=的所有自然数解,它们是: 116x y =??=?、414x y =??=?、712x y =??=?、1010x y =??=?、138x y =??=?、166x y =??=?、194x y =??=?、222x y =??=?、250x y =??=?. 这就告诉我们,在求形如ax by c +=(a 、b 、c 为正整数)的不定方程的自然数解时,我们可以先找出一组解,之后其余的所有解都可由这一组解的x 值每次变化b ,y 值每次变化a 得到(注意变化的方向相反,一个增加,另一个就得减少,才能保证ax by +的大小不变).

不定式方程(六年级)

不定式方程 一:不定方程 知识精讲 一.不定方程的定义 1.一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程. 2.多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一. 二.不定方程的解法及步骤 1.常规方法:观察法、试验法、枚举法. 2.多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可. 3.涉及知识点:列方程、数的整除、大小比较.

三.解不定方程的步骤 1.列方程. 2.消元. 3.写出表达式. 4.确定范围. 5.确定特征. 6.确定答案. 四.技巧总结 1.写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数. 2.消元技巧:消掉范围大的未知数. 三点剖析 题模精讲 题模一不定方程的计算

(1);(2);(3);(4) . (1)(2)(3) (4)无整数解 (1),,所以,即得 , (2),,所以,.(3),,所以, . (4),,所以.无整数解. 已知△和☆分别表示两个自然数,并且,则△+☆=__________.

5 依题意得11△+5☆=37,易知其自然数解为△=2,☆=3.所以△+☆=5. 有三个分子相同的最简假分数,化成带分数后为.已知a,b,c都小于10,a,b,c依次为__________,__________,__________. 7,3,2 由题意有.解这个不定方程,得. 已知代表两位整数,求方程的解. 题模二不定方程的应用 有150个乒乓球分装在大、小两种盒子里,大盒每盒装12个,小盒每盒装7个.问:需要大盒子__________个、小盒子__________个,才能恰好把这些球装完. 大盒9个,小盒6个或者大盒2个,小盒18个

第2章第8讲 函数与方程

第8讲函数与方程 基础知识整合 1.函数的零点 (1)函数零点的定义 对于函数y=f(x)(x∈区间D),把使□01f(x)=0的实数x叫做函数y=f(x)(x∈区间D)的零点. (2)三个等价关系 方程f(x)=0有实数根?函数y=f(x)的图象与□02x轴有交点?函数y=f(x)有□03零点. (3)函数零点的判定(零点存在性定理) 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有□04 f(a)·f(b)<0,那么,函数y=f(x)在区间□05(a,b)内有零点,即存在c∈(a,b),使得□06f(c)=0,这个□07c也就是方程f(x)=0的根. 2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系 Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 与x轴的交点□08(x1,0),(x2,0)□09(x1,0)无交点 零点个数□102□111□120 有关函数零点的结论 (1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点. (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号. (3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.

(4)函数的零点是实数,而不是点,是方程f(x)=0的实根. (5)由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)的闭区间[a,b]上有零点的充分不必要条件. 1.(2020·云南玉溪一中二调)函数f(x)=2x+3x的零点所在的一个区间是() A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) 答案 B 解析易知函数f(x)=2x+3x在定义域上单调递增,且f(-2)=2-2-6<0,f(-1)=2-1-3<0,f(0)=1>0,所以由零点存在性定理得,零点所在的区间是(-1,0).故选B. 2.(2019·全国卷Ⅲ)函数f(x)=2sin x-sin2x在[0,2π]的零点个数为() A.2 B.3 C.4 D.5 答案 B 解析令f(x)=0,得2sin x-sin2x=0,即2sin x-2sin x cos x=0,∴2sin x(1-cos x)=0,∴sin x=0或cos x=1.又x∈[0,2π],∴由sin x=0得x=0,π或2π,由cos x=1得x=0或2π.故函数f(x)的零点为0,π,2π,共3个.故选B. 3.函数f(x)=2x-2 x -a的一个零点在区间(1,2)内,则实数a的取值范围是 () A.(1,3) B.(1,2) C.(0,3) D.(0,2) 答案 C

六年级奥数-不定方程

不定方程 专题简析: 当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。如5x-3y=9就是不定方程。这种方程的解是不确定的。如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。如5x-3y=9的解有:x=2.4 x=2.7 x=3.06 x=3.6 ……… y=1 y=1.5 y=2.1 y=3 如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。 解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。 对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。 解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。 例1. 求3x+4y=23的自然数解。 先将原方程变形,y=23-3x 4。可列表试验求解: 所以方程3x+4y=23的自然数解为 X=1 x=5 Y=5 y=2 练习一 1、求3x+2y=25的自然数解。 2、求4x+5y=37的自然数解。 3、求5x-3y=16的最小自然数解。 例2 求下列方程组的正整数解。 5x+7y+3z=25 3x-y-6z=2 这是一个三元一次不定方程组。解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。 5x+7y+3z=25 ① 3x-y-6z=2 ② 由①×2+②,得13x+13y=52 X+y=4 ③ 把③式变形,得y=4-x。 因为x、y、z都是正整数,所以x只能取1、2、3. 当x=1时,y=3

第12讲 函数与方程(达标检测)(原卷版)

《函数与方程》达标检测 [A 组]—应知应会 1.(2020?娄底模拟)函数6 ()21 x f x x =-+的零点0x 所在的区间为( ) A .(1,0)- B .(0,1) C .(1,2) D .(2,3) 2.(2020春?大兴区期末)方程2x x e =的实根个数为( ) A .0 B .1 C .2 D .3 3.(2020?平阳县模拟)已知关于x 的方程2||||3(23)20x x me m e ---++=有四个不同的实数解,则实数m 的取值范围为( ) A .3(,1)2- B .(1,)+∞ C .33 (1,) (,)2 2 +∞ D .3 (,)2 +∞ 4.(2020?潮州二模)已知函数212 2(),01 ()2,10 x x x m x f x x m x +?+=?---

相关文档
最新文档