不定积分的例题分析及解法[1]
不定积分

一、不定积分的解题技巧引例:不定积分 /(1 -x)cos2xdx f (1 -x)cos2xdx=/cos2xdx - f xcos2xdx=(1/2) f cos2xd2x -(1/4) f 2xcos2xd2x=(1/2)sin2x- (1/4) f 2xdsin2x=(1/2)sin2x- (1/2)xsin2x (1/4) f sin2xd2x=(1/2)sin2x-(1/2)xsin2x-(1/4)cos2x Cf (1 -x)cos2xdx求导行:1-x -1 0积分行:cos2x 1/2*sin2x -1/4*cos2x所以:f (1 -x)cos2xdx =(1-x)*1/2*sin2x-(-1)*(-1/4*cos2x) C注:分步积分的时候,f a*bdx哪个放到d后面去(那个先反过来求导)?这里遵循一个原则:对,反,幂,三,指。
越后的先放到d里去如f x A2 cosxdx x A2 是幂函数,cosx是三角函数。
所以,要这样化f xA2dsinx而不是1/3 f cosxdxA3引例2: f 1/(1 xA4)dx原式=1/2((1 xA2 1-xA2)/1 xA4)=0.5(1 xA2/1 xA4) 0.5(1咲人2/1 xA4)=0.5(1 xA-2/xA-2 xA2)< 就是分子分母同除x的平方>如果是不定积分,两类换元法和拼凑法一般来说结合使用灵活系数比较大不过你要相信考试不定积分形式比较简单方法比较独到,绝对不是“暴力“积岀来的,一想到你的方法越做越陷入死路,我想因该要变通.第二,对于有独特的因子你要留意.定积分,比不定积分要难一些,因为很多函数是没有初等函数的,方法是拼凑法和化为二元再交换顺序,其中拼凑发很关键,我们要掌握.例题大家平时做题目就很容易发现方法与技巧一、换元法1. 凑微分使用凑微分法的难处在于如何“凑”岀一个函数的微分。
对于这个问题一方面要求熟悉一些常见函数的微分形式,另一方面,对于那些不易观察的,则不妨从被积函数中拿岀一个表达式,求其微分,从而决定如何凑微分。
不定积分的典型例题50题答案

例1. 解法1).12)(12(1224+-++=+x x x x x而 +++)12(2x x )1(2)12(22+=+-x x x 所以)121121(21112242dx x x dx x x dx x x ⎰⎰⎰++++-=++ .)]12arctan()12[arctan(211)12()12211)12()12(21)21)22(121)22(1[212222c x x x x d x x d dx x dx x +++-=+++++--=++++-=⎰⎰⎰⎰解法2dxx x x x xx x dx x x ⎰⎰+++-++-=++)12)(12(2)12(1122242.arctan 21)12arctan(211212242c x x dx x xx x dx +++=++++=⎰⎰解法3⎰⎰⎰+-=++=++≠2222242)1(1111,0xx x x d dx x x x dx x x x 当 c x x xx x x d +-=+--=⎰21arctan 212)1()1(22,2221arctan 21lim 20π-=-+→x x x ,2221arctan 21lim 20π=--→x x x 由拼接法可有.02221arctan 2100,2221arctan 21112242⎪⎪⎩⎪⎪⎨⎧<+--=>++-=++⎰x cx x x x c x x dx x x ππ 例2.解 将被积函数化为简单的部分分式(*)1)1(1)1()1(222223⋅⋅⋅⋅⋅++++++=+++x DCx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .211)1(2)1(23=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为.2.2426)1()2(2)1(3lim ]12[lim )1()1()1(2[lim 22322123122231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以.21-=D 分解式(*)两边同乘以x ,再令,+∞→x 得.1,1-=⇒+=C C A 故有.arctan 21)1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dxx DCx x B x A dx x x x +-+-+-+=++++++=+++⎰⎰例3.解 令 ,2x u =再用部分分式,則⎰⎰++=++))(1(21)()1(22244u u u dudx x x x x,11)()1(1222+++++=++u D Cu u B u A u u u 两边乘以,u 再令,0→u 得.1=A 两边乘以,1+u 再令,1-→u 得.21-=B 两边乘以,u 再令,+∞→u 得.21,0-=⇒++=C C B A 令.21,1-=⇒=D u.arctan 41)1()1(ln 81arctan 41)1ln(81)1ln(41ln 21arctan 41)1ln(811ln 41ln 21]12121)1(211[21))(1(21)()1(2422824222222244c x x x x c x x x x c u u u u du u u u u u u u dudx x x x x +-++=+-+-+-=+-+-+-=+--++-=++=++∴⎰⎰⎰ 例4828872882815)1(1181)1()1(dx x x dx x x x dx x x ⎰⎰⎰+-+=⋅+=+)1(])1(111[818288++-+=⎰x d x x .)1(81)1ln(8188c x x ++++= 例5. 解 令 ,2tant x =则=-++⎰dx xx xsin cos 1cos 1 .2)sin 1ln(21arctan )1ln(211ln )1111()1)(1(212121111112222222c x x ct t t dtt t t dtt t dx t t t t t t t ++--=++++--=+++--=-+=+⋅+-+-++-+⎰⎰⎰ 例6dx x x 122+⎰⎰+=22421dx x x.1ln 811)12(81))21(ln(161)21(41)21(21)21()21()21(212222222222222c x x x x x c u u u u du u x d x +++-++=+-+--=-=+-+=⎰⎰分部积分例7.25342)2()1(25232121232c x x x dx x x x dx x x ++-=+-=-⎰⎰-分项例8dx x x dx x ]1111[2111224++-=-⎰⎰ .arctan 2111ln 41c x x x ++-+= 例9.dx x x dx x x ⎰⎰+-+=+1111.134132111c x x x dx xdx x ++-+=+-+=⎰⎰例10.⎰⎰⎰---=-+=+)24(cos )24()2cos(1sin 12x x d x dxx dx πππ.)24tan(c x +--=π 例 11c t t dt x xdx tx +=-=-⎰⎰=arcsin 11212⎪⎩⎪⎨⎧-<+>+-=.1,1arcsin 1,1arcsin x c x x c x 例12.解 .2cos 41)2sin 211(c x x dx x J I ++=-=+⎰dx x x x x x dxxx x x x J I ⎰⎰++-=++-=-222)sin (cos )2sin 211)(sin (cos sin cos )2sin 211)(sin (cos.)12ln(sin 412sin 412sin 12cos )2sin 211(c x x dx x xx +++=++=⎰解上面的联立方程可得出.,J I例13. ).(,)1ln(31)1ln(1111111,)21(332arctan 332.1,1111111332322333233略从而可解出可求出令I c x x dx x x dx x dx x x x x dx x x J I c x J I dx x x J dx x x dx x x dx xx x dx x I ++-+=+-+=+-+-=+-=-+-=++=+-+-=+-+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰ 例14.)1(12arcsin 12arcsin++=+⎰⎰x d xxdx x x .212arcsin )1(112arcsin1c x xxx dx xx x x ++++=+++=⎰)(分部积分例15.解 令,)21(12,211,12222dt t t t dx t t x t x x x +++=+-=⇒+-=++ .)1212(231212ln 231ln 2])12(23)12(231[2)21(12222222c x x x x x x x x x dt t t t dt t t t t I ++++++++++-+++=+-+-=+++=⎰⎰例16.解 .sin 2cos 5]cos 2sin 5[x x x x +='- 被积函数的分子是x x sin ,cos 的线性组合,故有.1,2,cos )25(sin )25()cos 2sin 5()cos 2sin 5(cos sin 12==⇒-++='-+-=+B A x A B x B A x x B x x A x x 于是.cos 2sin 5ln 2cos 2sin 5)cos 2sin 5()cos 2sin 5(2cos 2sin 5cos sin 12c x x x dx x x x x x x dx x x x x +-+=-'-+-=-+⎰⎰例17.解 ⎰⎰⎰-=-+-=+=4cos 13)(cos sin 3sin 2cos 22t dtx x d x xdx t x .cos 2cos 2ln 41]2121[41c xx dt t t ++-=+--=⎰ 例18.