基于神经网络模型的最新系统辨识算法

合集下载

神经网络在系统辨识中的应用

神经网络在系统辨识中的应用

神经网络在系统辨识中的应用摘要应用于自动控制系统的神经网络算法很多,特点不一,对于非线性系统辨识的研究有一定影响。

本文就BP网络算法进行了着重介绍,并点明了其收敛较慢等缺点,进而给出了改进算法,说明了建立在BP算法基础上的其他算法用于非线性系统辨识的可行性与有效性。

关键词神经网络BP算法;辨识;非线性系统前言神经网络是一门新兴的多学科研究领域,它是在对人脑的探索中形成的。

神经网络在系统建模、辨识与控制中的应用,大致以1985年Rumelhart的突破性研究为界。

在极短的时间内,神经网络就以其独特的非传统表达方式和固有的学习能力,引起了控制界的普遍重视,并取得了一系列重要结果。

本文以神经网络在系统辨识中的应用作一综述,而后着重介绍BP网络算法,并给出了若干改进的BP算法。

通过比较,说明改进算法具有诸多优点及用于非线性系统辨识[1]的可行性与有效性。

1 神经网絡用于系统辨识的原理及现状神经网络在自动控制系统中的应用已有多年。

目前,利用神经网络建立动态系统的输入/输出模型的理论及技术,在许多具体领域的应用得到成功,如化工过程、水轮机、机器入手臂、涡轮柴油发动机等。

运用神经网络的建模适用于相当于非线性特性的复杂系统[2]。

目前系统辨识中用得最多的是多层前馈神经网络[1]。

我们知道,自动控制系统中,一个单隐层或双隐层的具有任意数目神经元的神经网络,可以产生逼近任意函数的输入/输出映射。

但网络的输入节点数目及种类(延迟输入和输出)、隐层节点的个数以及训练所用的算法对辨识精度和收敛时间均有影响。

一般根据系统阶数取延迟输入信号,根据经验确定隐层节点数,然后对若干个神经网络进行比较,确定网络中神经元的合理数目。

现在用得较多的多层前馈神经网络的学习算法是反向传播算法(Back Propagation),即BP算法。

但BP算法收敛速度较慢,后面将会进一步讨论。

1.1 神经网络的结构感知器是最简单的前馈网络,它主要用于模式分类。

基于前向神经网络的非线性时变系统辨识改进EKF算法

基于前向神经网络的非线性时变系统辨识改进EKF算法

人 : 经 网络在 非线 性 系 统辨 识 问题 中得 以广 泛 [神 应 用 』 近年来 的研 究 工 作 还 从 非 线 性 定 常 系 统 辨 识 , 推 广到更 有~ 般性 的非 线 性 时 变 系统 问题 _ 。该 类 方 2
型 ( A MA) 用 扩 展 卡 尔 曼 滤 波 算 法 跟 踪模 型 参 数 N R 使
骤对 辨识 算法 的计 算精 度 和计 算 量 都 有 至关 重 要 的 影 响 。其 中 B P算 法 已经 证 明存 在 收敛 速度 慢 和 局 部 极小 点 等问题 。 而扩展 卡 尔曼 滤 波 学 习算 法 无 需对
1 系统 描 述 与 神 经 网 络 模 型
离散 的非 线性 时 变系统 可 描述 为 :
Yk ( )=f Y k一1 , , ( (( ) … Y k—n ) U k , 、 , ( )
U k—1 , , ( ( ) … U k—n ) 0 k )+l k ;( ) , ) ( () 1
学 习速率 和势 态项 系数 进 行猜 测 , 收敛 速 度快 、 且 精度
高 。然而 这类 算 法 由于 维 数 过 高 且 需 矩 阵 求 逆 , 限制
计 值可 能偏 离 真 值 较 远 就 无 法 更 新 了 , 者 对 于 时 变 或 结构 来说 , 导 致 参 数 估 计 值 不 能 跟 踪 时变 参 数 的 变 将
化 。本 文深 人分 析 了传统 扩 展 卡 尔曼 滤 波算 法 的递 推
利 用优化 方 法 调 整 网 络权 值 , 新 网络 拟 合 的模 型 与 使
摘 要 : 为了克服 传统扩展卡尔曼滤波算法进行参数估计时可能产 生的新数 据失效问题 , 出了一种改进的扩展 提

