2013年全国高考理科数学试题分类汇编1:集合(修改)
历年(2013)高考真题分类汇编(共14套)含答案精品打包下载

历年(2013)高考真题分类汇编(共14套)含答案精品打包下载.docA单元集合与常用逻辑用语A1集合及其运算-5<x<5,则1.A1[2013·新课标全国卷Ⅰ] 已知集合A={x|x2-2x>0},B=x} ()A.A∩B=B.A∪B=RC.B A D.A B1.B[解析] A={x|x<0或x>2},故A∪B=R.1.A1[2013·北京卷] 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=() A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}1.B[解析] ∵-1∈B,0∈B,1B,∴A∩B={-1,0},故选B.1.A1[2013·广东卷] 设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C .{-2,0}D .{-2,0,2}1.D [解析] ∵M ={-2,0},N ={0,2},∴M ∪N ={-2,0,2},故选D. 2.A1[2013·湖北卷] 已知全集为R ,集合A =x 错误!错误!x ≤1,B ={x|x 2-6x +8≤0},则A ∩(∁R B)=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x<2或x>4}D .{x|0<x ≤2或x ≥4}2.C [解析] A ={x|x ≥0},B ={x|2≤x ≤4},∁R B ={x|x<2或x>4},可得答案为C. 16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n<1,即a n +b n <c n,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.4.A1[2013·江苏卷] 集合{-1,0,1}共有________个子集. 4.8 [解析] 集合{-1,0,1}共有3个元素,故子集的个数为8. 1.A1,L4[2013·江西卷] 已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i1.C [解析] zi =4z =-4i ,故选C. 2.A1[2013·辽宁卷] 已知集合A ={}x|0<log 4x<1,B ={}x|x ≤2,则A ∩B =( ) A .(0,1) B .(0,2] C .(1,2) D .(1,2]2.D [解析] ∵A ={x|1<x<4},B ={x|x ≤2},∴A ∩B ={x|1<x ≤2},故选D. 1.A1[2013·全国卷] 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A .3B .4C .5D .61.B [解析] 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.2.A1[2013·山东卷] 已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( )A .1B .3C .5D .92.C [解析] ∵x ,y ∈{}0,1,2,∴x -y 值只可能为-2,-1,0,1,2五种情况,∴集合B 中元素的个数是5.1.A1[2013·陕西卷] 设全集为R ,函数f(x)=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 1.D [解析] 要使二次根式有意义,则M ={x ︱1-x 2≥0}=[-1,1],故∁R M =(-∞,-1)∪(1,+∞).1.A1[2013·四川卷] 设集合A ={x|x +2=0},集合B ={x|x 2-4=0},则A ∩B =( ) A .{-2} B .{2} C .{-2,2} D.1.A [解析] 由已知,A ={-2},B ={-2,2},故A ∩B ={-2}. 1.A1[2013·天津卷] 已知集合A ={x ∈R ||x|≤2},B ={x ∈R |x ≤1},则A ∩B =( ) A .(-∞,2] B .[1,2] C .[-2,2] D .[-2,1]1.D [解析] A ∩B ={x ∈R |-2≤x ≤2}∩{x ∈R |x ≤1}={x ∈R |-2≤x ≤1}. 1.A1[2013·新课标全国卷Ⅱ] 已知集合M ={x|(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}1.A [解析] 集合M ={x|-1<x<3},则M ∩N ={0,1,2}. 2.A1[2013·浙江卷] 设集合S ={x|x>-2},T ={x|x 2+3x -4≤0},则(∁R S)∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1] D .[1,+∞)2.C [解析] ∁R S ={x|x ≤-2},T ={x|(x +4)(x -1)≤0}={x|-4≤x ≤1},所以(∁R S)∪T =(-∞,1].故选择C.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k⎪⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧m km ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧mk m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132.当k =9时,集⎩⎨⎧m km ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143.最后,集C =⎩⎨⎧mkm ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的. 1.A1[2013·重庆卷] 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B)=( )A .{1,3,4}B .{3,4}C .{3}D .{4}1.D [解析] 因为A ∪B ={1,2,3},所以∁U (A ∪B)={4},故选D.A2 命题及其关系、充分条件、必要条件4.A2、B5[2013·安徽卷] “a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C [解析] f(x)=|(ax -1)x|=|ax 2-x|,若a =0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y =ax 2-x 的对称轴x =12a <0,且x =0时y =0,此时y =ax 2-x 在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax 2-x|在区间(0,+∞)上单调递增,故a ≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y =ax 2-x 的对称轴x =12a >0,且在区间0,12a 上y<0,此时f(x)=|ax 2-x|在区间0,12a 上单调递增,在区间12a ,1a 上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.3.A2、C3[2013·北京卷] “φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.A [解析] ∵曲线y =sin(2x +φ)过坐标原点, ∴sin φ=0,∴φ=k π,k ∈Z ,故选A. 2.A2[2013·福建卷] 已知集合A ={1,a},B ={1,2,3},则“a =3”是“A B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 当a =3时,A ={1,3},A B ;当A B 时,a =2或a =3,故选A. 3.F1,A2[2013·陕西卷] 设a ,b 为向量,则“|a·b|=|a||b|”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 3.C [解析] 由已知中|a·b|=|a|·|b|可得,a 与b 同向或反向,所以a ∥b .又因为由a ∥b ,可得|cos 〈a ,b 〉|=1,故|a·b|=|a|·|b ||cos 〈a ,b 〉|=|a|·|b |,故|a ·b |=|a |·|b |是a ∥b 的充分必要条件.4.D [解析] 注意到全称命题的否定为特称命题,故应选D.图1-44.A2[2013·天津卷] 已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( ) A .①②③ B .①② C .①③ D .②③4.C [解析] 由球的体积公式V =43πR 3知体积与半径是立方关系,①正确.平均数反映数据的所有信息,标准差反映数据的离散程度,②不正确.圆心到直线的距离为|0+0+1|1+1=22=r ,即直线与圆相切,③正确. 4.A2[2013·浙江卷] 已知函数f(x)=Acos (ωx +φ)(A>0,ω>0,φ∈R ),则“f(x)是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.B [解析] f(x)=Acos (ωx +φ)是奇函数的充要条件是f(0)=0,即cos φ=0,φ=k π+π2,k ∈Z ,所以“f(x)是奇函数”是“φ=π2”的必要不充分条件,故选择B.