⎰⎰+=+x xdxx dx 222cos )2cos 1(cos 21 .3tan arctan 313arctan 313tan 3)(tan 2cos )(tan 222c x c t t dtx x d xx d +=+=+=+=+⎰⎰⎰ 例19..)1ln(18189623266332366c x x x x x dx x x x t x +++-+-=⋅⋅⋅=+-=⎰例20..15arctan 21515ln153215c x xx x x x dx x xx t x x+-------+-=⋅⋅⋅=---=--⎰例21..]1ln [arctan 2112sin 22c x x x x x dx tx t +-++=⋅⋅⋅=-+=≤⎰π 例22.,11ln 21211222tan 232c x x x x x dxx tx t +++-+-=⋅⋅⋅=+=<⎰π例23.⋅⋅⋅=+-=⎰t e x x xe e dx232换元后有理函数积分例24..1arcsin arcsin 2c x x x xdx+-+=⎰分部积分例25..)(c e dx e e dx exxx e xe xe +==⎰⎰+例26.”)妙用“1(cos sin 1ln cos sin 1)cos sin 1(cos sin 12cos c x x x x x x d x x xdx ++=++=+⎰⎰例27..)13()(2dx e x x e x x x x +++⎰.])[(32])[()()13(])[(23222322c e x x e x x d e x x e x x e x x x x x e ++=++=∴++='+⎰原式例28..11)1(arctan .)1(arctan 2111arctan22x x c x dx x x +-='+-=+⎰例29.=++-=+⎰⎰xb x a x b x a d a b dxx b x a x22222222222222sin cos )sin cos (1sin cos 2sin .2sin )()sin cos (.sin cos 2222222222222x a b x b x a c x b x a ab -='+++-例30.)ln ()ln (1)ln (ln 1)ln (ln 1222x xx d xx x dxxx x xxdx x x x ---=--=--⎰⎰⎰ .ln ln 1c x x xc xx x +-=+-=例31..1212ln2211)1(22sin 22c xx xx xdxt x +---+-=-+⎰=例32..111)1(22tan 2323c x x dx x x tx ++++=+=⎰例33..313222sec 0422c x a x a dx x a x t a x a +⎪⎪⎭⎫⎝⎛-⋅=-=>⎰例34dt tt t dt t t x dx tx ⎰⎰⎰--=+=-+=22sin 2cos 1cos cos cos 1cos 11 .arcsin 112c x x x x ++-+-=例35..ln 212ln 141)1(2)1()2(72717c x x dt tttx x dxtx +++-=-⋅+=+⎰⎰=例36..13)12(2)431(]43)21[()1(2232121232232c xx x t tdt x dxx x dx tx ++++=+-=++=++⎰⎰⎰=+例37..22)(212)2(2222c e x x dx e x x x e x dx x e x x xx x ++-='+++-=+⎰⎰ 例38..)2ln(201ln 21)2()2(101010910c x x x x dx x x x dx ++-=+=+⎰⎰ 例39..1ln 72ln )2()1()1()1(71076777c x x x x dx x x x x dx x ++-=+-=+-⎰⎰ 例40..)1ln (1)()111(111112c x x nx d x n dx x x x x dx x n n n n n n n n n ++-=+-=+⋅=+⎰⎰⎰-- 例41..)1(121003dx x x ⎰-+9899111003)1(493)1(1331)1(12----=-+=-⎰x x dx x x u x例51. 求,))((dx x b a x ⎰-- 其中.b a < 解 由配方得2,)2())((22a b R b a x R x b a x -=+--=--其中,令,2b a u x ++=则有原式 .))((4)(2)(2arcsin )(41cos sin 22)2sin 412(22cos 1cos 2222222sin 22c x b a x b a x ab b a x a bc t t R t R c t t R dt t R tdt R du u R t R u +--+-+-+--=++=++=+==-=⎰⎰⎰= 例52.设)(x f 有一个原函数,sin xx 求.)(⎰'dx x f x 解 用分部积分法有 (*))()()()(⋅⋅⋅⋅⋅⋅-=='⎰⎰⎰dxx f x xf x xdf dx x f x.sin cos ]sin [])([)(sin )(211xx x x c x x dx x f x f c x x dx x f -='+='=⇒+=⎰⎰ 代入(*)有 1sin sin cos )(c xx x x x dx x f x ---='⎰, 即 .sin 2cos )(c x x x dx x f x +-='⎰。
不定积分例题与答案解析

第4章不定积分容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)⎰思路: 被积函数52x-=,由积分表中的公式(2)可解。
解:532223x dx x C--==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰ 思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰ 思路:注意到222221111111x x x x x+-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x ⎰34134(-+-)2 思路:分项积分。
不定积分的例题讲解

三、典型例题解析例1 求下列不定积分.(1). (2)1)dx ⎰.分析 利用幂函数的积分公式111n n x dx x C n +=++⎰求积分时,应当先将被积函数中幂函数写成负指数幂或分数指数幂的形式. 解 (1)532251252121()3x dx x C x C --+-==+=-++-⎰. (2)35312222231221)(1)353dx x x x dx x x x x C =+--=+--+⎰⎰.例2求2(x dx ⎰. 分析 将被积函数的平方展开,可化为幂函数的和.解12221((2)x dx x x dx x +=++⎰⎰12212x d x x d x d xx=++⎰⎰⎰ 32314ln 33x x x C =+++. 例3 求下列不定积分.(1)2523x x x e dx ⋅-⋅⎰. (2)4223311x x dx x +++⎰.分析 (1)将被积函数拆开,用指数函数的积分公式;(2)分子分母都含有偶数次幂,将其化成一个多项式和一个真分式的和,然后即可用公式.解 (1)22()5()2522332()5()3331ln 3ln 2ln 3x xxxx x xe e e dx dx dx C ⋅⋅⋅-⋅=-=-+--⎰⎰⎰. (2)42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰. 例4 求下列不定积分.(1)24221(1)x x dx x x +++⎰. (2)421x dx x +⎰. (3)221(1)dx x x +⎰. 分析 根据被积函数分子、分母的特点,利用常用的恒等变形,例如:分解因式、直接拆项、“加零”拆项、指数公式和三角公式等等,将被积函数分解成几项之和即可求解.解 (1)242222111(1)(1)1x x dx dx x x x x++=+-++⎰⎰ 22111dx dx dx x x =+-+⎰⎰⎰ 1a r c t a n x x Cx=--+.(2)4422(1)111x x dx dx x x -+=++⎰⎰222(1)(1)11x x dx x-++=+⎰ 221(1)1x dx dx x =-++⎰⎰C x x x ++-=arctan 313. (3)22222211(1)(1)x x dx dx x x x x +-=++⎰⎰ 22111dx dx x x =-+⎰⎰1a r c t a n x C x=--+.例5 求下列不定积分. (1)11cos2dx x +⎰. (2)cos2cos sin xdx x x-⎰.(3)2cot xdx ⎰. (4)22cos2sin cos xdx x x⎰.分析 当被积函数是三角函数时,常利用一些三角恒等式,将其向基本积分公式表中有的形式转化,这就要求读者要牢记基本积分公式表.解 (1)2111tan 1cos22cos 2dx dx x C x x ==++⎰⎰.(2)22cos2cos sin cos sin cos sin x x xdx dx x x x x-=--⎰⎰(cos sin )sin cos x x dx x x C =+=-+⎰.(3)22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰.(4)222222cos2cos sin sin cos sin cos x x xdx dx x x x x-=⎰⎰2211sin cos dx dx x x=-⎰⎰ 22csc sec xdx xdx =-⎰⎰cot tan x x C =--+.例6 求下列不定积分.(1)99(79)x dx -⎰. (2)12()nx ax b dx +⎰.(0a ≠) (3)232(cos )x dx x ⎰. (4). (5)1sin(ln )x dx x ⎰. (6)211cos()dx x x⎰.(7)2cos sin 6sin 12xdxx x -+⎰. (8).(9). (10)2.(11)322(arctan )1x x dx x++⎰. 分析 这些积分都没有现成的公式可套用,需要用第一类换元积分法. 解 (1)999910011(79)(79)(79)(79)7700x dx x d x x C -=--=-+⎰⎰. (2)112221()()()2n n x ax b dx ax b d ax b a+=++⎰⎰12()2(1)n n n ax b C a n +=+++. (3)232(cos )x dx x ⎰333211tan 3(cos )3dx x C x ==+⎰.