神经网络非线性系统辨识与模型参考自适应控制器设计

神经网络非线性系统辨识与模型参考自适应控制器设计

试论述神经网络系统建模的几种基本方法。

利用BP 网络对以下非线性系统进行辨识。

非线性系统22()(2(1)1)(1)()1()(1)y k y k y k u k y k y k -++=+++-1)首先利用u(k)=sin(2*pi*k/3)+1/3*sin(2*pi*k/6),产生样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;2)网络测试,利用u(k)=sin(2*pi*k/4)+1/5*sin(2*pi*k/7), 产生测试点200,输入到上述系统,产生y(k), 检验BP/RBF 网络建模效果。

3)利用模型参考自适应方法,设计NNMARC 控制器,并对周期为50,幅值为+/- 的方波给定,进行闭环系统跟踪控制仿真,检验控制效果(要求超调<5%)。

要求给出源程序和神经网络结构示意图,计算结果(权值矩阵),动态过程仿真图。

1、系统辨识题目中的非线性系统可以写成下式:22()(2(1)1)(1)()();()1()(1)y k y k y k f u k f y k y k -++=•+•=++- 使用BP 网络对非线性部分()f •进行辨识,网络结构如图所示,各层神经元个数分别为2-8-1,输入数据为y(k-1)和y(k-2),输出数据为y(k)。

图 辨识非线性系统的BP 网络结构使用500组样本进行训练,最终达到设定的的误差,训练过程如图所示图网络训练过程使用200个新的测试点进行测试,得到测试网络输出和误差结果分别如下图,所示。

从图中可以看出,相对训练数据而言,测试数据的辨识误差稍微变大,在±0.06范围内,拟合效果还算不错。

图使用BP网络辨识的测试结果图使用BP网络辨识的测试误差情况clear all;close all;%% 产生训练数据和测试数据U=0; Y=0; T=0;u_1(1)=0; y_1(1)=0; y_2(1)=0;for k=1:1:500 %使用500个样本点训练数据U(k)=sin(2*pi/3*k) + 1/3*sin(2*pi/6*k);T(k)= y_1(k) * (2*y_2(k) + 1) / (1+ y_1(k)^2 + y_2(k)^2); %对应目标值Y(k) = u_1(k) + T(k); %非线性系统输出,用于更新y_1if k<500u_1(k+1) = U(k); y_2(k+1) = y_1(k); y_1(k+1) = Y(k); endendy_1(1)=; y_1(2)=0;y_2(1)=0; y_2(2)=; y_2(3)=0; %为避免组合后出现零向量,加上一个很小的数X=[y_1;y_2];save('traindata','X','T');clearvars -except X T ; %清除其余变量U=0; Y=0; Tc=0;u_1(1)=0; y_1(1)=0; y_2(1)=0;for k=1:1:200 %使用500个样本点训练数据U(k)=sin(2*pi/4*k) + 1/5*sin(2*pi/7*k); %新的测试函数Y(k) = u_1(k) + y_1(k) * (2*y_2(k) + 1) / (1+ y_1(k)^2 + y_2(k)^2); if k<200u_1(k+1) = U(k); y_2(k+1) = y_1(k); y_1(k+1) = Y(k); endendTc=Y; Uc=u_1;y_1(1)=; y_1(2)=0;y_2(1)=0; y_2(2)=; y_2(3)=0; %为避免组合后出现零向量,加上一个很小的数Xc=[y_1;y_2];save('testdata','Xc','Tc','Uc'); %保存测试数据clearvars -except Xc Tc Uc ; %清除其余变量,load traindata; load testdata; %加载训练数据和测试数据%% 网络建立与训练[R,Q]= size(X); [S,~]= size(T); [Sc,Qc]= size(Tc);Hid_num = 8; %隐含层选取8个神经元较合适val_iw =rands(Hid_num,R); %隐含层神经元的初始权值val_b1 =rands(Hid_num,1); %隐含层神经元的初始偏置val_lw =rands(S,Hid_num); %输出层神经元的初始权值val_b2 =rands(S,1); %输出层神经元的初始偏置net=newff(X,T,Hid_num); %建立BP神经网络,使用默认参数 %设置训练次数= 50;%设置mean square error,均方误差,%设置学习速率{1,1}=val_iw; %初始权值和偏置{2,1}=val_lw;{1}=val_b1;{2}=val_b2;[net,tr]=train(net,X,T); %训练网络save('aaa', 'net'); %将训练好的网络保存下来%% 网络测试A=sim(net,X); %测试网络E=T-A; %测试误差error = sumsqr(E)/(S*Q) %测试结果的的MSEA1=sim(net,Xc); %测试网络Yc= A1 + Uc;E1=Tc-Yc; %测试误差error_c = sumsqr(E1)/(Sc*Qc) %测试结果的的MSEfigure(1);plot(Tc,'r');hold on;plot(Yc,'b'); legend('exp','act'); xlabel('test smaple'); ylabel('output') figure(2); plot(E1);xlabel('test sample'); ylabel('error')2、MRAC 控制器被控对象为非线性系统:22()(2(1)1)(1)()();()1()(1)y k y k y k f u k f y k y k -++=•+•=++- 由第一部分对()f •的辨识结果,可知该非线性系统的辨识模型为:(1)[(),(1)]()I p y k N y k y k u k +=-+可知u(k)可以表示为(1)p y k +和(),(1)y k y k -的函数,因此可使用系统的逆模型进行控制器设计。