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k⎪⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧mk m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧mk m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132.当k =9时,集⎩⎨⎧m k m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143.最后,集C =⎩⎨⎧mkm ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.A3 基本逻辑联结词及量词16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n<1,即a n +b n <c n,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.2.A3[2013·重庆卷] 命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0 D .存在x 0∈R ,使得x 20<02.D [解析] 根据定义可知命题的否定为:存在x 0∈R ,使得x 20<0,故选D.A4 单元综合10.A4,B14[2013·福建卷] 设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f(x)满足:(1)T ={f(x)|x ∈S};(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f(x 1)<f(x 2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .A =N *,B =NB .A ={x|-1≤x ≤3},B ={x|x =-8或0<x ≤10}C .A ={x|0<x<1},B =RD .A =Z ,B =Q10.D [解析] 函数f(x)为定义域S 上的增函数,值域为T.构造函数f(x)=x -1,x ∈N ,如图①,则f(x)值域为N ,且为增函数,A 选项正确;构造函数f(x)=⎩⎪⎨⎪⎧-8,x =-1,52(x +1),-1<x ≤3,如图②,满足题设条件,B 选项正确;构造函数f(x)=tanx -错误!π,0<x<1,如图③,满足题设条件,C 选项正确;假设存在函数f(x),f(x)在定义域Z 上是增函数,值域为Q ,则存在a<b 且a 、b ∈Z ,使得f(a)=0,f(b)=1,因为区间(a ,b)内的整数至多有有限个,而区间(0,1)内的有理数有无数多个,所以必存在有理数m ∈(0,1),方程f(x)=m 在区间(a ,b)内无整数解,这与f(x)的值域为Q 矛盾,因此满足题设条件的函数f(x)不存在,D 选项错误,故选D.B 单元 函数与导数B1 函数及其表示21.B1,B12[2013·江西卷] 已知函数f(x)=a ⎝⎛⎭⎫1-2⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x 1,x 2,试确定a 的取值范围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△ABC 的面积为S(a),讨论S(a)的单调性.解:(1)证明:因为f ⎝⎛⎭⎫12+x =a(1-2|x|), f ⎝⎛⎭⎫12-x =a(1-2|x|), 有f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,所以函数f(x)的图像关于直线x =12对称.(2)当0<a<12时,有f(f(x))=⎩⎨⎧4a 2x ,x ≤12,4a 2(1-x ),x>12.所以f(f(x))=x 只有一个解x =0,又f(0)=0,故0不是二阶周期点.当a =12时,有f(f(x))=⎩⎨⎧x ,x ≤12,1-x ,x>12.所以f(f(x))=x 有解集x 错误!x ≤错误!,又当x ≤错误!时f(x)=x ,故x 错误!)x ≤错误!中的所有点都不是二阶周期点.当a>12时,有f(f(x))=⎩⎪⎪⎨⎪⎪⎧4a 2x ,x ≤14a,2a -4a 2x ,14a <x ≤12,2a (1-2a )+4a 2x ,12<x ≤4a -14a,4a 2-4a 2x ,x>4a -14a.所以f(f(x))=x 有四个解0,2a1+4a 2,2a1+2a ,4a 21+4a2,又f(0)=0,f ⎝ ⎛⎭⎪⎫2a 1+2a =2a1+2a , f ⎝ ⎛⎭⎪⎫2a 1+4a 2≠2a 1+4a 2,f ⎝ ⎛⎭⎪⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f(x)的二阶周期点. 综上所述,所求a 的取值范围为a>12.(3)由(2)得x 1=2a1+4a 2,x 2=4a 21+4a 2,因为x 3为函数f(f(x))的最大值点,所以x 3=14a ,或x 3=4a -14a.当x 3=14a 时,S(a)=2a -14(1+4a 2),求导得:S′(a)=-2⎝ ⎛⎭⎪⎫a -1+22⎝ ⎛⎭⎪⎫a -1-22(1+4a 2)2. 所以当a ∈⎝ ⎛⎭⎪⎫12,1+22时,S(a)单调递增,当a ∈⎝ ⎛⎭⎪⎫1+22,+∞时S(a)单调递减; 当x 3=4a -14a 时,S(a)=8a 2-6a +14(1+4a 2),求导得:S′(a)=12a 2+4a -32(1+4a 2)2;因a>12,从而有S′(a)=12a 2+4a -32(1+4a 2)2>0, 所以当a ∈⎝⎛⎭⎫12,+∞时S(a)单调递增.13.B1,B11[2013·江西卷] 设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x ,则f′(1)=________.13.2 [解析] f(e x )=x +e x ,利用换元法可得f(x)=ln x +x ,f ′(x)=1x +1,所以f′(1)=2.10.B1,B8[2013·江西卷] 如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )图1-3图1-410.D [解析] 设l ,l 2距离为t ,cos x =2t 2-1,得t =cos x +12.△ABC 的边长为23,BE 23=1-t 1,得BE =23(1-t),则y =2BE +BC =2×23(1-t)+23=23-433cos x +12,当x ∈(0,π)时,非线性单调递增,排除A ,B ,求证x =π2的情况可知选D.2.B1[2013·江西卷] 函数y =xln(1-x)的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]2.B [解析] x ≥0且1-x>0,得x ∈[0,1),故选B. 11.B1[2013·辽宁卷] 已知函数f(x)=x 2-2(a +2)x +a 2,g(x)=-x 2+2(a -2)x -a 2+8.设H 1(x)=max {}f (x ),g (x ),H 2(x)=min {}f (x ),g (x )(max {}p ,q 表示p ,q 中的较大值,min {}p ,q 表示p ,q 中的较小值).记H 1(x)的最小值为A ,H 2(x)的最大值为B ,则A -B =( ) A .16 B .-16C .a 2-2a -16D .a 2+2a -16 11.B [解析] 由题意知当f(x)=g(x)时,即x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8, 整理得x 2-2ax +a 2-4=0,所以x =a +2或x =a -2,所以H 1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x 2-2(a +2)x +a 2(x ≤a -2),-x 2+2(a -2)x -a 2+8(a -2<x<a +2),x 2-2(a +2)x +a 2(x ≥a +2),H 2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x 2+2(a -2)x -a 2+8(x ≤a -2),x 2-2(a +2)x +a 2(a -2<x<a +2),-x 2+2(a -2)x -a 2+8(x ≥a +2).由图形(图形略)可知,A =H 1(x)min =-4a -4,B =H 2(x)max =12-4a ,则A -B =-16. 故选B. 4.B1[2013·全国卷] 已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( )A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,14.B [解析] 对于f(2x +1),-1<2x +1<0,解得-1<x<-12,即函数f(2x +1)的定义域为⎝⎛⎭⎫-1,-12. 8.B1,J3[2013·陕西卷] 设函数f(x)=⎩⎪⎨⎪⎧⎝⎛⎭⎫x -1x 6,x<0,-x ,x ≥0,则当x>0时,f[f(x)]表达式的展开式中常数项为( )A .-20B .20C .-15D .158.A [解析] 由已知表达式可得:f[f(x)]=1x -x 6,展开式的通项为T r +1=C r 61x 6-r(-x)r =C r6·(-1)r ·x r -3,令r -3=0,可得r =3,所以常数项为T 4=-C 36=-20.7.B1,B3,B12[2013·四川卷] 函数y =x 33x -1的图像大致是( )图1-57.C [解析] 函数的定义域是{x ∈R |x ≠0},排除选项A ;当x<0时,x 3<0,3x -1<0,故y>0,排除选项B ;当x →+∞时,y>0且y →0,故为选项C 中的图像. 19.B1,I2,K6[2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-4所示,经销商为下一个销售季度购进了130 t 该农产品,以X(单位:t ,100≤X ≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望.