(4)2C ==.(5)1sin(ln )x dx x⎰sin(ln )(ln )cos(ln )x d x x C ==-+⎰.(6)211cos dx x x ⎰111cos ()sin d C x x x=-=-+⎰. (7)2cos sin 6sin 12xdxx x -+⎰2(sin 3)(sin 3)3d x C x -=-+⎰. (8)(tan )arcsin(tan )x x C ==+.(9)12[1(cot )](cot )x d x =-+⎰12cot (cot )cot d x x d x =--⎰⎰ 322cot (cot )3x x C =--+.(10)2231arcsin (arcsin )(arcsin )3xd x x C ==+⎰.(11)322(arctan )1x x dx x ++⎰3222(arctan )11x x dx dx x x =+++⎰⎰ 32221(1)(a r c t a n )(a r c t a n )21d x x d x x+=++⎰⎰ 52212ln(1)(arctan )25x x C =+++.注 用第一类换元积分法(凑微分法)求不定积分,一般并无规律可循,主要依靠经验的积累.而任何一个微分运算公式都可以作为凑微分的运算途径.因此需要牢记基本积分公式,这样凑微分才会有目标.下面给出常见的12种凑微分的积分类型.(1)11()()()(0)n n n n f ax b x dx f ax b d ax b a na-+=++≠⎰⎰; (2)1()()ln x x x x f a a dx f a da a=⎰⎰; (3)(sin )cos (sin )(sin )f x xdx f x d x =⎰⎰;适用于求形如21sin cos m n x xdx +⎰的积分,(,m n 是自然数). (4)(cos )sin (cos )(cos )f x xdx f x d x =-⎰⎰;适用于求形如21sin cos m n x xdx -⎰的积分,(,m n 是自然数). (5)2(tan )sec (tan )(tan )f x xdx f x d x =⎰⎰;适用于求形如2tan sec m n x xdx ⎰的积分,(,m n 是自然数). (6)2(cot )csc (cot )(cot )f x xdx f x d x =-⎰⎰;适用于求形如是2cot csc m n x xdx ⎰的积分,(,m n 是自然数).(7)1(ln )(ln )ln f x dx f x d x x=⎰⎰;(8)(arcsin (arcsin )(arcsin )f x f x d x =⎰⎰;(9)(arccos (arccos )(arccos )f x f x d x =-⎰⎰;(10)2(arctan )(arctan )(arctan )1f x dx f x d x x =+⎰⎰;(11)2(cot )(cot )(cot )1f arc x dx f arc x d arc x x =-+⎰⎰;(12)()1(())()()f x dx d f x f x f x '=⎰⎰; 例7 求下列函数的不定积分:(1)3cos xdx ⎰. (2)4sin xdx ⎰. (3)sin 7cos(3)4x x dx π-⎰. (4)6csc xdx ⎰.(5)34sin cos x xdx ⎰. (6)35sec tan x xdx ⎰.分析 在运用第一类换元法求以三角函数为被积函数的积分时,主要思路就是利用三角恒等式把被积函数化为熟知的积分,通常会用到同角的三角恒等式、倍角、半角公式、积化和差公式等.解 (1)被积函数是奇次幂,从被积函数中分离出cos x ,并与dx 凑成微分(sin )d x ,再利用三角恒等式22sin cos 1x x +=,然后即可积分.322cos cos (sin )(1sin )(sin )xdx xd x x d x ==-⎰⎰⎰2sin sin sin d x xd x =-⎰⎰31sin sin 3x x C =-+.(2)被积函数是偶次幂,基本方法是利用三角恒等式21cos2sin 2xx -=,降低被积函数的幂次.421cos2sin ()2x xdx dx -=⎰⎰311(cos2cos4)828x x dx =-+⎰311sin 2sin 48432x x x C =-++. (3)利用积化和差公式将被积函数化为代数和的形式.1sin7cos(3)[sin(4)sin(10)]4244x x dx x x dx πππ-=++-⎰⎰ 11sin(4)(4)sin(10)(10)8442044x d x x d x ππππ=+++--⎰⎰ 11cos(4)cos(10)84204x x C ππ=-+--+. (4)利用三角恒等式22csc 1cot x x =+及2csc (cot )xdx d x =-.622222csc(csc )csc (1cot )(cot )xdx x xdx x d x ==-+⎰⎰⎰24(12cot cot )cot x x d x =-++⎰3521cot cot cot 35x x x C =---+.(5)因为322sin sin (sin )sin (cos )xdx x xdx xd x ==-,所以3424sincos sin cos (cos )x xdx x xd x =-⎰⎰24(1cos )cos (cos )x xd x =--⎰46cos (cos )cos (cos )xd x xd x =-+⎰⎰5711cos cos 57x x C =-++.(6)由于sec tan (sec )x xdx d x =,所以3524sectan sec tan (sec )x xdx x xd x =⎰⎰222sec (sec 1)(sec )x x d x =-⎰642(sec 2sec sec )(sec )x x x d x =-+⎰ 753121sec sec sec 753x x x C =-++.注 利用上述方法类似可求下列积分3sinxdx ⎰、2cos xdx ⎰、cos3cos2x xdx ⎰、6sec xdx ⎰、25sin cos x xdx ⎰,请读者自行完成.例8 求下列不定积分: (1)x x dx e e -+⎰. (2)x x dx e e --⎰. (3)11x dx e+⎰. 分析 可充分利用凑微分公式:x x e dx de =;或者换元,令x u e =.解 (1)xx dx e e -+⎰221arctan ()1()1x x xx x e dx de e C e e ===+++⎰⎰. (2)解法1 xxdxe e--⎰221()1()1x x x x e dx de e e ==--⎰⎰, 然后用公式2211ln 2x adx C x a a x a-=+-+⎰,则 x x dxe e --⎰11ln 21x x e C e -=++.解法2 x xdx e e--⎰21111()()1211xx x x x de de e e e ==---+⎰⎰ 1(1)(1)()211x x x x d e d e e e -+=--+⎰⎰ 11ln 21x x e C e -=++. (3)解法1 11x dx e +⎰1(1)11x x x x xe e e dx dx e e +-==-++⎰⎰ 1(1)1x xdx d e e=-++⎰⎰ ln(1)x x e C =-++.解法2 11xdx e +⎰(1)ln(1)11x x x xx e d e dx e C e e -----+==-=-++++⎰⎰. 解法3 令x u e =,x du e dx =,则有11x dx e +⎰1111()ln()111udu du C u u u u u=⋅=-=++++⎰⎰ ln()ln(1)1x xxe C e C e -=+=-+++.注 在计算不定积分时,用不同的方法计算的结果形式可能不一样,但本质相同.验证积分结果是否正确,只要对积分的结果求导数,若其导数等于被积函数则积分的结果是正确的.例9 求下列不定积分:(1)ln tan sin cos xdx x x ⎰. (2). 分析 在这类复杂的不定积分的求解过程中需要逐步凑微分.解 (1)2ln tan ln tan sin cos tan cos x xdx dx x x x x=⎰⎰ ln tan (tan )ln tan (ln tan )tan xd x xd x x==⎰⎰ 21ln (tan )2x C =+. (2)2=22a r c (a n r c t a n )C ==+⎰. 例10 求21arctan1x dx x +⎰.分析 若将积分变形为1arctan (arctan )d x x ⎰,则无法积分,但如果考虑到凑出1x,将被积函数变形为221arctan 111()x x x⋅+,再将21x 与dx 结合凑成1()d x -,则问题即可解决. 解2222111arctan arctan arctan11()1111()1()x x x dx dx d x x x x x =⋅=-+++⎰⎰⎰11arctan (arctan )d x x=-⎰211(arctan )2C x=-+.例11 求21ln (ln )xdx x x +⎰. 分析 仔细观察被积函数的分子与分母的形式,可知(ln )1ln x x x '=+.解 221ln 11(ln )(ln )(ln )ln x dx d x x C x x x x x x+==-+⎰⎰. 例12(04研) 已知()x x f e xe -'=,且(1)0f =,则()_________f x =. 分析 先求()f x ',再求()f x . 解 令x e t =,即ln x t =,从而ln ()tf t t'=.故 2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰, 由(1)0f =,得0C =,所以21()ln 2f x x =.例13求sin 22sin dxx x+⎰.分析 被积函数为三角函数,可考虑用三角恒等式,也可利用万能公式代换. 