气溶胶的基本特征
气溶胶的基本特征课件

THANKS
感谢观看
改变云的形成和降水过程
01
影响地面对太阳辐射的吸收和反射
02
增加温室效应
03
对空气质量的影响
降低能见度
增加大气污染
形成光化学烟雾
对人类健康的影响
呼吸系统疾病 心血管系统疾病 增加死亡率
05
气溶胶的监测与测量方法
监测站点布局与采样方法
监测站点布局
采样方法
气溶胶测量仪器与技术
仪器
气溶胶测量仪器包括颗粒物计数器、粒子质量浓度测量仪、气溶胶质谱仪等。这 些仪器可以测量不同物理和化学性质的气溶胶,如颗粒物大小、成分和数量浓度 等。
06
气溶胶的控制与减排策略
减少排放源的措施
工业生产
控制工业生产过程中的废弃物排放,推广清洁生产技术,降低气 溶胶颗粒物产生。
能源利用
优化能源结构,减少燃煤和燃油使用,发展清洁能源,降低硫氧 化物、氮氧化物等气溶胶前体物的排放。
农业活动
推广有机肥和低毒农药使用,减少土壤和农作物中气溶胶颗粒物 的产生和排放。
控制大气中已有的气溶胶的措施
颗粒物排放控制
大气中已有气溶胶的去除
发展新型的气溶胶控制技术
新材料应用
研发新型材料,降低气溶胶颗粒物的产 生和排放,如低散发材料、水性涂料等。
VS
技术创新
推动清洁能源技术创新,提高能源利用效 率,减少气溶胶颗粒物的排放。如发展高 效、低成本的清洁能源转换技术、废弃物 资源化利用技术等。
气溶胶的性 质
物理性质
化学性质 环境影响
02
气溶胶的物理特性
粒子尺寸分布
气溶胶粒子大小通常在0.1-100 微米之间,其中大部分粒子在1-
气溶胶化学特征及其对环境的影响

气溶胶化学特征及其对环境的影响
随着经济的发展和工业的进步,人类面临了环境污染的问题,而气溶胶已成为
环境污染的主要来源。
气溶胶是指浮于空气中的固体或液态颗粒物,它们对环境和人类健康都具有重要的影响。
本文将介绍气溶胶的化学特征及其对环境的影响。
1. 气溶胶的化学特征
气溶胶主要由天然和人为源头产生,例如柴油汽车、燃煤电厂和沙尘暴。
气溶
胶的组成相当复杂,其中包括二氧化硫、氮氧化物、挥发性有机物和氧化物等数百种化学物质。
气溶胶的化学成分也随地理位置和季节而有所变化,例如城市化和林区化造成气溶胶的波动。
2. 气溶胶对环境的影响
气溶胶在大气中的扩散和沉积会对环境造成直接和间接的影响。
首先,气溶胶
会影响空气清洁度和可见性,它们可以吸收和反射阳光,形成雾霾,影响空气质量。
其次,气溶胶会改变气象条件,导致气候变化,例如干旱和洪水等现象。
另外,气溶胶还对生态系统和人类健康造成影响,例如植物生长受阻和健康问题等。
3. 改善气溶胶污染的方法
针对气溶胶的污染问题,人们提出了多种有针对性的解决方案。
首先,政府应
该制定严格的环保政策和法规,限制燃煤和汽车的排放量。
其次,人们可以采用环保科技、绿色能源等措施改善空气质量。
此外,人们也可以通过环保宣传和教育,提高社会公众环保意识等方法解决气溶胶污染问题。
总之,气溶胶化学特征及其对环境的影响已经受到广泛的关注。
虽然气溶胶污
染问题比较严峻,但只要每个人都有环保意识,做到减少污染源和积极参与环保活动,就可以保护我们美丽的家园,创造一个更加健康和宜居的环境。