图1-419.解:(1)当X ∈[100,130)时,T =500X -300(130-X)=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X<130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元,当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(3)依题意可得T 的分布列为所以E(T)=59 400.B2 反函数5.B2[2013·全国卷] 函数f(x)=log 2⎝⎛⎭⎫1+1x (x>0)的反函数f -1(x)=( ) A.12x -1(x>0) B.12x -1(x ≠0) C .2x -1(x ∈R ) D .2x -1(x>0)5.A [解析] 令y =log 2⎝⎛⎭⎫1+1x ,则y>0,且1+1x =2y ,解得x =12y -1,交换x ,y 得f -1(x)=12x -1(x>0).B3 函数的单调性与最值21.B3,B9,B12[2013·四川卷] 已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值;(3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.21.解:(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f′(x 1)f′(x 2)=-1.当x<0时,对函数f(x)求导,得f′(x)=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立.所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f′(x 1)≠f′(x 2),故x 1<0<x 2. 当x 1<0时,函数f(x)的图像在点(x 1,f(x 1))处的切线方程为 y -(x 21+2x 1+a)=(2x 1+2)(x -x 1), 即y =(2x 1+2)x -x 21+a.当x 2>0时,函数f(x)的图像在点(x 2,f(x 2))处的切线方程为 y -ln x 2=1x 2(x -x 2),即y =1x 2·x +ln x 2-1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.②由①及x 1<0<x 2,知-1<x 1<0.由①②得,a =x 21+ln 12x 1+2-1=x 21-ln(2x 1+2)-1.设h(x 1)=x 21-ln(2x 1+2)-1(-1<x 1<0), 则h′(x 1)=2x 1-1x 1+1<0.所以,h(x 1)(-1<x 1<0)是减函数. 则h(x 1)>h(0)=-ln 2-1, 所以a>-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h(x 1)无限增大, 所以a 的取值范围是(-ln 2-1,+∞).故当函数f(x)的图像在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞). 10.B3,B12[2013·四川卷] 设函数f(x)=e x +x -a(a ∈R ,e 为自然对数的底数).若曲线y =sinx 上存在(x 0,y 0)使得f(f(y 0))=y 0,则a 的取值范围是( )A .[1,e]B .[e -1-1,1]C .[1,e +1]D .[e -1-1,e +1]10.A [解析] 因为y 0=sin x 0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x +x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x +x -a =x 在[0,1]上有解.当x ≥0时,两边平方得e x +x -a =x 2,故a =e x -x 2+x.记g(x)=e x -x 2+x ,则g ′(x)=e x -2x +1.当x ∈⎣⎡⎦⎤0,12时,e x >0,-2x +1≥0,故g′(x)>0, 当x ∈⎝⎛⎦⎤12,1时,e x >e >1,0>-2x +1≥-1, 故g′(x)>0.综上,g′(x)在x ∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值范围是[1,e].7.B1,B3,B12[2013·四川卷] 函数y =x 33x -1的图像大致是( )图1-57.C [解析] 函数的定义域是{x ∈R |x ≠0},排除选项A ;当x<0时,x 3<0,3x -1<0,故y>0,排除选项B ;当x →+∞时,y>0且y →0,故为选项C 中的图像. 10.B3,B5,B8,B12[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=010.C [解析] x →-∞ 时,f(x)<0 ,x →+∞ 时,f(x)>0,f(x) 连续,x 0∈R ,f(x 0)=0,A 正确;通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确; 若x 0是f(x)的极小值点,可能还有极大值点x 1 ,则f(x)在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.B4 函数的奇偶性与周期性2.B4[2013·广东卷] 定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2 sin x 中,奇函数的个数是( )A .4B .3C .2D .12.C [解析] 函数y =x 3,y =2sin x 是奇函数.11.B4[2013·江苏卷] 已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x 2-4x ,则不等式f(x)>x 的解集用区间表示为________.11.(-5,0)∪(5,+∞) [解析] 设x<0,则-x>0.因为f(x)是奇函数,所以f(x)=-f(-x)=-(x 2+4x).又f(0)=0,于是不等式f(x)>x 等价于⎩⎪⎨⎪⎧x ≥0,x 2-4x>x 或⎩⎪⎨⎪⎧x<0,-(x 2+4x )>x.解得x>5或-5<x<0,故不等式的解集为(-5,0)∪(5,+∞).3.B4[2013·山东卷] 已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x ,则f(-1)=( )A .-2B .0C .1D .23.A [解析] ∵f ()x 为奇函数,∴f ()-1=-f(1)=-⎝⎛⎭⎫12+11=-2.14.B4,E3[2013·四川卷] 已知f(x)是定义域为R 的偶函数,当x ≥0时,f(x)=x 2-4x ,那么,不等式f(x +2)<5的解集是________.14.(-7,3) [解析] 当x +2≥0时,f(x +2)=(x +2)2-4(x +2)=x 2-4,由f(x +2)<5,得x 2-4<5,即x 2<9,解得-3<x <3,又x +2≥0,故-2≤x <3为所求.又因为f(x)为偶函数,故f(x +2)的图像关于直线x =-2对称,于是-7<x <-2也满足不等式.(注:本题还可以借助函数的图像及平移变换求解)B5 二次函数4.A2、B5[2013·安徽卷] “a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C [解析] f(x)=|(ax -1)x|=|ax 2-x|,若a =0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y =ax 2-x 的对称轴x =12a <0,且x =0时y =0,此时y =ax 2-x 在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax 2-x|在区间(0,+∞)上单调递增,故a ≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y =ax 2-x 的对称轴x =12a >0,且在区间0,12a 上y<0,此时f(x)=|ax 2-x|在区间0,12a 上单调递增,在区间12a ,1a 上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.5.B5,B9[2013·湖南卷] 函数f(x)=2ln x 的图像与函数g(x)=x 2-4x +5的图像的交点个数为( )A .3B .2C .1D .05.B [解析] 法一:作出函数f(x)=2ln x ,g(x)=x 2-4x +5的图像如图:可知,其交点个数为2,选B. 