解法1 sin 22sin dx x x+⎰3122sin (cos 1)4sin cos 22x d dx x x x x ⎛⎫ ⎪⎝⎭==+⎰⎰ 22tan 1tan 1122tan 442tan cos tan222x x d x d x x x ⎛⎫+ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎰⎰ 211tan ln tan 8242x xC =++. 解法2 令cos t x =,则 sin 22sin dxx x +⎰2sin 2sin (cos 1)2sin (1cos )dx xdx x x x x ==++⎰⎰212(1)(1)dt t t=--+⎰21112811(1)dt t t t ⎛⎫=-++ ⎪-++⎝⎭⎰ 12(ln |1|ln |1|)81t t C t =--++++ 111ln(1cos )ln(1cos )884(1cos )x x C x =--++++. 解法3 令tan 2x t =,则22sin 1t x t =+,221cos 1t x t -=+,221dx dt t =+,则sin 22sin dxx x +⎰21111ln ||484t dt t t C t ⎛⎫=+=++ ⎪⎝⎭⎰ 211tan ln |tan |8242x xC =++.例14求分析 被积函数含有根式,一般先设法去掉根号,这是第二类换元法最常用的手段之一.解t ,即21x t =-,2dx tdt =,则212(1)11t dt dt t t==-++⎰⎰ 22ln 1t t C =-++2ln(1C =+例15求分析 被积函数中有开不同次的根式,为了同时去掉根号,选取根指数的最小公倍数. 解t ,34dx t dt =-,则2414(1)11tdt t dtt t-==--+++⎰⎰214(l n1)2t t t C=--+++ln(1)]C=-++.例16解t=,即3211xt=--,2326(1)tdx dtt=-,则233232164(1)(1)tdtt ttt==⋅-⋅-⎰132313131()2221xdt C Ct t x+==-⋅+=-+-⎰.例17求x⎰.分析2sinx t=消去根式.解2cos(0)2t tπ=<<,2cosdx tdt=,则224sin2cos2cos4sin2x t t tdt t dt=⋅⋅=⋅⎰⎰⎰12(1cos4)2sin42t dt t t C=-=-+⎰222sin cos(12sin)t t t t C=--+212arcsin)22xx C=-+.注1 对于三角代换,在结果化为原积分变量的函数时,常常借助于直角三角形.注2在不定积分计算中,为了简便起见,一般遇到平方根时总取算术根,而省略负平方根情况的讨论.对三角代换,只要把角限制在0到2π,则不论什么三角函数都取正值,避免了正负号的讨论.例18求221(1)dxx+⎰.分析 虽然被积函数中没有根式,但不能分解因式,而且分母中含有平方和,因此可以考虑利用三角代换,将原积分转换为三角函数的积分.解设tanx t=,2secdx tdt=,()2241secx t+=,则222241seccos(1)sectdx dt tdtx t==+⎰⎰⎰111(1c o s 2)s i n 2224t d t t t C =+=++⎰ 21a r c t an 22(1)xx C x =+++. 例19求. 分析故作代换sec x a t =, 将被积函数化成三角有理式.解 令sec x a t =,sec tan dx a t tdt =⋅,则22tan sec tan tan (sec 1)sec a ta t tdt a tdt a t dt a t=⋅⋅==-⎰⎰⎰ (tan )a t t C =-+arccos )aa C x=-+.例20求.解 由于2248(2)4x x x ++=++,故可设22tan x t +=,22sec dx tdt =,2(2tan 2)2sec 2sec tan 2sec 2sec t t dt t tdt tdt t -⋅==-⎰⎰⎰12s e c 2l n s ec t a n t t t C =-++2ln(2x C ++.()12ln 2C C =+ 注由00a a ><可作适当的三角代换, 使其有理化.例21求.解322[3(1)]dx x =+-⎰,令1x t -,则322321sec 11cos sin 3sec 33[3(1)]dxt dt tdt t C t x ===++-⎰⎰⎰C +. 故C =+.例22 求421(1)dx x x +⎰.分析 当有理函数的分母中的多项式的次数大于分子多项式的次数时,可尝试用倒代换.解 令1x t=,21dx dt t =-,于是421(1)dx x x +⎰44221111t t dt dt t t --+==-++⎰⎰221(1)1t dt dt t =---+⎰⎰31arctan 3t t t C =--+3111arctan 3C x x x=--+. 注 有时无理函数的不定积分当分母次数较高时,也可尝试采用倒代换,请看下例. 例23求. 解 设1x t=,2dtdx t =-,则4t =1222(1)a t t dt =--⎰.当0x >时,12222221(1)(1)2a t d a t a=---⎰ 32222(1)3a t C a -=-+322223()3a x C a x -=-+.当0x <时,有相同的结果.故322223()3a x C a x -=-+.注1 第二类换元法是通过恰当的变换,将原积分化为关于新变量的函数的积分,从而达到化难为易的效果,与第一类换元法的区别在于视新变量为自变量,而不是中间变量.使用第二类换元法的关键是根据被积函数的特点寻找一个适当的变量代换.注2 用第二类换元积分法求不定积分,应注意三个问题: (1)用于代换的表达式在对应的区间内单调可导,且导数不为零. (2)换元后的被积函数的原函数存在. (3)求出原函数后一定要将变量回代.注3 常用的代换有:根式代换、三角代换与倒代换.根式代换和三角代换常用于消去被积函数中的根号,使其有理化,这种代换使用广泛.而倒代换的目的是消去或降低被积函数分母中的因子的幂.注4 常用第二类换元法积分的类型:(1)(,f x dx t ⎰令(2)(,f x dx t =⎰令.(3)(f x dx ⎰,可令sin ax t b=或cos a x t b =.(4)(f x dx ⎰,可令tan a x t b =或ax sht b =.(5)(f x dx ⎰,可令sec a x t b =或ax cht b=.(6240)q pr -<时,利用配方与代换可化为以上(3),(4),(5)三种情形之一.(7)当被积函数分母中含有x 的高次幂时,可用倒代换1x t=.例24 求下列不定积分:(1)3x xe dx -⎰. (2)2sin 4x xdx ⎰. (3)2ln x xdx ⎰.(4)arcsin xdx ⎰. (5)arctan x xdx ⎰. (6)sin ax e bxdx ⎰22(0)a b +≠. 分析 上述积分中的被积函数是反三角函数、对数函数、幂函数、指数函数、三角函数中的某两类函数的乘积,适合用分部积分法.解 (1)3x xe dx -⎰33333111()33339xx x x x x x xd e e e dx e e C -----=-=-+=--+⎰⎰. (2)2sin 4x xdx ⎰2211(cos4)cos4cos4442x x d x x x xdx =-=-+⎰⎰22111cos4(sin 4)cos4sin 4sin 448488x x x xd x x x x xdx =-+=-+-⎰⎰211cos4sin 4cos44832x x x x x C =-+++.(3)2ln x xdx ⎰3333211ln ()ln ln 33339x x x xd x x x dx x C ==-=-+⎰⎰.(4)解法1 arcsin xdx ⎰arcsin arcsin x x x x C =-=.解法2 令arcsin t x =,即sin x t =,则arcsin (sin )sin sin sin cos xdx td t t t tdt t t t C ==-=++⎰⎰⎰arcsin x x C =+(5)解法1 a r c t a n x x d x ⎰222211arctan arctan 2221x x xdx x dx x==-+⎰⎰ 2211arctan (1)221x x dx x =--+⎰ 21arctan arctan 222x x x x C =-++. 解法221arctan arctan (1)2x xdx xd x =+⎰⎰ 22111arctan arctan 2222x x xx dx x C ++=-=-+⎰.(6)解法1 sin ax e bxdx ⎰11sin ()sin cos ax ax ax bbxd e e bx e bxdx a a a==-⎰⎰21s i n c o s ()a x a xbe b x b x d ea a=-⎰2221sin cos sin ax ax axb b e bx e xbx e bxdx a a a=--⎰ 从而21221(1)sin sin cos ax ax ax b be bxdx e bx e bx C a a a+=-+⎰,则221sin (sin cos )ax axe bxdx e a bx b bx C a b =-++⎰. 解法21sin cos axaxebxdx e d bx b =-⎰⎰,然后用分部积分,余下的解答请读者自行完成.注 在用分部积分法求()f x dx ⎰时关键是将被积表达式()f x dx 适当分成u 和dv 两部分.根据分部积分公式udv uv vdu =-⎰⎰,只有当等式右端的vdu 比左端的udv 更容易积出时才有意义,即选取u 和dv 要注意如下原则:(1)v 要容易求;(2)vdu ⎰要比udv ⎰容易积出.例25 求cos ln(cot )x x dx ⎰.分析 被积函数为三角函数与对数函数的乘积, 可采用分部积分法. 解cos ln(cot )ln(cot )(sin )x x dx x d x =⎰⎰21sin ln(cot )sin (csc )cot x x x x dx x=⋅-⋅⋅-⎰ sin ln(cot )sec x x xdx =⋅+⎰sin ln(cot )ln sec tan x x x x C =+++例26 求ln(x dx +⎰.