《系统辨识》新方法

《系统辨识》新方法

《系统辨识》新方法在现代生产和控制系统中,系统辨识是一项至关重要的技术,可以用于确定系统的动态和静态特性。

传统的系统辨识方法主要是基于数学建模和数据分析,但由于系统的复杂性和不确定性,这些方法往往无法精确地描述系统的行为。

最近,一些新方法被提出来来处理这些限制。

这些方法包括基于深度学习的数据驱动方法和基于强化学习的模型自适应方法,它们非常适用于处理高维、非线性和时变系统。

数据驱动方法数据驱动方法是一种基于统计学和机器学习的方法,该方法可以从系统的输入输出数据中直接推断系统的动态和静态特性。

数据驱动方法对模型预测误差大的系统非常有效。

数据驱动方法的核心思想是使用神经网络等子模型来拟合输入输出数据。

其中,一些流行的数据驱动方法包括循环神经网络 (RNN)、长短期记忆网络 (LSTM)、卷积神经网络(CNN) 和自编码器 (AE)。

模型自适应方法模型自适应方法是一种基于控制理论和强化学习的方法,该方法可以通过“试错”过程来更新系统模型,并在这一过程中改善控制性能。

模型自适应方法与传统的控制器不同,可以通过优化系统模型来提高控制性能。

此外,模型自适应方法还能够应对系统非线性和不确定性,可以对高灵敏度系统进行控制。

模型自适应方法的核心思想是建立模型预测控制器 (MPC),该控制器使用增量式状态估计器来更新系统模型,并根据模型预测控制策略来改善控制性能。

其中,一些流行的模型自适应方法包括无模仿神经网络自适应控制器 (NFNNAC) 和最优自适应滑模控制器(OOASMC)。

结论总之,数据驱动方法和模型自适应方法是现代系统辨识中的新方法。

这些方法已经被证明可以有效处理复杂、高维、非线性和时变系统,并且可以优化控制性能。

未来,这些方法将会在许多领域得到广泛应用,例如智能制造、机器学习和大数据分析。

一种基于改进神经网络的系统辨识方法

一种基于改进神经网络的系统辨识方法

wo kwa sa l h d S c ndy,alweg sa d t e h di e r ln t r so tmie y g nei lo ih ,S s t p i z tS r set hi e . e o l s l iht n hrs ol BP n u a ewo k wa p i zd b e tcag rt m n O a o o tmiei’ sr cur.Fial tu t e nl y,a e tf a e ’ mo e set bih db tr t n n t n ni nii trS d lwa sa l e yie ai .I hee d,t ep p rp o e h o ghasmua ino h r- r e o d c s o h a e r v dt r u i lto f id o d rn n— t
( . eh n cl8 lcr ncE gn ei gC l g , iu n Unv ri f c n ea dTe h oo y Tay a 0 0 2 ) 1 M c a ia LE eto i n i er ol e Ta a ie s yo i c n c n lg , iu n 3 0 4 n e y t S e
l e rM I O y t m ,t i e tf ae a u hc aa t rsisa h r i ea dhg r cso .Th a e r vd sane ie n to o i a S s se n hsi n ie t rh ss c h r ceitc ss o tt n ih p e iin d i m ep p rp o ie w d aa dmeh df r r sa c n n n u a t r d n ic to . e e rhigo e rlnewo k ie tf ain i Ke or s n urln t r yW d e a ewo k,ie ie t r e tcag rtm ,o tmie,n nl e rs se d ntf ae ,g nei lo ih i pi z o i a y tm n Cls m b r TP3 ] 9 a s Nu e 9.