城市大气中气溶胶的粒径分布特征

城市大气中气溶胶的粒径分布特征随着城市化进程的不断加速,城市空气质量成为人们日常关注的重要话题之一。
而城市大气中的气溶胶是导致空气污染的主要因素之一。
气溶胶是由悬浮在空气中的微小颗粒物质构成的,包括尘埃、烟雾、颗粒物等。
气溶胶的粒径分布特征对空气质量和人类健康具有重要影响。
一、粒径范围气溶胶的粒径范围很广,从纳米级到数十微米不等,不同粒径的气溶胶对空气质量和健康的影响也不同。
粒径较小的气溶胶能够进入人体呼吸系统,对健康影响较大。
而粒径较大的气溶胶在大气中悬浮时间较长,对空气质量形成较大的影响。
二、粒径分布特征城市大气中的气溶胶粒径分布呈现多峰分布的特征。
通常情况下,大气中的气溶胶粒径分布可分为三个主要模态:超细颗粒模态(0.01-0.1微米)、细颗粒模态(0.1-1微米)、粗颗粒模态(1-10微米)。
1. 超细颗粒模态超细颗粒模态的气溶胶是由燃烧过程、机动车尾气排放、工业废气等造成的。
这些气溶胶粒径小、浓度高,能够在大气中悬浮数天,对健康影响较大。
超细颗粒模态的气溶胶还能够与其他气体、颗粒物发生反应,形成二次气溶胶,进一步加剧空气污染。
2. 细颗粒模态细颗粒模态的气溶胶主要受到交通、工业等排放源的影响。
这些气溶胶粒径适中,悬浮时间较长,容易被人体吸入,对健康影响较为明显。
细颗粒模态的气溶胶能够吸附其他污染物,如有毒气体、重金属等,增加它们对人体的危害。
3. 粗颗粒模态粗颗粒模态的气溶胶主要来自于交通运输、建筑施工、扬尘等源头。
这些气溶胶粒径较大,悬浮时间较长,通常在大气中被降落下来。
与超细颗粒和细颗粒相比,粗颗粒模态的气溶胶对健康的影响较小,但仍然会引起呼吸不适和眼部刺激等症状。
三、原因分析城市大气中气溶胶的粒径分布特征与排放源、大气传输和沉降等因素密切相关。
1. 排放源城市中的交通、工业、建筑施工等活动是气溶胶的重要排放源。
不同排放源排放的污染物具有不同的粒径特征,导致气溶胶的粒径分布出现多峰现象。
气溶胶考点 (2011级总结)

大气气溶胶要点总结注: 黄色部分表示不确定是否正确第一章:特征物理量等基础知识1.等效直径(空气动力直径、Stokes直径和光学等效直径)空气动力学直径:在低雷诺数的静止空气中,与实际粒子具有相同沉降速度的单位密度球体的直径。
Stokes直径:又称沉降直径:与da类似,只是将其中的“单位密度球”改为“同密度球”。
空气动力学等效直径:与有单位密度直径为Dp的球形粒子的空气动力学效应相同,则即为空气动力学等效直径。
(依次表示空气动力学直径,几何直径,形状系数)忽略浮力的粒子密度,参考密度(1 g/cm3)光学等效直径:指所研究的粒子与一个直径为dp的球形粒子具有相同的光散射能力,dp定义为这个粒子的光学等效直径;2.气溶胶的分类和基本特征分类:核模态<0.05um,积聚模态0.05~2um,粗模态>2um或爱根核0.01~0.1um,大核0.1~1um,巨核>1um核模态来源:各种污染气体经过多相化学反应转化而成;由高温下热的过饱和蒸汽冷凝而成。