分析 被积函数可以看成是多项式函数与对数函数的乘积,可采用分部积分法.解1ln(ln((12x dx x x x dx +=-+⎰⎰ln(x x =+-12221ln((1)(1)2x x x d x -=-++⎰ln(x x C =.例27 求x .分析 可利用凑微分公式x x e dx de =,然后用分部积分;另外考虑到被积函数中含有根式,也可用根式代换.解法1x 2x xd ==⎰2⎡⎤=⎣⎦,令t ,则2ln(1)x t =+,221tdtdx t =+,则 21222(arctan )1t dtt t C t ==-++⎰,故x (2Cz =+2C =.解法2tz =,则x22222ln(1)2ln(1)41t t dt t t dt t =+=+-+⎰⎰ 22ln(1)44arctan t t t t C =+-++2C =.注 求不定积分时,有时往往需要几种方法结合使用,才能得到结果.例28(01研) 求2arctan xxe dx e⎰. 分析 被积函数是指数函数和反三角函数的乘积,可考虑用分部积分法. 解法1 2arctan x xe dx e ⎰222211arctan ()arctan 22(1)x x x x xx x de e d e e e e e --⎡⎤=-=--⎢⎥+⎣⎦⎰⎰ 21arctan arctan 2x x x xe e e e C --⎡⎤=-+++⎣⎦. 解法2 先换元,令x e t =,再用分部积分法,请读者自行完成余下的解答.例29 求3csc xdx ⎰.分析 被积函数含有三角函数的奇次幂,往往可分解成奇次幂和偶次幂的乘积,然后凑微分,再用分部积分法.解32csc csc (csc )csc (cot )xdx x x dx xd x ==-⎰⎰⎰ 2csc cot cot csc x x x xdx =--⋅⎰ 3csc cot csc csc x x xdx xdx =--+⎰⎰ 3csc cot csc ln csc cot x x xdx x x =--+-⎰,从而31csc (csc cot ln csc cot )2xdx x x x x C =---+⎰. 注 用分部积分法求不定积分时,有时会出现与原来相同的积分,即出现循环的情况,这时只需要移项即可得到结果.例30 求下列不定积分:(1)22221(1)x x x e dx x ---⎰. (2)2ln 1(ln )x dx x -⎰. 解 (1)2222222112(1)1(1)xx xx x xdx e dx e dx e x x x --=----⎰⎰⎰ 221()11x x e dx e d x x =+--⎰⎰ 22221111x x x x e e e e dx dx C x x x x =+-=+----⎰⎰.(2)22ln 111(ln )ln (ln )x dx dx dx x x x -=-⎰⎰⎰ 221ln (ln )(ln )x x dx dx x x x x =+-⎰⎰ ln xC x=+. 注 将原积分拆项后,对其中一项分部积分以抵消另一项,或对拆开的两项各自分部积分后以抵消未积出的部分,这也是求不定积分常用的技巧之一.例31 求sin(ln )x dx ⎰.分析 这是适合用分部积分法的积分类型,连续分部积分,直到出现循环为止. 解法1 利用分部积分公式,则有1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰ s i n (l n )c o s (l n x x xd x =-⎰s i n (l n )c o s (l n )s i n (x x xx x d x =--⎰, 所以1sin(ln )[sin(ln )cos(ln )]2x dx x x x C =-+⎰. 解法2 令 ln x t =,t dx e dt =,则sin(ln )x dx ⎰=sin sin sin sin cos sin t t t t t t e tdt e t e tdt e t e t e tdt =-=--⎰⎰⎰,所以11sin(ln )(sin cos )[sin(ln )cos(ln )]22t tx dx e t e t C x x x C =-+=-+⎰. 例32 求ln n n I xdx =⎰,其中n 为自然数. 分析 这是适合用分部积分法的积分类型.解 11ln ln ln ln n n n n n n I xdx x x n xdx x x nI --==-=-⎰⎰,即1ln n n n I x x nI -=-为所求递推公式.而1ln ln ln I xdx x x dx x x x C ==-=-+⎰⎰.注1 在反复使用分部积分法的过程中,不要对调u 和v 两个函数的“地位”,否则不仅不会产生循环,反而会一来一往,恢复原状,毫无所得.注2 分部积分法常见的三种作用: (1)逐步化简积分形式; (2)产生循环;(3)建立递推公式.例33 求积分24411(21)(23)(25)x x dx x x x +--+-⎰. 分析 计算有理函数的积分可分为两步进行,第一步:用待定系数法或赋值法将有理分式化为部分分式之和;第二步:对各部分分式分别进行积分. 解 用待定系数法将24411(21)(23)(25)x x x x x +--+-化为部分分式之和.设24411(21)(23)(25)212325x x A B Cx x x x x x +-=++-+--+-,用(21)(23)(25)x x x -+-乘上式的两端得24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+, 两端都是二次多项式,它们同次幂的系数相等,即131155311A B C A B C A B C ++=⎧⎪--+=⎨⎪-+-=-⎩, 这是关于A ,B ,C 的线性方程组,解之得12A =,14B =-,34C =.由于用待定系数法求A ,B ,C 的值计算量大,且易出错,下面用赋值法求A ,B ,C .因为等式24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+是恒等式,故可赋予x 为任何值.令 12x =,可得12A =.同样,令32x =-得14B =-,令52x =,得34C =,于是 24411(21)(23)(25)x x dx x x x +--+-⎰111131221423425dx dx dx x x x =-+-+-⎰⎰⎰113ln 21ln 23ln 25488x x x C =--++-+ 231(21)(25)ln 823x x C x --=++. 例34 求321452dx x x x +++⎰.解 32452x x x +++是三次多项式,分解因式32322452()3()2(1)x x x x x x x x +++=+++++ 22(1)(32)(1)(2)x x x x x =+++=++ 设221(1)(2)21(1)A B Cx x x x x =+++++++,即2()(23)(22)1A B x A B C x A B C +++++++=,从而0230221A B A B C A B C +=⎧⎪++=⎨⎪++=⎩, 解得1A =,1B =-,1C =,因此3221111()45221(1)dx dx x x x x x x -=++++++++⎰⎰ 211121(1)dx dx dx x x x =-++++⎰⎰⎰ 1ln 2ln 11x x C x =+-+-++. 例35 求22(1)(1)dxx x x +++⎰.解 因为222211(1)(1)11x x x x x x x x -+=+++++++,所以22221()(1)(1)11dx x x dx x x x x x x -+=+++++++⎰⎰222221(1)1(1)1212121d x d x x dxx x x x x +++=-+++++++⎰⎰⎰ 2221()1112ln(1)ln(1)13222()24d x x x x x +=-+++++++⎰2211ln 21x C x x +=-++++.例36 求2425454x x dx x x ++++⎰.解 设24222545414x x Ax B Cx Dx x x x ++++=+++++,则有 23254()()(4)4x x A C x B D x A C x B D ++=+++++++,比较两边同次幂的系数,解得53A =,1B =,53C =-,0D =,从而 24222541535543134x x x xdx dx dx x x x x +++=-++++⎰⎰⎰2222255151ln arctan 3134164x x x dx dx dx x C x x x x +=-+=++++++⎰⎰⎰.例37 求322456x x dx x x +++⎰.分析 322456x x x x +++是假分式,先化为多项式与真分式之和,再将真分式分解成部分分式之和.解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498(1)5632x x dx x dx x x x x +=--+++++⎰⎰ 219ln 38ln 22x x x x C =--++++. 例38 求5632x dxx x --⎰. 解 令3u x =,23du x dx =,则533636321()123232x dx x d x udux x x x u u ==------⎰⎰⎰ 1112()3(1)(2)912u du du u u u u ==++-+-⎰⎰332121ln 1ln 2ln (1)(2)999u u C x x C =++-+=+-+. 例39 求2100(1)x dx x -⎰. 分析 被积函数2100(1)x x -是有理真分式,若按有理函数的积分法来处理,那么要确定1A ,2A ,…,100A ,比较麻烦.根据被积函数的特点:分母是x 的一次因式,但幂次较高,而分子是x 的二次幂,可以考虑用下列几种方法求解. 