非线性系统辨识与控制算法研究

非线性系统辨识与控制算法研究

非线性系统辨识与控制算法研究第一章:引言非线性系统广泛存在于现实生活中,从大气环境、机械系统到经济系统,都涉及到非线性问题。

非线性系统辨识与控制是研究非线性系统的一个重要方向,它关注如何识别非线性系统的参数和结构,并开发出针对这些系统的控制策略。

在这篇文章中,我们将探讨非线性系统辨识与控制的算法研究。

第二章:非线性系统辨识非线性系统的辨识是指通过实验或仿真来确定非线性系统的参数和结构。

传统的线性系统辨识方法,如最小二乘法和系统辨识工具箱,只适用于线性系统。

非线性系统辨识则需要使用更为复杂的方法。

2.1 基于神经网络的非线性系统辨识算法神经网络是一种模拟大脑神经元的计算模型,具有强大的非线性映射能力。

因此,基于神经网络的非线性系统辨识算法已经成为了较为成熟的算法之一。

该算法通过构建一个神经网络模型,利用实验数据进行训练,从而识别出非线性系统的参数和结构。

2.2 基于遗传算法的非线性系统辨识算法遗传算法是模拟生物进化过程的一种优化方法,它可以在搜索非线性系统参数空间时获得更好的结果。

基于遗传算法的非线性系统辨识算法通过构建一个优化模型,将非线性系统的参数作为待优化变量,利用遗传算法进行求解,从而获得非线性系统的参数和结构。

第三章:非线性系统控制非线性系统控制是指控制非线性系统的输出以达到一定的目标。

与线性系统控制不同,非线性系统控制需要考虑非线性系统的特征,如不确定性、耦合、时变性等等。

因此,非线性系统控制需要更为复杂的算法。

3.1 基于模糊逻辑的非线性系统控制算法模糊逻辑是一种能够应对不确定性问题的数学工具,它适用于非线性系统控制中的决策和规划问题。

基于模糊逻辑的非线性系统控制算法通过建立一组模糊规则,并利用这些规则对输入输出进行映射,生成控制规则集。

这种算法在处理非线性系统控制问题时具有较强的实用性。

3.2 基于自适应控制的非线性系统控制算法自适应控制是一种利用反馈信息来调节控制器参数的方法,适用于非线性系统控制中的时变性和不确定性问题。

7-1 神经网络辨识方法

7-1 神经网络辨识方法

从实际的观点看,辨识就是从一组模型中选择一个模型,按照某种原则,使之最 好地拟合所关心实际系统的动态或静态特性。
ˆ ,输出为 其数学表达为:设 系统为 P ,输出为 Z,输入为 u,模型为 P ˆz 辨识准则为 min z
ˆ z
ˆ, 使 因此辨识问题的提法是:确定模型 P
ˆ u p u ˆ z min p min z
u 系统 P
z _
z
模型
ˆ P
z -Z
2 系统解识的传统方法 <1> 基本要求 ①模型的选择 模型只能是在某种意义下实际系统的一种近似描述。 选择的标准依赖于模型的用途并兼顾其精确性和复杂性等问题。 ② 输入信号的选择 第一,输入信号的频谱必须足以覆盖系统的频谱。在辨识时间里,输入信号 必须是持续激励的,也就是说,输入信号必须充分激励系统的所有模态。 第二,输入信号应是最优的,即设计的输入信号使给定的问题的辨识程度最 高,因此常用的输入信号是向噪声或伪随机信号。 ③误差准则的选择 个误差的泛函: 准则是用来衡量模型接近实际系统的标准,它通常表示为一
系统 h(k) 辨识表达式 0 e(k) + z(k) -
Z(k) _
模型
z (k)
( z (k)- z(k) ) 辨识算法 (k) 最小二乘法辨识原理

②梯形校正法 利用最速下降法原理,沿着误差准则函数关于模型参数的负梯度 方向,逐步修改模型的参数估计值,直至误差准则函数达到最小值。
J f e k
L
其中 f 是 e k 的泛函数, e k 是定义在区间 0, L 上模型与实际系统的误差函 数。
k 1
<2> 传统辨识基本方法 传统方法的基本原理:是通过建立系统依赖于参数 的模型,把辨识问题转化成 对模型参数的估计问题。

基于BP神经网络的非线性系统辨识

基于BP神经网络的非线性系统辨识