特点1:数密度大,在城市污染大气中可占95%以上;特点2:最不稳定的粒子,是积聚模态粒子的源。
特点3:有些可以是水汽的凝结核;埃根核粒子是影响大气电场的重要因素。
积聚模态来源:主要由核模粒子经过碰并、凝聚、吸附等物理效应长大而成,但它几乎不可能继续长大成为粗粒子。
特点1:大气中存在的时间最长、最稳定,浓度易积累。
特点2:输运距离最远、污染范围最大。
特点3:能全部被吸入肺部,含有大量的有害元素。
特点4:对可见光的消光系数最大,是影响大气能见度的主要因素。
粗模态来源:大气相对湿度低于100%时,各种固体或液体物质的机械粉碎过程产生。
如:机械粉碎过程、燃烧过程、交通运输、海浪和各种自然力产生的原生粒子构成。
特点1:在湿气溶胶中包括云、雨、雾、雪、蒸汽和水雾等。
特点2:质量浓度较大,数浓度相对少3.PM10、2.5的概念:PM10:通常把空气动力学当量直径在10微米以下的颗粒物称为PM10,又称可吸入颗粒物。
气溶胶

气溶胶本节内容要点:气溶胶的定义、分类、源、汇、粒径分布、气溶胶粒子的化学组成、气溶胶的危害、气溶胶污染源的推断等1)气溶胶的定义和分类气溶胶(aerosol)是指液体或固体微粒均匀地分散在气体中形成的相对稳定的悬浮体系。
微粒的动力学直径为0.002~100μm。
由于粒子比气态分子大而比粗尘颗粒小,因而它们不象气态分子那样服从气体分子运动规律,但也不会受地心引力作用而沉降,具有胶体的性质,故称为气溶胶。
实际上大气中颗粒物质的直径一般为0.001~100μm;大于10μm的颗粒能够依其自身重力作用降落到地面,称为降尘;小于10μm的颗粒,在大气中可较长时间飘游,称为飘尘。
按照颗粒物成因不同,可将气溶胶分为分散性气溶胶和凝聚性气溶胶两类。
分散性气溶胶是固态或液态物质经粉碎、喷射,形成微小粒子,分散在大气中形成的气溶胶。
凝聚性气溶胶则是由气体或蒸汽(其中包括固态物升华而成的蒸汽)遇冷凝聚成液态或固态微粒,而形成的气溶胶。
例如二氧化硫转化成硫酸或硫酸盐气溶胶的过程如下:●二氧化硫气体的氧化过程● 气相中的成核过程(液相硫酸雾核)在过饱和的H2SO4蒸气中,由于分子热运动碰撞而使分子(n个)互相合并成核,形成液相的硫酸雾核。
它的粒径大约是几个埃。
硫酸雾核的生成速度,决定于硫酸的蒸气压和相对湿度的大小。
●粒子成长过程硫酸粒子通过布朗运动逐渐凝集长大。
如果与其他污染气体(如氨、有机蒸气、农药等)碰撞,或被吸附在空中固体颗粒物的表面,与颗粒物中的碱性物质发生化学变化,生成硫酸盐气溶胶。
根据颗粒物的物理状态不同,可将气溶胶分为以下三类:(1)固态气溶胶--烟和尘;(2)液态气溶胶--雾;(3)固液混合态气溶胶--烟雾(smog)。
烟雾微粒的粒径一般小于1μm (见表2-13)。
气溶胶按粒径大小又可分为:(1)总悬浮颗粒物(total suspended particulates或TSP),用标准大容量颗粒采样器(流量在1.1~1.7m3/min)在滤膜上所收集到的颗粒物的总质量,通常称为总悬浮颗粒物,它是分散在大气中各种粒子的总称。
气溶胶物理化学特性研究及应用