解法1 令1x t -=,dx dt =-,则222100100100(1)21(1)x t t t dx dt dt x t t --+=-=--⎰⎰⎰98991002t dt t dt t dt ---=-+-⎰⎰⎰9798991112979899t t t C ---=-⋅++ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法2 22100100(1)1(1)(1)x x dx dx x x -+=--⎰⎰9910011(1)(1)x dx dx x x +=-+--⎰⎰ 99100(1)21(1)(1)x dx dx x x --=+--⎰⎰ 98991001112(1)(1)(1)dx dx dx x x x =-+---⎰⎰⎰ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法3 用分部积分法.22991001[(1)](1)99x dx x d x x -=--⎰⎰29999299(1)99(1)x x dx x x =---⎰2989921[(1)]99(1)9998x xd x x -=---⎰ 299989821[]99(1)9998(1)98(1)x x dx x x x =-----⎰ 299989712199(1)9949(1)999897(1)x x C x x x =-⋅-⋅+--⋅-. 注 形如()()P x Q x 的(()P x 与()Q x 均为多项式)有理函数的积分关键是将有理真分式分解成部分分式之和,而部分分式都有具体的积分方法,对于假分式则要化为真分式与多项式之和.例40求.分析 这是无理函数的积分,先要去掉根号化为有理函数的积分,分子分母有理化是常用去根号的方法之一. 解121)=112211(32)(21)44x dx x dx =+--⎰⎰ 332211(32)(21)1212x x C =+--+. 例41求. 解法1a ==+1222221()()2a a x d a x -=---⎰arcsin xa C a=.解法2 令t =余下的请读者自行完成. 例42 求154sin 2dx x+⎰.分析 被积函数是三角有理函数,可用万能公式将它化为有理函数. 解 令tan t x =,211dx dt t=+,则 21154sin 2585dx dt x t t =+++⎰⎰54332543311()3()1d t t =+++⎰ 154arctan()333t C =++154arctan(tan )333x C =++. 注 虽然万能代换公式总能求出积分,但对于具体的三角有理函数的积分不一定是最简便的方法.通常要根据被积函数的特点,采用三角公式简化积分.例43 求1sin cos dxx x++⎰.解法1 令tan2xu =,则 2222211211sin cos 1111dx u du du u u x x u u u +==-+++++++⎰⎰⎰ln 1tan 2x C =++. 解法21s i n c o s dxx x ++⎰22122sin cos 2cos cos (1tan )22222dx dxx x x x x ==++⎰⎰ 2()(tan )22cos (1tan )1tan222x x d d x x x==++⎰⎰ ln 1tan2xC =++. 注 可化为有理函数的积分主要要求熟练掌握如下两类:第一类是三角有理函数的积分,即可用万能代换tan 2xu =将其化为u 的有理函数的积分.第二类是被积函数的分子或分母中带有根式而不易积出的不定积分.对于这类不定积分,可采用适当的变量代换去掉根号,将被积函数化为有理函数的积分.常用的变量代换及适用题型可参考前面介绍过的第二类换元法. 例44 求2max{,1}x dx ⎰.分析 被积函数2max{,1}x 实际上是一个分段连续函数,它的原函数()F x 必定为连续函数,可先分别求出各区间段上的不定积分, 再由原函数的连续性确定各积分常数之间的关系.解 由于221,()max{,1}1,1x x f x x x >⎧==⎨≤⎩, 设()F x 为()f x 的原函数,则312331,13(),11,13x C x F x x C x x x C ⎧+⎪<-⎪=+≤⎨⎪>⎪+⎩, 其中1C ,2C ,3C 均为常数,由于()F x 连续,所以121(1)(1)13F C F C -+-=-+=-=-,231(1)1(1)3F C F C -+=+==+,于是1223C C =-+,3223C C =+,记 2C C =,则32312,133max{,1},112,133x C x x dx x C x x x C⎧-+⎪<-⎪=+≤⎨⎪>⎪++⎩⎰. 注 对于一些被积函数中含有绝对值符号的不定积分问题,也可以仿照上述方法处理. 例45 求x e dx -⎰.解 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.因为函数x e -的原函数在(,)-∞+∞上每一点都连续,所以120lim()lim()x x x x e C e C +--→→-+=+, 即1211C C -+=+,122C C =+,记 2C C =,则2,0,0xxxe C x e dx x e C --⎧-++≥⎪=⎨<+⎪⎩⎰. 错误解答 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.故12,0,0x xxe C x e dx e C x --⎧-+≥⎪=⎨+<⎪⎩⎰.错解分析 函数的不定积分中只能含有一个任意常数,这里出现了两个,所以是错误的.事实上,被积函数x e -在(,)-∞+∞上连续,故在(,)-∞+∞上有原函数,且原函数在(,)-∞+∞上每一点可导,从而连续.可据此求出任意常数1C 与2C 的关系,使xe-的不定积分中只含有一个任意常数.注 分段函数的原函数的求法:第一步,判断分段函数是否有原函数.如果分段函数的分界点是函数的第一类间断点, 那么在包含该点的区间内,原函数不存在.如果分界点是函数的连续点,那么在包含该点的区间内原函数存在.第二步,若分段函数有原函数,先求出函数在各分段相应区间内的原函数,再根据原函数连续的要求,确定各段上的积分常数,以及各段上积分常数之间的关系. 例46 求下列不定积分:(1)sin 1cos x x dx x ++⎰. (2)3sin 2cos sin cos x x x x e dx x -⎰. (3)cot 1sin x dx x +⎰. (4)3sin cos dxx x⎰. 解 (1)注意到sin (1cos )xdx d x =-+及2211(tan )1cos 2cos 2xxdx dx d x ==+,可将原来的积分拆为两项,然后积分,即sin sin 1cos 1cos 1cos x x x xdx dx dx x x x +=++++⎰⎰⎰1(tan )(1cos )21cos x xd d x x=-++⎰⎰t a n t a n l n (1c o s )22x xx dx x =--+⎰ 1tan2ln cos ln(1cos )22x xx x C =+-++ 21t a n 2l n c os l n (2c o s )222x xxx C =+-+1tan (ln 2)2x x CC C =+=-.(2)被积函数较为复杂,直接凑微分或分部积分都比较困难,不妨将其拆为两项后再观察.3sin sin sin 2cos sin cos tan sec cos xx x x x xedx e x xdx e x xdx x-=-⎰⎰⎰ sin sin ()(sec )x x xd e e d x =-⎰⎰sin sin sin sin sec x x x x xe e dx e x e dx =--+⎰⎰sin (sec )x e x x C =-+.(3)cot cos 1(sin )1sin sin (1sin )sin (1sin )x x dx dx d x x x x x x ==+++⎰⎰⎰11(sin )(sin )sin 1sin d x d x x x =-+⎰⎰ sin ln 1sin x C x=++.(4)当分母是sin cos m n x x 的形式时,常将分子的1改写成22sin cos x x +,然后拆项,使分母中sin x 和cos x 的幂次逐步降低直到可利用基本积分公式为止.33cos sin cos sin cos sin dx dx xdx x x x x x =+⎰⎰⎰3sin 2csc2sin d xxdx x =+⎰⎰21l n c s c 2c o t 22s i n x x Cx=--+. 注 将被积函数拆项,把积分变为几个较简单的积分,是求不定积分常用的技巧之一.例47 求223(1)x dx x -⎰. 解 考虑第二类换元积分法与分部积分法,令sin x t =,则222353235sin tan sec (sec sec )(1)cos x t dx dt t tdt t t dt x t ===--⎰⎰⎰⎰, 而53323secsec (tan )sec tan 3tan sec tdt td t t t t tdt ==-⎰⎰⎰353sec tan 3(sec sec )t t t t dt =--⎰.故53313sec sec tan sec 44tdt t t tdt =+⎰⎰. 又32secsec (tan )sec tan tan sec tdt td t t t t tdt ==-⎰⎰⎰ 3sec tan (sec sec )t t t t dt =--⎰,从而3111sec sec tan ln sec tan 22tdt t t t t C =+++⎰, 所以223(1)x dx x -⎰3311sec tan sec 44t t tdt =-⎰3111sec tan sec tan ln sec tan 488t t t t t t C =--++ 32211ln 8(1)161x x xC x x ++=-+--. 例48 求7cos 3sin 5cos 2sin x xdx x x-+⎰.解 因为(5cos 2sin )2cos 5sin x x x x '+=-,所以可设7cos 3sin (5cos 2sin )(5cos 2sin )x x A x x B x x '-=+++,即7cos 3sin (5cos 2sin )(2cos 5sin )x x A x x B x x -=++-,比较系数得527253A B A B +=⎧⎨-=-⎩, 解之得1A =,1B =,故7cos 3sin 5cos 2sin x x dx x x -+⎰(5cos 2sin )(5cos 2sin )5cos 2sin x x x x dx x x'+++=+⎰ (5cos 2sin )5cos 2sin d x x dx x x+=++⎰⎰l n 5c o s 2s i n x x x C=+++. 例49 设()F x 是()f x 的原函数,且当0x ≥时有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .分析 利用原函数的定义,结合已知条件先求出()F x ,然后求其导数即为所求.解 因为()()F x f x '=,所以2()()sin 2F x F x x '=,两边积分得2()()sin2F x F x dx xdx '=⎰⎰,即211()sin 4228x F x x C =-+, 由(0)1F =得12C =,所以()F x =从而()()f x F x '==2=.。