法二:也可以采用数值法:10.B3,B5,B8,B12[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=010.C [解析] x →-∞ 时,f(x)<0 ,x →+∞ 时,f(x)>0,f(x) 连续,x 0∈R ,f(x 0)=0,A 正确;通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确; 若x 0是f(x)的极小值点,可能还有极大值点x 1 ,则f(x)在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.B6 指数与指数函数6.E3、B6、B7[2013·安徽卷] 已知一元二次不等式f(x)<0的解集为x⎪⎪⎪⎪)x<-1或x>12,则f(10x )>0的解集为( ) A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2}6.D [解析] 根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x <12,解得x<-lg2.16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n<1,即a n +b n <c n,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.3.B6,B7[2013·浙江卷] 已知x ,y 为正实数,则( )A .2lg x +lg y =2lg x +2lg yB .2lg(x +y)=2lg x ·2lg yC .2lg x ·lg y =2lg x +2lg y D .2lg(xy)=2lg x ·2lg y3.D [解析] ∵lg(xy)=lg x +lg y ,∴2lg(xy)=2lg x +lg y =2lgx 2lgy ,故选择D.B7 对数与指数函数6.E3、B6、B7[2013·安徽卷] 已知一元二次不等式f(x)<0的解集为x⎪⎪⎪⎪)x<-1或x>12,则f(10x )>0的解集为( ) A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2}6.D [解析] 根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x <12,解得x<-lg2.16.B7、M1[2013·山东卷] 定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x ≥1.现有四个命题:①若a>0,b>0,则ln +(a b )=bln +a ;②若a>0,b>0,则ln +(ab)=ln +a +ln +b ;③若a>0,b>0,则ln +⎝⎛⎭⎫a b ≥ln +a -ln +b ; ④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2. 其中的真命题有________.(写出所有真命题的编号)16.①③④ [解析] ①中,当a b ≥1时,∵b>0,∴a ≥1,ln +(a b )=ln a b =bln a =bln +a ;当0<a b <1时,∵b>0,∴0<a<1,ln +(a b )=bln +a =0,∴①正确;②中,当0<ab<1,且a>1时,左边=ln +(ab)=0,右边=ln +a +ln +b =ln a +0=ln a>0,∴②不成立;③中,当a b ≤1,即a ≤b 时,左边=0,右边=ln +a -ln +b ≤0,左边≥右边成立;当a b >1时,左边=ln ab =ln a -ln b>0,若a>b>1时,右边=ln a -ln b ,左边≥右边成立;若0<b<a<1时,右边=0, 左边≥右边成立;若a>1>b>0,左边=ln ab =ln a -ln b>ln a ,右边=ln a ,左边≥右边成立,∴③正确;④中,若0<a +b<1,左边=ln+()a +b =0,右边=ln +a +ln +b +ln 2=ln 2>0,左边≤右边;若a +b ≥1,ln+()a +b -ln 2=ln ()a +b -ln 2=ln a +b2,又∵a +b 2≤a 或a +b 2≤b ,a ,b 至少有1个大于1,∴ln a +b 2≤ln a 或ln a +b 2≤ln b ,即有ln+()a +b -ln 2=ln ()a +b -ln 2=ln a +b 2≤ln +a +ln +b ,∴④正确.8.B7,E1[2013·新课标全国卷Ⅱ] 设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c8.D [解析] a -b =log 36-log 510=(1+log 32)-(1+log 52)=log 32-log 52>0, b -c =log 510-log 714=(1+log 52)-(1+log 72)=log 52-log 72>0, 所以a>b>c ,选D. 3.B6,B7[2013·浙江卷] 已知x ,y 为正实数,则( )A .2lg x +lg y =2lg x +2lg yB .2lg(x +y)=2lg x ·2lg yC .2lg x ·lg y =2lg x +2lg y D .2lg(xy)=2lg x ·2lg y3.D [解析] ∵lg(xy)=lg x +lg y ,∴2lg(xy)=2lg x +lg y =2lgx 2lgy ,故选择D.B8 幂函数与函数的图像5.B8[2013·北京卷] 函数f(x)的图像向右平移1个单位长度,所得图像与曲线y =e x 关于y 轴对称,则f(x)=( )A .e x +1B .e x -1C .e -x +1D .e -x -15.D [解析] 依题意,f(x)向右平移一个单位长度得到f(x -1)的图像,又y =e x 的图像关于y 轴对称的图像的解析式为y =e -x ,所以f(x -1)=e -x ,所以f(x)=e -x -1.10.B1,B8[2013·江西卷] 如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )1-31-410.D [解析] 设l ,l 2距离为t ,cos x =2t 2-1,得t =cos x +12.△ABC 的边长为23,BE 23=1-t 1,得BE =23(1-t),则y =2BE +BC =2×23(1-t)+23=23-433cos x +12,当x ∈(0,π)时,非线性单调递增,排除A ,B ,求证x =π2的情况可知选D.10.B3,B5,B8,B12[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=010.C [解析] x →-∞ 时,f(x)<0 ,x →+∞ 时,f(x)>0,f(x) 连续,x 0∈R ,f(x 0)=0,A 正确;通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确; 若x 0是f(x)的极小值点,可能还有极大值点x 1 ,则f(x)在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.B9 函数与方程11.B9,B11[2013·新课标全国卷Ⅰ] 已知函数f(x)=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f(x)|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]11.D [解析] 方法一:若x ≤0,|f(x)|=|-x 2+2x|=x 2-2x ,x =0时,不等式恒成立,x<0时,不等式可变为a ≥x -2,而x -2<-2,可得a ≥-2;若x>0,|f(x)|=|ln(x +1)|=ln(x +1),由ln(x +1)≥ax ,可得a ≤ln (x +1)x 恒成立,令h(x)=ln (x +1)x ,则h′(x)=xx +1-ln (x +1)x 2,再令g(x)=xx +1-ln(x +1),则 g ′(x)=-x(x +1)2<0,故g(x)在(0,+∞)上单调递减,所以g(x)<g(0)=0,可得h′(x)=xx +1-ln (x +1)x 2<0,故h(x)在(0,+∞)上单调递减,x →+∞时,h(x)→0,所以h(x)>0,a ≤0.综上可知,-2≤a ≤0,故选D.方法二:数形结合:画出函数|f(x)|=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,ln (x +1),x>0与直线y =ax 的图像,如下图,要使|f(x)|≥ax 恒成立,只要使直线y =ax 的斜率最小时与函数y =x 2-2x ,x ≤0在原点处的切线斜率相等即可,最大时与x 轴的斜率相等即可,因为y′=2x -2,所以y′|x =0=-2,所以-2≤a ≤0.10.B9,B12[2013·安徽卷] 若函数f(x)=x 3+ax 2+bx +c 有极值点x 1,x 2,且f(x 1)=x 1,则关于x 的方程3(f(x))2+2af(x)+b =0的不同实根个数是( )A .3B .4C .5D .610.A [解析] 因为f′(x)=3x 2+2ax +b ,3(f(x))2+2af(x)+b =0且3x 2+2ax +b =0的两根分别为x 1,x 2,所以f(x)=x 1或f(x)=x 2,当x 1是极大值点时,f(x 1)=x 1,x 2为极小值点,且x 2>x 1,如图(1)所示,可知方程f(x)=x 1有两个实根,f(x)=x 2有一个实根,故方程3(f(x))2+2af(x)+b =0共有3个不同实根;当x 1是极小值点时,f(x 1)=x 1,x 2为极大值点,且x 2<x 1,如图(2)所示,可知方程f(x)=x 1有两个实根,f(x)=x 2有一个实根,故方程3(f(x))2+2af(x)+b =0共有3个不同实根;综合以上可知,方程3(f(x))2+2af(x)+b =0共有3个不同实根.8.B9[2013·安徽卷] 函数y =f(x)的图像如图1-2所示,在区间[a ,b]上可找到n(n ≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n,则n 的取值范围是( )图1-2A .{3,4}B .{2,3,4}C .{3,4,5}D .