气溶胶物理化学特性研究及应用气溶胶是指在气体中悬浮的微观颗粒物质,其尺寸一般在几纳米至数十微米之间。
气溶胶由于其微观特性和物理化学特性的固有特征,得到了广泛的研究和应用。
本文将分别从气溶胶的物理化学特性、气溶胶的表征、气溶胶的应用等方面进行详细介绍。
一、气溶胶的物理化学特性1.大小分布:气溶胶的粒径大小决定其在大气中的行为,通常采用数值大小分布函数、自由分子扩散方程等方法进行研究。
2.形状:气溶胶的形状对其光学和化学反应具有重要影响,研究气溶胶的形状将对在环境和人体健康等方面有着重要的意义。
3.成分:气溶胶的成分不仅涉及气溶胶的来源,还决定了气溶胶的光学、化学性质和影响因子等。
4.分子活性:气溶胶表面的化学反应,对大气环境的影响有重要的作用,比如酸雨的形成和大气光化学反应等等。
5.分布特征:气溶胶的大小、形状、成分等通常决定了气溶胶的分布特征,如垂直分布、空间分布等等。
二、气溶胶的表征1.质谱法:气溶胶性质的特征主要包括成分、粒径和分布等。
质谱法可以用于测量气溶胶的成分,以及定量分析气溶胶中各种成分的比例。
2.径向结构扫描:径向结构扫描能够对气溶胶的粒径大小进行测量,并且可以分析出气溶胶的形态结构,提供有关气溶胶组成和来源等信息。
3.光学法:光学法主要是通过该方法收集光学信号获得气溶胶的光学特性,包括吸收率、反射率、散射率等等。
4.电荷探测器:电荷探测器可以用于测量气溶胶粒子在光电场中的电荷状态,并可以对气溶胶的行为进行描述和分析。
5.化学荧光法:化学荧光法是用化学方法标记气溶胶样品,以扫描致命性荧光的方法表征它们的分子和原子组成。
三、气溶胶的应用1.大气科学领域:气溶胶对大气化学影响的研究是大气科学领域的一个前沿课题。
气溶胶的浓度和成分对气溶胶在大气中的输运、沉降和分布等都有影响。
2.环境监测:气溶胶监测是环境监测领域的重点。
气溶胶对环境污染的评价、环境质量评价和健康、安全等方面的评价具有重要意义。
大气环境中气溶胶的形态特征分析

大气环境中气溶胶的形态特征分析概述:大气环境中的气溶胶是指悬浮在空气中的微小颗粒物质,在大气中起到重要的环境和气候调节作用。
对气溶胶的形态特征进行分析可以帮助我们更好地理解其来源、演化和影响因素,对环境保护和气候变化研究具有重要意义。
一、气溶胶的来源和组成大气环境中的气溶胶来源复杂多样,包括自然源和人为源。
自然源包括火山喷发、植物挥发物、海洋蒸发等,而人为源则包括工业废气、机动车尾气和燃煤等。
气溶胶的组成主要有颗粒物质、液态物质和气态物质三部分构成。
颗粒物质主要由硫酸盐、硝酸盐、有机物质和灰尘等组成,而液态物质则包括液态水以及各种次微米液滴。
气态物质则主要有各种气体和挥发性有机物。
二、气溶胶的形态特征气溶胶的形态特征包括颗粒形状、粒径分布和化学组成等三个方面。
1.颗粒形状:气溶胶颗粒的形状各异,有球形、团块状、纤维状等不同形态。
颗粒形状的不同对气溶胶的光学特性、沉降速度和化学反应等具有重要影响。
例如,球形颗粒会散射、吸收和透射光线的能力较强,而纤维状颗粒对光线的散射作用较小。
2.粒径分布:气溶胶颗粒的粒径分布广泛,通常使用粒径直径(Dp)或质量浓度(PM2.5、PM10等)来描述。