E] 德 茂 . 控 机 床 磨 削 加 工 直 接 编 程 技 术 [ . 京 : 2孙 数 M] 北 机
械工 业 出 版社 ,0 6 20.
作 者 简 介 : 志 勤 (9 1) 男 , 学 硕 士 , 程 师 , 要 从 事 杨 17 一 , 工 工 主 机 电一 体 化 方 面 的研 究 。 收 稿 日期 :08年 4月 8 日 20
2 采用 B P网络 来 实现 非 线性 系统 的辨 识
B P网络 的结构 是 :
1 )多层 网络结 构 : 输入层 、 隐层 和输 出层 ; 2 )传递 函数一 般 为 S型 函数 : ( 一 厂 z)
3 )误差 函数 ;

E 一寺∑( —0 ), £ 其中 f , O 分别为期望
性 较 强 的 系统 进 行 辨 识 , 有 一 定 的 适 用 性 。 具
关 键 词 : 识 ; 线 性 系统 ; P神 经 网络 辨 非 B
中图分 类号 : P 1 3 T 8
文 献标志 码 : A 经 网络用 于系 统辨识 具 有 以下 优 点 。 1 )不要求 建立 实 际系统 的辨识 格 式 , 以省去 可
1 )非线 性特性 : 经 网络具 有 逼近 任 意非 线性 神 函数 的能 力 , 为非线 性 系 统 提 供 了一 个 通 用 的 系统 辨识 方法 , 以用来 实现 非线 性系 统控 制 ; 可 2 )并 行 分 布 处 理方 式 : 在神 经 网络 中 , 息是 信
分布 存储 和并行 处 理 的 , 使 它 具有 很 强 的容 错性 这 和很 快 的处理 速度 ; 3 )自学 习和 自适应 能力 : 经 网络 在 训练 时 能 神 够从 输入 输 出数 据 中提 取 出规 律 性 的知 识 , 记忆 在
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于神经网络模型的最新系统辨识算法摘要:神经网络具有大规模并行分布式结构、自主学习以及泛化能力,因此可以利用神经网络来解决许多传统方法无法解决的问题。

神经网络应用在非线性系统的辨识中有良好的结果。

本文在阅读大量参考文献的基础上,对最新的基于神经网络的系统辨识算法进行总结。

关键字:神经网络;系统辨识;辨识算法The latest algorithm about identification system basedon neural network modelAbstract: Neural network has large parallel distributed structure, learning by itself and has generalization ability. So neural network is used to solve many questions which traditional method cannot. Neural network is well applied to nonlinear system which has got good achievements in identification system. Based on most of documents, the paper summaries the latest algorithm about identification system based on neural network model.Keywords:Neural network, identification system, identification algorithm0 前言在国内,系统辨识也取得了许多成绩,尽管成果丰硕,但传统辨识法仍存在不少局限:传统辨识法较适用于输入端中扰动水平比较低的控制系统,对于具有外界干扰的控制系统,就会出现计算量大、鲁棒性不够好的问题;最小二乘法及其相关改进算法一般利用梯度算法进行信息搜索,容易陷入局部极小值。