{2,3}8.B [解析] 问题等价于直线y =kx 与函数y =f(x)图像的交点个数,从图中可以看出交点个数可以为2,3,4,故n 的取值范围是{2,3,4}.5.B5,B9[2013·湖南卷] 函数f(x)=2ln x 的图像与函数g(x)=x 2-4x +5的图像的交点个数为( )A .3B .2C .1D .05.B [解析] 法一:作出函数f(x)=2ln x ,g(x)=x 2-4x +5的图像如图:可知,其交点个数为2,选B. 法二:也可以采用数值法:可知它们有2个交点,选B.21.B9、B12[2013·山东卷] 设函数f(x)=xe 2x +c(e =2.718 28…是自然对数的底数,c ∈R ).(1)求f(x)的单调区间、最大值;(2)讨论关于x 的方程|ln x|=f(x)根的个数.21.解:(1)f′(x)=(1-2x)e -2x . 由f′(x)=0,解得x =12,当x<12时,f′(x)>0,f(x)单调递增;当x>12时,f′(x)<0,f(x)单调递减.所以,函数f(x)的单调递增区间是-∞,12,单调递减区间是12,+∞,最大值为f ⎝⎛⎭⎫12=12e -1+c. (2)令g(x)=|lnx|-f(x)=|lnx|-xe-2x-c ,x ∈(0,+∞).①当x ∈(1,+∞)时,lnx>0,则g(x)=lnx -xe -2x-c ,所以g′(x)=e-2xe 2xx+2x -1.因为2x -1>0,e 2xx>0,所以g′(x)>0.因此g(x)在(1,+∞)上单调递增.②当x ∈(0,1)时,lnx<0,则g(x)=-lnx -xe -2x -c , 所以g′(x)=e-2x-e 2xx+2x -1. 因为e 2x∈(1,e 2),e 2x>1>x>0,所以-e 2xx<-1.又2x -1<1,所以-e 2xx+2x -1<0,即g′(x)<0.因此g(x)在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g(x)≥g(1)=-e -2-c.当g(1)=-e -2-c>0,即c<-e -2时,g(x)没有零点,故关于x 的方程|lnx|=f(x)根的个数为0;当g(1)=-e -2-c =0,即c =-e -2时,g(x)只有一个零点,故关于x 的方程|lnx|=f(x)根的个数为1;当g(1)=-e -2-c<0,即c>-e -2时,(ⅰ)当x ∈(1,+∞)时,由(1)知g(x)=lnx -xe-2x-c ≥lnx -12e -1+c>lnx -1-c ,要使g(x)>0,只需使lnx -1-c>0,即x ∈(e 1+c ,+∞); (ⅱ)当x ∈(0,1)时,由(1)知g(x)=-lnx -xe -2x-c ≥-lnx -12e -1+c>-lnx -1-c ,要使g(x)>0,只需-lnx -1-c>0,即x ∈(0,e-1-c);所以c>-e -2时,g(x)有两个零点,故关于x 的方程|lnx|=f(x)根的个数为2. 综上所述,当c<-e -2时,关于x 的方程|lnx|=f(x)根的个数为0;当c =-e -2时,关于x 的方程|lnx|=f(x)根的个数为1;当c>-e -2时,关于x 的方程|lnx|=f(x)根的个数为2.21.B3,B9,B12[2013·四川卷] 已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.21.解:(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f′(x 1)f′(x 2)=-1.当x<0时,对函数f(x)求导,得f′(x)=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立.所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f′(x 1)≠f′(x 2),故x 1<0<x 2. 当x 1<0时,函数f(x)的图像在点(x 1,f(x 1))处的切线方程为 y -(x 21+2x 1+a)=(2x 1+2)(x -x 1), 即y =(2x 1+2)x -x 21+a.当x 2>0时,函数f(x)的图像在点(x 2,f(x 2))处的切线方程为 y -ln x 2=1x 2(x -x 2),即y =1x 2·x +ln x 2-1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.②由①及x 1<0<x 2,知-1<x 1<0.由①②得,a =x 21+ln 12x 1+2-1=x 21-ln(2x 1+2)-1.设h(x 1)=x 21-ln(2x 1+2)-1(-1<x 1<0),。
2013年普通高等学校招生全国统一考试(全国大纲卷)数学试题 (理科) word解析版

绝密★启用前2013年普通高等学校招生全国统一考试数学(理科)(全国大纲卷)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .6 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B.2.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i 答案:A解析:323=13=8-.故选A.3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-1 答案:B解析:由(m +n )⊥(m -n )⇒|m |2-|n |2=0⇒(λ+1)2+1-[(λ+2)2+4]=0⇒λ=-3.故选B.4.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭C .(-1,0)D .1,12⎛⎫ ⎪⎝⎭答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B.5.(2013大纲全国,理5)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x ≠0) C .2x -1(x ∈R ) D .2x -1(x >0) 答案:A解析:由题意知11+x=2y ⇒x =121y -(y >0),因此f -1(x )=121x-(x >0).故选A.6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ). A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10)答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C.7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ). A .56 B .84 C .112 D .168 答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D.8.(2013大纲全国,理8)椭圆C :22=143x y +的左、右顶点分别为A 1,A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦B .33,84⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +, 2002PA y k x =-,1002PA y k x =+,于是12220222003334244PA PA x y k k x x -⋅===---. 故12314PA PA k k =-.∵2PA k ∈[-2,-1], ∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B.9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ). A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D.10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23B.3 C.3 D .13答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BD CH C O BD C O O ⊥⎫⎪⊥⎬⎪⎭CH ⊥平面C 1BD , ∴∠HDC 为CD 与平面BDC 1所成的角.设AA 1=2AB =2,则==22AC OC,1C O =由等面积法,得C 1O ·CH =OC ·CC 1,即222CH ⋅⋅=, ∴2=3CH . ∴sin ∠HDC =223==13HC DC .故选A.11.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=,则k =( ).A .12B.2 CD .2答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k 2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k(+),x 1x 2=4.① 由112222y k x y k x =(-)⎧⎨=(-)⎩121221212124,[24].y y k x x k y y k x x x x +=(+)-⎧⎨=-(+)+⎩①② ∵0MA MB ⋅=,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0,即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D.12.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f (x )的图像关于点(π,0)中心对称B .y =f (x )的图像关于直线π=2x 对称 C .f (x )D .f (x )既是奇函数,又是周期函数 答案:C解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得=t ±. 