气溶胶的粒径分布与其源、演化和输送过程等密切相关。
较大的颗粒往往在较短的距离内沉降,而较小的颗粒则能够长时间悬浮在空气中,并具有更大的传输范围。
3.化学组成:气溶胶的化学组成是其形态特征的重要组成部分,主要包括无机盐和有机物质两类。
无机盐主要有硫酸盐、硝酸盐和铵盐等,而有机物质主要来自于挥发性有机物的氧化反应和生物排放等。
不同形态的气溶胶化学组成可能会对大气环境和健康产生不同的影响,因此对其进行深入研究具有重要意义。
三、气溶胶形态特征的分析方法对气溶胶形态特征进行分析主要依靠实验技术和数值模拟方法。
1.实验技术:实验技术是了解气溶胶形态特征的重要手段之一。
常用的实验方法包括颗粒物测量仪器(如激光粒径仪和颗粒物采样器)、吸湿性测量和电子显微镜等。
气溶胶

气溶胶灭火系统近年楼下作为哈龙替代技术之一的所了溶胶灭火技术发展较快,国内外研究人员对各类气溶胶及其应用技术进行了大量有效的研究、开发、并取得一定成果。
1.气溶胶分类气溶胶是指液体或固体的微细颗粒悬浮于气体介质中的一种物质。
按气溶胶悬浮物质存在的不同状态,可分为:分散性和凝聚性两类。
1.1分散性气溶胶(冷气溶胶)分散性气溶胶是通过固体或液体的雾化形成的,这种气溶胶在气溶胶灭火剂释放之前,气体介质和被分散介质是分别稳定存在的。
气溶胶灭火剂的释放即是气体分散液体或固体灭火剂,形成气溶胶的过程。
这种气溶胶属于非高温技术气溶,通常称“冷气溶胶”,主要包括细水雾灭火技术和超细干粉灭火技术。
1.2凝聚性气溶胶(热气溶胶)凝聚性气溶胶是通过过热蒸气的凝聚或气相中的化学反应形成的。
这种气溶胶灭火剂在反应前是以化学物质混合物的固体形态存在。
气溶胶灭火剂的释放是靠自身的燃烧反应,反应产物中既有固体又有气体,气体分散固体形成气溶胶。
这种气溶胶属于高温技术气溶胶,通常称“热气溶胶”。
目前我国消防行业的气溶胶产品都属热气溶胶范畴。
2.热气溶胶灭火剂的组成热气溶胶灭火剂的配方和工艺采用了固体火箭推进剂的原理,由氧化剂、还原剂和粘合物结合组成含能灭火剂。
3.气溶胶的灭火机理气溶胶的灭火机理是通过燃烧反应生成大量固体微粒气溶胶,这种微粒在火焰中可以熔化、气化和分解来吸热降温;还可以干预火焰燃烧链反应,终止火焰燃烧,起负催化作用。
4.气溶胶的安全性4.1气溶胶的温度由于第一代产品的影响,有人把降低气溶胶的温度作为主要问题,甚至以气溶胶出口处温度的高低作为衡量产品质量的主要指标,其实热气溶胶的特征之一就是温度,要把热气溶胶的温度降到很低甚至达到室温是不现实的。
因为要降低热气溶胶出口温度就必须采取降温措施,不管是采取物理方法还是用化学方法,都会在一定程度上影响灭火效率。
现出口处温度一般为不大于250℃。
4.2工作压力热气溶胶灭火剂是一种固体燃料混合物,平时常压贮存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对人体健康的影响
❖ 气溶胶能吸附二氧化硫,氮氧化物及气态有机有毒物质(如 PAHs,PCB等),并在气溶胶表面发生多相反应。
Thank you!