鉴于此,神经网络控制在系统辨识中得到了新的应用。

本文在阅读大量文献后,针对国内基于神经网络的结合其他算法的最新辨识算法进行综述分析。

1 神经网络的应用优势神经网络的吸引力在于:能够充分逼近任意复杂的非线性关系,能够学习适应不确定性系统的动态特性;所有定量或定性的信息都分布储存于网络内的各个神经元,所以有很强的鲁棒性和容错性;采用并行分布处理方法,使得快速进行大量运算成为可能。

这些特点显示了神经网络在求解非线性和不确定性系统控制方面的巨大潜力,将神经网络引入控制系统是控制学科发展的必然趋势[1]。

它的引入不仅给这一领域的发展带来了生机,也带来了许多急待解决的新课题。

由于对神经网络的理论研究和硬件实现还远远未达到完善的地步,此外,由于神经网络用于控制时出现的一些新的问题如控制系统的稳定性和在线学习的收敛性等需要进一步的解决,因此,现有的研究大多停留在软件及仿真研究上,付诸应用的不多,神经网络控制系统的研究还面临十分艰巨的任务。

传统的辨识方法,对于一般非线性系统的辨识是很困难的,而神经网络却提供了一个有力的工具。

神经网络系统辨识实质上是选择一个适当的神经网络模型来逼近实际系统[2]。

由于神经网络对非线性函数具有任意逼近和自学习能力,所以神经网络系统辨识为非线性系统的辨识提供了一种简单而有效的一般性的方法。

2 极点配置PID与神经网络结合研究过程传统的基于最小二乘法的模型参数的辨识算法中,虽然其辨识法简单实用、在处理递推计算时,算法收敛可靠。

但是,它有两个方面的缺陷:一、如果给予系统模型有色噪声干扰时,那么基于最小二乘法的参数估计不是一致的、无偏的估计;二是一旦数据处理量发生增长,那么基于最小二乘法的递推辨识方法会出现数据饱和的现象。

鉴于神经网络控制方法,自学习能力强,能有效克服这些问题。

所以釆用了神经网络控制的方法,在三层BP神经网络的结构中,融合最小二乘辨识算法思想,在已有的递推神经网络参数辨识方法基础上,改进了原有的参数辨识法,以新的方法进行在线辨识模型参数。

针对三层BP神经网络,利用改进了常规的基于梯度下降法的权值调整算法,在高斯.牛顿算法的基础上,递推预测误差神经网络算法被提出。

利用该算法,对含有多个未知参数的系统进行了非线性系统的参数辨识。

随后,该辨识方法获得了进一步的推广,实现了对高阶的NARMAX模型,多维线性模型,轨道车辆横向振动等系统模型的参数辨识,取得了一定的成效。

但是,该方法中动量因子与学习率均为随机给定且为固定不变的常值,因而系统会存在神经网络收敛速度慢、辨识结果精度低等问题[1]。

针对该递推预测误差神经网络算法中存在的缺陷,在未进行参数辨识的情况下,引入了动量因子与学习速率的优化机制,从而实现了对递推预测误差神经网络算法的改进,改进后,系统的稳定性、鲁棒性等性能得到了较好的改善。

通过神经网络与递推预测误差结合,将改进递推预测误差神经网络算法应用到了非线性系统的模型参数辨识中。

设计设计系统控制器,极点配置PID方法在工程中已经取得应用。

例如RobertRichardson等学者利用极点配置PID方法设计出的阻抗控制气动机器人关节间隙器[3],让系统有效地克服了噪声等不同的外来干扰;陈青昌等中利用极点配置PID 方法所设计的全桥DC/DC变换器,并推导出变换器极点配置PID算法中PID参数与性能指标的函数关系等[4],吴平景结合神经网络辨识方法,设计了基于极点配置的数字PID控制器。