当t =±1时,函数值为0;当t =;当3t =时,函数值为9.∴g (t )max,即f (x ).故选C.二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=13-,则cot α=__________.答案:解析:由题意知cos α=3==-. 故cot α=cos sin αα14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.(2013大纲全国,理15)记不等式组0,34,34x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是__________.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4, ∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4.16.(2013大纲全国,理16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于__________. 答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点,则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°. 又MN =R ,∴△OMN 为正三角形.∴OER . 又OK ⊥EK ,∴32=OE ·sin 60°R ∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n }的前n 项和为S n .已知S 3=22a ,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.18.(2013大纲全国,理18)(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac .(1)求B ;(2)若sin A sin C=14,求C . 解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-,因此B=120°.(2)由(1)知A+C=60°,所以cos(A-C)=cos A cos C+sin A sin C=cos A cos C-sin A sin C+2sin A sin C=cos(A+C)+2sinA sin C=1+22=,故A-C=30°或A-C=-30°,因此C=15°或C=45°.19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△P AB和△P AD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的大小.(1)证明:取BC的中点E,连结DE,则ABED为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OE.由△P AB和△P AD都是等边三角形知P A=PB=PD,所以OA=OB=OD,即点O为正方形ABED对角线的交点,故OE⊥BD,从而PB⊥OE.因为O是BD的中点,E是BC的中点,所以OE∥CD.因此PB⊥CD.(2)解法一:由(1)知CD⊥PB,CD⊥PO,PB∩PO=P,故CD⊥平面PBD.又PD⊂平面PBD,所以CD⊥PD.取PD的中点F,PC的中点G,连结FG,则FG∥CD,FG⊥PD.连结AF,由△APD为等边三角形可得AF⊥PD.所以∠AFG为二面角A-PD-C的平面角.连结AG,EG,则EG∥PB.又PB⊥AE,所以EG⊥AE.设AB=2,则AE=EG=12PB=1,故AG3.在△AFG中,FG=12CD=,AF=AG=3,所以cos∠AFG=22223 FG AF AGFG AF+-=-⨯⨯.因此二面角A-PD-C的大小为πarccos3-解法二:由(1)知,OE,OB,OP两两垂直.以O为坐标原点,OE的方向为x轴的正方向建立如图所示的空间直角坐标系O-xyz.设|AB|=2,则A(0,0),D(0,,0),C(0),P(0,0).PC =(2,2-),=(0,,). AP =,0),AD =,0).设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1·PC =(x,y ,z )·(,)=0,n 1·PD =(x ,y ,z )·(0,,=0, 可得2x -y -z =0,y +z =0.取y =-1,得x =0,z=1,故n 1=(0,-1,1). 设平面P AD 的法向量为n 2=(m ,p ,q),则n 2·AP =(m ,p ,q ,0)=0,n 2·AD =(m ,p ,q ,,0)=0,可得m +q =0,m -p =0. 取m =1,得p =1,q =-1,故n 2=(1,1,-1).于是cos〈n 1,n 2〉=1212||||=·n n n n . 由于〈n 1,n 2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为πarccos3-20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的数学期望. 解:(1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”. 则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14. (2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)·P (A 3)=18,P (X =2)=P (1B ·B 3)=P (1B )P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1151848--=,EX =0·P (X =0)+1·P (X =1)+2·P (X =2)=98.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C :2222=1x y a -(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C .(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF2|,|AB |,|BF 2|成等比数列.(1)解:由题设知c a=3,即222a b a +=9,故b 2=8a 2. 所以C 的方程为8x 2-y 2=8a 2.将y=2代入上式,求得x=由题设知,=a2=1.所以a=1,b=(2)证明:由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8.①由题意可设l的方程为y=k(x-3),k(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=2268kk-,x1·x2=22988kk+-.于是|AF1|==-(3x1+1),|BF1|3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=2 3 -.故226283kk=--,解得k2=45,从而x1·x2=199-.由于|AF2|==1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16. 因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f(x)=1ln(1+)1x xxxλ(+)-+.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{a n}的通项111=1+23nan+++,证明:a2n-a n+14n>ln 2.(1)解:由已知f(0)=0,f′(x)=22121x xxλλ(-)-(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是1 2 .(2)证明:令12λ=.由(1)知,当x>0时,f(x)<0,即2ln(1) 22x xxx(+)>++.取1xk=,则211>ln21k kk k k++(+).于是212111422(1)nn nk na an k k-=⎡⎤-+=+⎢⎥+⎣⎦∑=2121211ln21n nk n k nk kk k k--==++>(+)∑∑=ln 2n-ln n=ln 2.所以21ln 24n n a a n-+>.。
2013年高考数学(全国卷)理科及答案

2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,l β,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ + +…+(B )1++ +…+(C )1+ + +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是x ≥1, x+y ≤3, y ≥a(x-3). {(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2013年理科数学各地高考题分类汇编 (1)