❖ 1.化学(干湿沉降,光化学烟雾,多相反应界面等) ❖ 2.气候效应(直接气候效应及间接气候效应) ❖ 3.环境质量(能见度) ❖ 4.健康效应
对大气能见度的影响
气候效应
❖ 气溶胶通过直接或间接方式影响大气辐射传输和地-气系统辐射收 支平衡,对气候变化,云降水等影响巨大。
❖ 气溶胶对气候系统的影响分为直接辐射强迫和间接辐射强迫。直 接辐射强迫是指颗粒物通过吸收和散射长波和短波辐射,从而改 变地球-大气系统辐射平衡;大气中的颗粒物作为云凝结核或者 冰核而改变云的微物理和光学特征以及降水效率,从而间接影响 气候,称为间接辐射强迫。
15
大气颗粒物的粒度分布及表面性质
粒子可以彼此互相紧紧的粘合或在固体表面上粘合。粘合或 凝聚是小颗粒形成较大的凝聚体并最终达到很快沉降粒径的过程 。
吸着是指分子为颗粒物吸着的现象。如果气体或蒸气溶解在 微粒中,这种现象称为吸收。
若吸着在颗粒物表面上,则定义为吸附。涉及特殊的化学 相互作用的吸着,定义为化学吸附作用。
气溶胶的基本特征
主要内容
大气气溶胶的定义、基本特征 大气气溶胶的粒径,分类 大气气溶胶的表面性质及来源
大气气溶胶的定义、基本特征
❖ 定义:
液体或固体微粒均匀地分散在气体中形成相 对稳定的悬浮体系。
液体或固体微粒(即颗粒物或粒子)是指空气 动力学直径为0.002~100μm的液滴或固态粒子。
❖形状:很复杂
液体颗粒物近似于球形,固体颗粒物多不规则,有片 状、柱状、雪花状、针状等等。
北京市典型烟尘集合体的TEM图像 (a.链状;b.簇状)
表面光滑的飞灰
表面吸附超细 颗粒的飞灰
矿物颗粒石英
硫酸盐
大气颗粒物的粒度分布及表面性质
粒度是指颗粒物粒子直径的大小。 城市大气中的典型情况是直径小于0.1m的颗粒居多数。
粒径在0.05~2m范围的颗粒物是由核模型颗粒凝聚或通过 蒸气凝结气而长大以及化学反应所产生的各种气体分子转化成的 二次气溶胶粒子,属于积聚模型。
以上这两种颗粒物合称为细粒(小于2m)。 粒径大于2m的颗粒物属粗粒,由机械粉碎、液滴蒸发等过 程形成的,属于粗粒模。主要是自然界及人类活动的一次污染物 。
大气气溶胶主要是通过干、湿沉降的方式去除。
(1)干沉降:重力作用或与地面其他物体碰撞后 沉降。 (2)湿沉降:
① 雨除 :气溶胶的颗粒物作为凝结核,成为云滴中心, 通过凝结和碰并,云滴增长为雨滴(若T<0 ℃)即雪,形 成降雨/雪。 ② 冲刷:在降雨/雪过程中,雨滴将大气中的微粒挟带或 冲刷下来。
重要性:
14
大气颗粒物的粒度分布及表面性质
细颗粒主要化学组分为SO42—、NH4+、NO3—、Pb和含有烟炱 和凝聚有机物的碳,粗颗粒化学组分为Fe、Ca、Si、Na、Cl、 Al等。
城市大气中颗粒物的分布多数属双模型,即积聚模和粗粒模 。 二、微粒的表面性质
微粒三种最重要的表面性质:成核作用、粘合和吸着。 成核是指过饱和蒸汽在微粒上凝结形成液滴的现象,雨滴的 形成也涉及成核作用。
76 176 216.7 149.0 94.64 105.9 43.6 40.0 67.5 54.5 59.3
He et al. (2001) He et al. (2001) Meng et al. (2007) 王荟等. (2003) Wang et al. (2006) Cao et al. (2005) Hu et al. (2002) Gao et al. (1996) Takami et al. (2006) Cao et al. (2005) Cao et al. (2005)
❖ 按粒径大小分: ❖ 环境部门 ❖ 大气科学(云降水物理)
气溶胶分类:
▪ 按粒径的大小(环境部门):
❖ ①总悬浮颗粒物(TSP):用标准大容量颗粒采样器在滤膜上所收集到 的颗粒物的总质量,通常称为总悬浮颗粒物。 Dp(粒径)在100m以 下,其中多数在10 m以下,是分散在大气中的各种粒子的总称。