3 基于Hammerstein型神经网络的非线性动态系统辨识Hammerstein 模型广泛应用于非线性系统的辨识中,其结构是由非线性静态增益部分和一个线性动态部分串联。

Janczak[5]设计了一个神经网络描述Hammerstein模型其由有隐藏层的非线性模块和一个线性输出节点组成。

Wu等[6]提出一种Hammerstein神经网络来辨识非线性动态系统。

然而,这些研究均是假定Hammerstein模型的线性动态部分的阶次是已知的。

为了确定 Hammerstein 模型中线性动态部分的阶次,Billings 等[7]提出一种正交回归估计方法以确定多输入多输出(MIMO)非线性系统的结构。

但是,这种方法不能被用在Hammerstein模型。

He 等[8]使用Lipschitz熵提出了一中确定单输入单输出(SISO)系统阶次的方法。

Luh 等[9]把这种方法延伸到MIMO系统,并且使用正交基函数的概念在有限的范围内提高了其性能。

MuKun[2]最近提出一种动态Hammerstein 型神经网络用来完全模拟传统的Hammerstein模型,并将其应用于非线性动态系统的辨识中。

该神经网络的权值跟与Hammerstein模型的参数相对应,然后利用Lipschitz熵来确定Hammerstein型神经网络的阶次,即确定了Hammerstein 型神经网络的神经元个数。

随后,Hammerstein型神经网络的权值由反向传播算法(BP)来训练[10]。

最后,将提出的动态Hammerstein型神经网络应用于SISO非线性动态系统的辨识中。

4 关于神经网络辨识的分析总结当前,我国神经网络用于系统辨识的应用正在开展,但与国外的研究水平相比,仍有一定的差距,很多理论和技术有待于进一步提高和改进,因此有必要加强理论与实现技术的研究,以提高其应用水平。

目前的研究和应用大都是用计算机得到的仿真结果,这使得神经网事实上变成了逼近函数的图解。

所以,个种网络的硬件实现问题非常迫切,有了真正的网络,神经网的快速,容错等优点才能真正体现,各种并行学习算法才能真正得以实施。

参考文献[1] 吴平景. 基于神经网络系统参数辨识的自适应控制方法研究[D].广州工业大学, 2015.[2] 慕昆, 彭金柱. 基于Hammerstein型神经网络的非线性动态系统辨识[J]. 计算机应用与软件, 2015, 32(10): 168-171.[3] Richardson R, Brown M. Impedance control for a pneumatic robot-based around pole-placement, joint space controllers[J]. ControlEngineering Practice, 2005, 13(3): 291–303.[4] Cheng Q C, Peng L, Kang Y. PID Controller Parameters’Optimization for DC/DC Converters Based on Pole Deploying[J].Telecom Power Technologies, 2005, 22(4): 78-81.[5] Janczak A. Identification of Nonlinear Systems Using NeuralNetworks and Polynomial Models[M]. Springer Berlin Heidelberg,2005, 310: 31-75.[6] Wu D, Huang S, Zhao W, et al. Infrared thermometer sensordynamic error compensation using Hammerstein neural network[J].Sensors & Actuators A Physical, 2009, 149(1): 152–158.[7] Billings S A, Fakhouri S Y. Identification of systems containinglinear dynamic and static nonlinear elements[J]. Automatica, 1982,18(82): 15-26.[8] He X, Asada H. A New Method for Identifying Orders of Input-Output Models for Nonlinear Dynamic Systems[C]. IEEE AmericanControl Conference, 1993: 2520-2523.[9] Luh G C, Rizzoni G. Identification of a nonlinear MIMO IC enginemodel during I/M240 driving cycle for on-board diagnosis[C]. IEEE American Control Conference, 1994: 1581-1584.[10] 左军, 周灵. 基于神经网络模型改进算法的动态辨识系统仿真[J].计算机科学, 2015, 42(6A): 118-120.。

相关文档
最新文档