2013年高考真题理科数学解析分类汇编1 集合与简易逻辑一选择题1.陕西1. 设全集为R , 函数()f x =M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-【答案】D【解析】),1()1,(],1,1[.11,0-12∞--∞=-=≤≤-∴≥ MR C M x x 即,所以选D2.(新课标Ⅰ)1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ()A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B.3.[新课标II ]1、已知集合{}R x x x M ∈<-=),4)1(|2,{}3,2,1,0,1-=N ,则M N =( )(A ){0,1,2} (B ){-1,0,1,2}(C ){-1,0,2,3} (D ){0,1,2,3} 【答案】A【解析】因为{}31|<<-=x x M ,{}3,2,1,0,1-=N ,所以MN {}2,1,0=,选A.4.安徽理(4)"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的 (A ) 充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】 当a=0 时,,时,且上单调递增;当,在x ax x f x a x f y x x f )1()(00)0()(||)(+-=><∞+=⇒= .)0()(0所以a .)0()(上单调递增的充分条件,在是上单调递增,在∞+=≤∞+=x f y x f y 0a )0()(≤⇒∞+=上单调递增,在相反,当x f y ,.)0()(0a 上单调递增的必要条件,在是∞+=≤⇒x f y故前者是后者的充分必要条件。
2013年全国高考理科数学分类汇编(45页)

2013年全国高考理科数学分类汇编一、集合与简易逻辑辽宁2013(2)已知集合{}{}4|0log 1,|2A x x B x x AB =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 辽宁2013(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 江西2013.1.已知集合M={1,2,zi},i ,为虚数单位,N={3,4},则复数z=A.-2iB.2iC.-4iD.4i 全国1.1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B全国2.1.已知集合{}{}3,2,1,0,1,,4)1(|2-=∈<-=N R x x x M ,则=⋂N M ( )A {}2,1,0B {}2,1,0,1-C {}3,2,0,1-D {}3,2,1,0北京2013.1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}四川1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则AB =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅ 重庆(1)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U AB =ð(A ){1,3,4} (B ){3,4} (C ){3} (D ){4} 天津卷(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1]2013安微(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6山东(2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9重庆(2)命题“对任意x R ∈,都有20x ≥”的否定为(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <2013广东1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N= A. {0} B. {0,2} C. {-2,0} D {-2,0,2} 北京2013.3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件四川4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈2013广东8.设整数n ≥4,集合X={1,2,3……,n }。
2013年普通高等学校招生全国统一考试 全国卷1 数学试卷含答案(理科)

2013年普通高等学校招生全国统一考试(课标全国卷Ⅰ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-2x>0},B={x|-√5<x<√5},则( )A.A∩B=⌀B.A∪B=RC.B⊆AD.A⊆B2.若复数z满足(3-4i)z=|4+3i|,则z的虚部为( )A.-4B.-45C.4 D.453.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.已知双曲线C:x 2a2-y2b2=1(a>0,b>0)的离心率为√52,则C的渐近线方程为( )A.y=±1xB.y=±1xC.y=±1xD.y=±x5.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( )A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]6.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3cm 3D.2 048π3cm 37.设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m=( ) A.3B.4C.5D.68.某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π9.设m 为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( ) A.5B.6C.7D.810.已知椭圆E:x 22+y 2b2=1(a>b>0)的右焦点为F(3,0),过点F 的直线交E 于A,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 11.已知函数f(x)={-x 2+2x ,x ≤0,ln (x +1),x >0.若|f(x)|≥ax,则a 的取值范围是( )A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]12.设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1=c n +a n 2,c n+1=b n +a n2,则( )A.{S n }为递减数列B.{S n }为递增数列C.{S 2n-1}为递增数列,{S 2n }为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a,b 的夹角为60°,c=ta+(1-t)b.若b·c=0,则t= . 14.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n = . 15.设当x=θ时,函数f(x)=sin x-2cos x 取得最大值,则cos θ= .16.若函数f(x)=(1-x 2)(x 2+ax+b)的图象关于直线x=-2对称,则f(x)的最大值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在△ABC 中,∠ABC=90°,AB=√3,BC=1,P 为△ABC 内一点,∠BPC=90°. (Ⅰ)若PB=12,求PA;(Ⅱ)若∠APB=150°,求tan∠PBA.18.(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB,AB=AA 1,∠BAA 1=60°. (Ⅰ)证明:AB⊥A 1C;(Ⅱ)若平面ABC⊥平面AA 1B 1B,AB=CB,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.,且各件产品假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P 处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥-2时, f(x)≤kg(x),求k的取值范围.请考生从第22、23、24三题中任选一题作答,多选、多答,按所选的首题进行评分;不选,按本选考题的首题进行评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=√3,延长CE交AB于点F,求△BCF外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为{x =4+5cost ,y =5+5sint (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3. (Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>-1,且当x∈[-a,1)时, f(x)≤g(x),求a 的取值范围.2013年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.B 化简A={x|x>2或x<0},而B={x|-√5<x<√5},所以A ∩B={x|-√5<x<0或2<x<√5},B 项错误;A ∪B=R ,B 项正确;A 与B 没有包含关系,C 项与D 项均错误.故选B.2.D ∵|4+3i|=√42+32=5,∴z=53-4i =5(3+4i)25=35+45i,虚部为45,故选D.3.C 因为男女视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.评析 本题考查了分层抽样,准确理解分层抽样的意义是解题关键. 4.C ∵ba =√e 2-1=√54-1=12,∴C 的渐近线方程为y=±12x.