16
气溶胶的表面性质
❖ 相关概念 一次气溶胶:由排放源直接排放到大气中的颗粒物。 二次气溶胶:通过与气体组分的化学反应生成的颗粒物。 均质气溶胶:所有颗粒物的化学组成相同。 单谱气溶胶:所有的颗粒物粒径大小相同。 多谱气溶胶:多种粒径大小的颗粒物。
大气气溶胶的浓度表示方法
•数浓度:个/cm3 •表面积浓度:μm2. cm-3 •体积浓度: μm3. cm-3 •质量浓度: mg. m-3; μg. m-3
按大气科学分为
❖爱根核(爱根核模): Dp <0.05μm ❖大核(积聚模): 0.05μm <Dp<2 μm ❖巨核(粗模): Dp>2μm
❖粗粒子>2μm ;细粒子<2μm
大气颗粒物的粒度分布及表面性质
大气颗粒物的粒度有三个模:即爱根核模、积聚模和粗粒 模(Whitby 1978)。
由蒸汽凝结或光化学反应使气体经成核作用而形成的颗粒, 粒度为0.005~0.05m,属于核模型,二次气溶胶粒子。
按体积或质量分布出现两个峰值,前一个峰约在0.5m处, 后一个峰约在10m处,这两个峰是两种不同的气溶胶形成过程所 造成的。
表面积分布曲线在0.25m处有一峰值。
6
粒径:
1.光学等效直径:与直径为Dp的球形粒子具有相同的光散色 能力的不规则粒子,定义Dp为所研究粒子的光学等效直径 。粒子的光散射能力与光波波长有关,一般以0.55微米绿光 作为标准 2.体积等效直径或几何直径:与直径Dp球形粒子具有相同体 积的不规则粒子,定义Dp为所研究粒子的体积等效直径。 3.空气动力学等效直径:与直径Dp且密度为1g.cm-3的球形 粒子具有相同终端降落速度的不规则粒子,定义Dp为所研 究粒子的等效空动力学直径。 各种等效直径描绘的不是单个粒子的粒径,二是粒子群的统 计特征。
❖ ⑤细粒子:能悬浮在空气中,空气动力学直径≤ 2.5 μm的所有粒子, 记为:PM2.5
中国环境空气质量标准中PM10( Dp≤10 μm )的相关标准
浓度限值(mg/m3) 取值时间
一级标准 二级标准 三级标准
年均值
0.04
0.10
0.15
日均值
0.05
0.15
0.25
美国环保局1997年提出、2003年通过了PM2.5国家环境空气质量 标准,规定PM2.5的年均浓度和日均浓度限值分别为15和65 μg/m3。
气溶胶的来源
大气气溶胶的来源复杂,按照产生的过程分为 自然源和人为源。
自然源主要来自于洋面气泡的破裂、土壤的风 蚀、生物的孢子花粉以及火山爆发、森林火灾 等。
人为源主要来自化石燃料燃烧、工农业生产活 动等;人为排放气态污染物在一定条件下的气 -粒转化过程也是大气气溶胶的一个重要来源。
气溶胶的去除(汇)
不同地区PM2.5的平均质量浓度(Βιβλιοθήκη g/m3)地点观测时间
质量浓度
参考文献
北京 北京 太原 南京 上海 广州 青岛 厦门 大连 香港 珠海
1999.7-2000.9夏季 1999.7-2000.9冬季 2005.12 2001 2003.9-2005.1 2002.1-2 1997-2000 1993 2002 2002.1-2 2002.1-2
❖ ②飘尘: Dp <10m能在大气中长期飘浮的悬浮物质,如煤烟、烟 气、雾等。
❖ ③降尘:能用采样罐采集到的大气颗粒物。在TSP中直径大于30 μm 的粒子由于自身的重力作用会很快沉降下来,这部分颗粒物称为降 尘。
❖ ④可吸入粒子:易于通过呼吸过程而进入呼吸道的粒子。目前国际 标准化组织(ISO)建议将其定为Dp≤10 μm。记为:PM10
气溶胶分类:
❖ 按颗粒物成因分: 分散性气溶胶:指固态或液态物质经粉碎、喷射
形成微小粒子分散在大气中形成的气溶胶,如海浪 分溅、农药喷洒等。
凝聚性气溶胶:由气体或蒸汽遇冷凝聚成液态或 固态微粒而形成的气溶胶。
气溶胶分类:
❖ 按颗粒物的物理(凝聚)状态分: 固态气溶胶:烟、尘 液态气溶胶:雾 固液混合态气溶胶:霾、烟雾