不定积分典型例题讲解课件PPT

dx
( n 为自然数)
n (x a)n1(x b)n1
解: I 令 则( xttn a)xx(xxxdxbabab, )nnt xxbad t (a( xannbt)dbtb)tdtdtx1 ((xxaabdb))(xxdxb) n (说(通注(通注说计 一一一一计一通二特使(一注注使注注二说 二通二一(使说一通一使计 一(说注一注(一注特使一(((通通注一二通(说计一P通 注使(通二计一计使二计二(注PP二通代代代代代代代代代代22112222)))))明过意过意明算、、般般算般过、别用、意意用意意、明般过、、用明般过般用算、明意般意、意别用、过过意般过明算般过意用、过、算、般算用、算、意、过000换换换换换换换换换换初初一一初555:简 常 简 常 :格经 经 格 经 简 几 :各 常 常 各 常 常 几 :几 经 简 几 各 :经 简 经 各 格:常 经 常 常 :各 简 简 常 经 几 简 :格 经 简常 各 简 几 格 经 格 各 几 格 几 常 几 简~ ~ ~求求求求求求求求求::::::::::等等般般等此此当此 此此当此单见单见式 验验式验单种种见见种见见种种验单种种验单验种式 见验见见种单单见验种单式验单 见种单种式验式种种式种见单PPP不不不不不不不不不函函方方函法技法技 技法法222uu变的变的:::::变特基的的基的的特特:变特基:变:基:的:的的基变变的:特变::变 的基变特:::基特特的特变000定定定定定定定定定数数法法数特巧为特巧 巧特为特666列 按按列按按按按列 按按列按列按列列形换形换形殊本换换本换换殊殊形殊本形本换换换本形形换殊形形 换本形殊本殊殊换殊形积积积积积积积积积公公公的的不不的别适别适 适别别表 ““表“n“““表 “n“表“表“表表元元类积元元积元元类类类积积元元元积元类元积类积类类元类,,,,,,,,,,,))))))))))分分分分分分分分分式式式原原一一原利利利利利利利利利 利利适用适用 用适适次次计 反反计反反反反计 反反计反计反计计积积型分积积分积积型型型分分积积积分积型积分型分型型积型的的的的的的的的的(((函函定定函用用用用用用用用用 用用用于用于 于用用多多111,,,,,,,,,,算 算算 算算算算分分的法分分法分分的的的法法分分分法分的分法的法的的分的666基基基基基基基基基对对对对对对对对对对数数是是数基基基基基基基基基 基基于形于形 形于于项项)))类类积类类类类积积积类类类类积类积积积类积,,,,,,,本本本本本本本本本~~~,,,,,,,,,,不 不 最 最 不简简简简简简简本本本本本本本本本本本为为 为式式幂幂幂幂幂幂幂幂幂幂(((型型分型型型型分分分型型型型分型分分分型分222方方方方方方方方方一一简简一便便便便便便便积积积积积积积积积 积积时时444,,,,,,,,,,,,,,,,,,,,,,)))法法法法法法法法法指指指指指指指指指指定定便便定的的的如如计如如计如如计计如如如计如如计计如分分分分分分分分分 分分,, 是是的的是推推推掌掌算掌掌算掌掌算算掌掌掌算掌掌算算掌公公公公公公公公公 公公,,,,,,,,,, 三三三三三三三三三三初初方方初导导导握握握握握握握握握握握握式式式式式式式式式 式式.......””””””””””等等法法等方方方和和和和和和和和和 和和的的的的的的的的的的函函函,,法法法运运运运运运运运运 运运顺顺顺顺顺顺顺顺顺顺数数数算算算算算算算算算 算算序序序序序序序序序序法法法法法法法法法 法法,,, ,,,,,,,,,,则则则则则则则则则 则则
关于一道不定积分习题的多种解法分析

关于一道不定积分习题的多种解法分析近几年,微积分课程在越来越多的大学中得到重视,它的学习已成为大学数学的重要组成部分。
其中,不定积分是微积分学习的重要内容。
本文就以一道不定积分习题为例,阐述不定积分计算过程中可用到的多种解法,以期能为读者提供一些启发和帮助。
首先,让我们来看一下这道不定积分习题:$$int{(2x^2 + 3x + 1)mathrm dx}$$解法一:通分法(U-Substitution)通分法是一种颇为常见的积分解法,它可以将复杂的方程转换为更易计算的方程。
在此处,我们可以通过改变未知数$u$的形式来解决问题:$$u = 2x + 1, du = 2mathrm dx$$则原式可化简为:$$begin{align}int(2x^2 + 3x + 1)mathrm{dx} &= int(2u - 1)mathrm{du} &= u^2 - u + C&= (2x + 1)^2 - (2x + 1) + C&= 4x^2 + 4x + 1 + Cend{align}$$解法二:正比变换法(Direct Proportion Transformation)正比变换法是另一种解决问题的方法,它可以将复杂的方程变换为更直观的形式。
在此处,我们可以通过改变未知数$u$的形式来解决问题:$$u = x^2, mathrm du = 2x mathrm dx$$则原式可化简为:$$begin{align}int(2x^2 + 3x + 1)mathrm{dx} &= int(2u + 3 sqrt{u} + 1)mathrm{du}&= u^{3/2} + frac{3u^{2}}{2} + u + C&= x^3 + frac{3x^4}{2} + x^2 + C&= 4x^3 + 3x^2 + 2x + Cend{align}$$解法三:特殊函数变换法(Special Function Transformation)特殊函数变换法也是一种求解不定积分的方法,它可以将复杂的方程变换为更易计算的形式。
不定积分的应用题解析

不定积分的应用题解析解析一:在数学中,不定积分被广泛应用于求解各种函数的原函数。
不定积分的概念可以追溯到牛顿和莱布尼茨等著名数学家的工作。
它为解决实际问题提供了有效的工具,尤其在面积、体积、物理学等领域的计算中具有重要的应用。
本文将通过几个应用题来解析不定积分的使用方法。
解析二:题目一:求函数的原函数假设有一个函数f(x),我们需要求解它的原函数F(x)。
首先,我们可以通过不定积分的定义来解决这个问题。
根据不定积分的定义,如果F(x)是f(x)的一个原函数,那么对于任意的x值,有F'(x) = f(x)。
我们可以利用这个等式来求解F(x)。
举例来说,如果我们需要求解函数f(x) = 2x的原函数F(x),我们可以计算F(x)的导数F'(x),即F'(x) = 2x。
由此可得F(x) = x^2 + C,其中C为常数。
所以,函数F(x) = x^2 + C是函数f(x) = 2x的一个原函数。
题目二:计算曲线下的面积不定积分还可以用来计算曲线下的面积。
假设我们需要计算曲线y = f(x)与x轴之间某一区间[a, b]内的面积。
我们可以使用不定积分来求解。
具体方法是将曲线y = f(x)与x轴围成的区域进行划分,然后将每个小区间的面积相加。
假设我们将区间[a, b]划分为n个小区间,每个小区间的宽度为Δx。
那么,每个小区间的面积可以近似表示为Δx乘以f(x)。
通过求和,我们可以得到近似的曲线下面积,即Σ[1, n]Δx * f(x)。
当n趋向于无穷大时,这个近似的面积将趋向于确切的面积。
因此,我们可以利用不定积分来计算曲线下的确切面积。
题目三:求物体的体积不定积分还可以应用于求解物体的体积。
假设我们需要计算一个旋转体的体积,该旋转体是由曲线y = f(x)绕x轴旋转一周所得。
为了求解这个问题,我们可以使用“圆盘法”或者“柱体法”。
以“圆盘法”为例,我们将曲线y = f(x)绕x轴旋转一周得到的旋转体分解为无数个圆盘,每个圆盘的厚度为Δx,半径为f(x),面积为π * [f(x)]^2。
不定积分

一、不定积分的解题技巧引例:不定积分∫(1-x)cos2xdx∫(1-x)cos2xdx=∫cos2xdx-∫xcos2xdx=(1/2)∫cos2xd2x-(1/4)∫2xcos2xd2x=(1/2)sin2x-(1/4)∫2xdsin2x=(1/2)sin2x-(1/2)xsin2x (1/4)∫sin2xd2x=(1/2)sin2x-(1/2)xsin2x-(1/4)cos2x C∫(1-x)cos2xdx求导行:1-x -1 0积分行:cos2x 1/2*sin2x -1/4*cos2x所以:∫(1-x)cos2xdx =(1-x)*1/2*sin2x-(-1)*(-1/4*cos2x) C注:分步积分的时候,∫a*bdx哪个放到d后面去(那个先反过来求导)?这里遵循一个原则:对,反,幂,三,指。
越后的先放到d里去如∫x^2 cosxdx x^2是幂函数,cosx是三角函数。
所以,要这样化∫x^2dsinx而不是1/3∫cosxdx^3引例2:∫1/(1 x^4)dx原式=1/2((1 x^2 1-x^2)/1 x^4)=0.5(1 x^2/1 x^4) 0.5(1-x^2/1 x^4)=0.5(1 x^-2/x^-2 x^2)<就是分子分母同除x的平方>如果是不定积分,两类换元法和拼凑法一般来说结合使用灵活系数比较大不过你要相信考试不定积分形式比较简单方法比较独到,绝对不是“暴力“积出来的,一想到你的方法越做越陷入死路,我想因该要变通.第二,对于有独特的因子你要留意.定积分,比不定积分要难一些,因为很多函数是没有初等函数的,方法是拼凑法和化为二元再交换顺序,其中拼凑发很关键,我们要掌握.例题大家平时做题目就很容易发现方法与技巧一、换元法1.凑微分使用凑微分法的难处在于如何“凑”出一个函数的微分。
对于这个问题一方面要求熟悉一些常见函数的微分形式,另一方面,对于那些不易观察的,则不妨从被积函数中拿出一个表达式,求其微分,从而决定如何凑微分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定积分的例题分析及解法这一章的基本概念是原函数、不定积分、主要的积分法是利用基本积分公式,换元积分法和分部积分法。
对于第一换元积分法,要求熟练掌握凑微分法和设中间变量)(x u ϕ=,而第二换元积分法重点要求掌握三角函数代换,分部积分法是通过“部分地”凑微分将⎰υud 转化成⎰du υ,这种转化应是朝有利于求积分的方向转化。
对于不同的被积函数类型应该有针对性地、灵活地采用有效的积分方法,例如)(x f 为有理函数时,通过多项式除法分解成最简分式来积分,)(x f 为无理函数时,常可用换元积分法。
应该指出的是:积分运算比起微分运算来,不仅技巧性更强,而且业已证明,有许多初等函数是“积不出来”的,就是说这些函数的原函数不能用初等函数来表示,例如dx xx ⎰sin ;dx ex⎰-2;dx x⎰ln 1;⎰-xk dx 22sin 1(其中10<<k )等。
这一方面体现了积分运算的困难,另一方面也推动了微积分本身的发展,在第7章我们将看到这类积分的无限形式的表示。
一、疑难分析(一)关于原函数与不定积分概念的几点说明(1)原函数与不定积分是两个不同的概念,它们之间有着密切的联系。
对于定义在某区间上的函数)(x f ,若存在函数)(x F ,使得该区间上每一点x 处都有)()(x f x F =',则称)(x F 是)(x f 在该区间上的原函数,而表达式C C x F ()(+为任意常数)称为)(x f 的不定积分。
(2))(x f 的原函数若存在,则原函数有无限多个,但任意两个原函数之间相差某个常数,因此求)(x f 的不定积分⎰dx x f )(时,只需求出)(x f 的一个原函数)(x F ,再加上一个任意常数C 即可,即⎰+=C x F dx x f )()(。
(3)原函数)(x F 与不定积分⎰dx x f )(是个体与全体的关系,)(x F 只是)(x f 的某个原函数,而⎰dx x f )(是)(x f 的全部原函数,因此一个原函数只有加上任意常数C 后,即C x F +)(才能成为)(x f 的不定积分,例如3,21,1222-++x x x 都是x 2的原函数,但都不是x 2的不定积分,只有C x +2才是x 2的不定积分(其中C 是任意常数)。
(4))(x f 的不定积分⎰dx x f )(中隐含着积分常数C ,因此计算过程中当不定积分号消失后一定要加上一个任意常数C 。
(5)原函数存在的条件:如果函数)(x f 是某区间上连续,则在此区间上)(x f 的原函数一定存在,由于初等函数在其定义域区间上都是连续的,所以初等函数在其定义区间上都有原函数,值得注意的是,有些初等函数的原函数很难求出来,甚至不能表为初等函数,例如下列不定积分dx exdx dx xx x⎰⎰⎰-2,ln ,sin都不能“积”出来,但它们的原函数还是存在的。
(二)换元积分法的几点说明换元积分是把原来的被积表达式作适当的换元,使之化为适合基本积分公式表中的某一形式,再求不定积分的方法。
(1)第一换元积分法(凑微分法):令)(x u u = 若已知⎰+=C x F dx x f )()(,则有[][]C x F dxx x f +='⎰)()()(ϕϕϕ其中)(x ϕ是可微函数,C 是任意常数。
应用第一换元法熟悉下列常见的微分变形(凑微分形式)。
(1)a b ax d ab x d dx )((1)(+=+=、)0≠,ab 为常数具体应用为⎰⎰++=+)()(1)(b ax d b ax adx b ax mm=⎪⎪⎩⎪⎪⎨⎧+++++⋅+C b ax aC m b ax a m ln 11)(11)1()1(-=-≠m m(2) )(111b xd a d x x a a++=+)()1(11b axd aa a ++=+a (、b 、a 均为常数,且)1,0-≠≠a a 。
例如:x d dx xx x d dx x dx xdx 21),(32,212===(3))ln (1ln 1b x a d ax d dx x+==b a ,(为常数,)0≠a(4),0(ln )(,>==a aa d dx a de dx e xxx x且)1≠a ;(5));(sin cos ),(cos sin x d xdx x d xdx =-= (6))cot (csc ),(tan sec 22x d xdx x d xdx -== (7))(arctan 112x d dx x=+(8))(arcsin 112x d dx x=-在具体问题中,凑微分要根据被积函数的形式特点灵活运用,例如求⎰+dx xx f 211)(arctan时,应将dx xdx 21+凑成x d arctan ;求dx xx arc f ⎰+211)cot (时,应将dx x211+凑成x darc cot -;而求dx xx⎰+212时,211x +就不能照搬上述两种凑法,应将xdx 2凑成2dx ,即)1(222x d dx xdx +==。
(2)第二换元法积分法:令)(t x ϕ=,常用于被积函数含22x a ±或22a x -等形式。
常见的元理函数积分所采用的换元式如表5-1所示:(3)同一个不定积分,往往可用多种换元方法求解,这时所得结果在形式上可能不一致,但实质上仅相差一常数,这可能过对积分结果进行求导运算来验证。
(三)关于积分形式不变性在讲第一换元积分法时,讲过这样一个定理:如果⎰+=C x F dx x f )()(,那么有⎰+=C u F du u f )()(,其中)(x u ϕ=是x 的可微函数。
这个定理说明:(1)积分变量x 无论是自变量,还是中国变量,积分公式的形式不变,这一特性叫做积分形式不变性。
(2)根据这个定理,基本积分表中的x 既可以看作是自变量,也可以看作是函数(可微函数),因此基本积分表中的公式应用范围就扩大了,例如基本积分公式C x dxx +=⎰ln 1现在就可以看作是()()()C d +=⎰ln 1其中括号内可填充任意一个可微函数,只要三个括号填充的内容保持一致即可,这也正是不定积分的凑微分法的由来,即如果被积函数⎰dx x f )(能够写成[]dxx x g )()(ϕϕ'⋅⎰的形式,且已知⎰+=C u F duu g )()(,则有[]dx x x g dx x f )()()(ϕϕ'=⎰⎰[])()(x d x g ϕϕ⎰=[]C x F +=)(ϕ同学们在应用积分不变性时,一定要注意三个括号内的内容必须是一致..的,否则将出现错误。
(四)分部积分法设)(),(x x u u υυ==是可微函数,且)()(x x u υ⋅'或)()(x x u υ'⋅有原函数,则有分部积分公式:⎰⎰'⋅-⋅='⋅dx x u x x x u dxx x u )()()()()()(υυυ 或⎰⎰-=du u ud υυυ当被积函数是两个函数的乘积形式时,如果用以前的方法都不易计算,则可考虑用分部积分法求解,用分部积分法求积分时首先要将被积函数凑成⎰'dx u υ或⎰υud 的形式,这一步类似于凑微分,然后应用分部积分公式⎰'-du u υυ,或⎰'-dx u u υυ,再计算⎰'dx u υ,即得到积分结果。
显然,用分部积分法计算不定积分时,关键是如何恰当地选择谁做u 和υ'的原则是:①根据υ'容易求出υ;②⎰'dx u υ要比原积分⎰'dx u υ容易计算,实际中总结出一些常见的适用分部积分法求解的积分类型及其u 和υ'的选择规律,一归纳如表5-2。
表5-2说明(1)表5-2中,)(x p x 表示n 次多项式。
(2)表5-2中的x e x x x arcsin ,,cos ,sin 等函数,不只局限于这些函数本身,而是指它们代表的函数类型,例x sin ,表示对所有正弦函数)sin(b ax +均适用,而x e 表示对所有b ax e +均适用,其它几个函数也如此。
(3)III 类积分中,也可选择x e u xsin ,='=υ(或x cos ),无论怎么样选择,都得到递推循环形式,再通过移项、整理才能得到积分结果。
(五)有理函数的积分有理函数可分为如下三种类型:(1)多项式:它的积分根据积分公式表即可求得,是最易计算的类型。
(2)有理真分式:从代数理论可知,任何有理真分式都可通过待定系数法分解或下列四种类型的最简分式的代数和:kkq px x BAx q px x BAx a x Aa x A)(,,)(,22++++++--其中k q p ,,为常数,1,042≠<-k q p 。
因此求得有理真分的积分归结为求上述四种最简分式的积分。
(3)有理假分式(分子次数不低于分母次数);任何有理假分式都可分解为一个多项式和一个有理真分式之和,而这两部分的积分可分别归结为(1)和(2)综上所述,有理函数的积分实质上归结为求多项式的积分和最简化式的积分,而前者是易于求得的,后者可通过凑微分法求出的结果。
二、例题分析例1 为下列各题选择正确答案: (1)( )是函数xx f 21)(=的原函数A .x x F 2ln )(=B .221)(xx F -=C .)2ln()(x x F +=D .x x F 3ln 21)(=(2)若)(x f 满足⎰+=C x dx x f 2sin )(,则=')(x f ( ) A .x 2sin 4 B .x 2cos 2 C .x 2sin 4- D .x 2cos 2- (3)下列等式中( )是正确的 A .⎰=')()(x f dx x f B .C e f dx e f x x +='⎰)()( C .C x f dx x f +='⎰)()( D .⎰+--=-'C x f dx x f x )1(21)1(22(4)若⎰+=C x F dx x f )()(,则⎰=dx x xf )(cos sin ( ) A .C x F +-)(cos B .C x F +)(cos C .C x f +-)(sin D .C x F +)(sin (5)下列函数中,( )不是x 2s i n 的原函数。
A .x 2cos 21-B .x 2cos -C .x 2sin D .x 2cos -解(1)根据原函数的概念,验证所给函数)(x F 是否满足xx F 21)(='。
由于A 中xx xx 21122)2(ln ≠=='B 中xx x 2141)21(32≠='-C 中[]x x x 2121)2ln(≠+='+D 中xxx 213321)3ln 21(=⋅='故正确选项为D 。