故选C.5.A 由框图知s 是关于t 的分段函数:s={3t,-1≤t <1,4t -t 2,1≤t ≤3,当t ∈[-1,1)时,s ∈[-3,3);当t ∈[1,3]时,s=4t-t 2=4-(t-2)2∈[3,4],故s ∈[-3,4],故选A.6.A 设球心为O,正方体上底面中心为A,上底面一边的中点为B,在Rt △OAB 中,|OA|=R-2(cm),|AB|=4(cm),|OB|=R(cm),由R 2=(R-2)2+42得R=5(cm),∴V 球=43πR 3=5003π(cm 3).故选A.评析 本题考查了正方体和球的组合体,考查了空间想象能力.利用勾股定理求出球半径R 是解题的关键.7.C 解法一:∵S m-1=-2,S m =0,S m+1=3,∴a m =S m -S m-1=2,a m+1=S m+1-S m =3,∴公差d=a m+1-a m =1,由S n =na 1+n(n -1)2d=na 1+n(n -1)2,得{ma 1+m(m -1)2=0, ①(m -1)a 1+(m -1)(m -2)2=-2.② 由①得a 1=1-m 2,代入②可得m=5.解法二:∵数列{a n }为等差数列,且前n 项和为S n ,∴数列{Sn n } 也为等差数列. ∴S m -1m -1+Sm+1m+1=2S m m,即-2m -1+3m+1=0,即m=5.故选C.评析 本题考查等差数列前n 项和的基本运算,若能掌握等差数列的性质,解决此题可简化运算.8.A 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积为V=4×2×2+12π×22×4=16+8π.故选A.9.B 由题意得:a=C 2m m ,b=C 2m+1m ,所以13C 2m m =7C 2m+1m ,∴13·(2m)!m!·m!=7·(2m+1)!m!·(m+1)!,∴7(2m+1)m+1=13,解得m=6,选B.10.D 直线AB 的斜率k=0+13-1=12,设A(x 1,y 1),B(x 2,y 2),则{x 12a 2+y 12b 2=1, ①x 22a 2+y 22b2=1,② ①-②得y 1-y2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.即k=-b 2a 2×2-2,∴b 2a2=12. ③又a 2-b 2=c 2=9, ④由③④得a 2=18,b 2=9.所以椭圆方程为x 218+y 29=1,故选D.评析 本题考查了直线和椭圆的位置关系,考查了线段的中点问题.本题也可利用韦达定理解决中点问题.11.D 由题意作出y=|f(x)|的图象:由题意结合图象知,当a>0时,y=ax 与y=ln(x+1)在x>0时必有交点,所以a ≤0.当x ≥0时,|f(x)|≥ax 显然成立;当x<0时,|f(x)|=x 2-2x ≥ax,则a ≥x-2恒成立,又x-2<-2,∴a≥-2.综上,-2≤a ≤0,故选D.评析 本题考查了函数的综合应用,考查了数形结合的能力;借助基本初等函数的图象缩小参数范围是解题关键. 12.B 由b n+1=a n +c n2,c n+1=b n +a n2得b n+1+c n+1=a n +12(b n +c n ),①b n+1-c n+1=-12(b n -c n ),②由a n+1=a n 得a n =a 1,代入①得b n+1+c n+1=a 1+12(b n +c n ),∴b n+1+c n+1-2a 1=12(b n +c n -2a 1),∵b 1+c 1-2a 1=2a 1-2a 1=0,∴b n +c n =2a 1>|B n C n |=a 1,所以点A n 在以B n 、C n 为焦点且长轴长为2a 1的椭圆上(如图).由b 1>c 1得b 1-c 1>0,所以|b n+1-c n+1|=12(b n -c n ), 即|b n -c n |=(b 1-c 1)·(12)n -1,所以当n 增大时|b n -c n |变小,即点A n 向点A 处移动,即边B n C n 上的高增大,又|B n C n |=a n =a 1不变,所以{S n }为递增数列.二、填空题 13.答案 2解析 解法一:∵b ·c =0, ∴b [t a +(1-t)b ]=0, t a ·b +(1-t)·b 2=0, 又∵|a |=|b |=1,<a,b >=60°, ∴12t+1-t=0,t=2.解法二:由t+(1-t)=1知向量a 、b 、c 的终点A 、B 、C 共线,在平面直角坐标系中设a =(1,0),b =(12,√32),则c =(32,-√32). 把a 、b 、c 的坐标代入c =t a +(1-t)b ,得t=2.评析 本题考查了向量的运算,利用三点共线的条件得到c 的坐标是解题关键. 14.答案 (-2)n-1解析 由S n =23a n +13得:当n ≥2时,S n-1=23a n-1+13,∴当n ≥2时,a n =-2a n-1,又n=1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n-1. 15.答案 -2√55解析 由辅助角公式得:f(x)=√5(√55sinx -2√55cosx)=√5sin(x-φ),其中sin φ=2√55,cos φ=√55,由x=θ,f(x)取得最大值得:sin(θ-φ)=1,∴θ-φ=2kπ+π2,k ∈Z ,即θ=φ+π2+2kπ,∴cos θ=cos (φ+π2)=-sinφ=-2√55. 评析 本题考查了辅助角公式的应用,准确掌握辅助角的含义是解题关键. 16.答案 16解析 由f(x)=(1-x 2)(x 2+ax+b)的图象关于直线x=-2对称,则有{f(0)=f(-4),f(1)=f(-5),即{b =-15(16-4a +b),0=-24(25-5a +b), 解得a=8,b=15,∴f(x)=(1-x 2)(x 2+8x+15)=(1-x 2)[(x+4)2-1],令x+2=t,则x=t-2,t ∈R . ∴y=f(t)=[1-(t-2)2][(t-2)2+8(t-2)+15] =(4t-t 2-3)(4t+t 2+3)=16t 2-(t 2+3)2=16t 2-t 4-6t 2-9=16-(t 2-5)2,∴当t 2=5时y max =16.三、解答题17.解析 (Ⅰ)由已知得,∠PBC=60°,所以∠PBA=30°.在△PBA 中,由余弦定理得PA 2=3+14-2×√3×12cos 30°=74.故PA=√72.(Ⅱ)设∠PBA=α,由已知得PB=sin α.在△PBA 中,由正弦定理得√3sin150°=sinαsin(30°-α), 化简得√3cos α=4sin α.所以tan α=√34,即tan ∠PBA=√34.评析 本题考查了利用正弦定理和余弦定理解三角形,考查了运算求解能力和分析、解决问题的能力.题目新颖且有一定的难度,通过PB 把△PBC 和△PAB 联系起来利用正弦定理是解题关键.18.解析 (Ⅰ)取AB 的中点O,连结OC,OA 1,A 1B.因为CA=CB,所以OC ⊥AB.由于AB=AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB.因为OC ∩OA 1=O,所以AB ⊥平面OA 1C.又A 1C ⊂平面OA 1C,故AB ⊥A 1C.(Ⅱ)由(Ⅰ)知OC ⊥AB,OA 1⊥AB.又平面ABC ⊥平面AA 1B 1B,交线为AB,所以OC ⊥平面AA 1B 1B,故OA,OA 1,OC 两两相互垂直.以O 为坐标原点,OA ⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,|OA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系O-xyz.由题设知A(1,0,0),A 1(0,√3,0),C(0,0,√3),B(-1,0,0).则BC ⃗⃗⃗⃗⃗ =(1,0,√3),BB ⃗⃗⃗⃗⃗ 1=AA ⃗⃗⃗⃗⃗ 1=(-1,√3,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,-√3,√3).设n =(x,y,z)是平面BB 1C 1C 的法向量,则{n ·BC ⃗⃗⃗⃗⃗ =0,n ·BB⃗⃗⃗⃗⃗ 1=0.即{x +√3z =0,-x +√3y =0.可取n =(√3,1,-1). 故cos<n ,A 1C ⃗⃗⃗⃗⃗⃗⃗ >=n ·A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ |n||A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ |=-√105. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为√105. 19.解析 (Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A,依题意有A=(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P(A)=P(A 1B 1)+P(A 2B 2)=P(A 1)P(B 1|A 1)+P(A 2)P(B 2|A 2)=416×116+116×12=364.(Ⅱ)X 可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X 的分布列为X400 500 800 P1116 116 14EX=400×1116+500×116+800×14=506.25.20.解析 由已知得圆M 的圆心为M(-1,0),半径r 1=1;圆N 的圆心为N(1,0),半径r 2=3.设圆P 的圆心为P(x,y),半径为R.(Ⅰ)因为圆P 与圆M 外切并且与圆N 内切,所以|PM|+|PN|=(R+r 1)+(r 2-R)=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M 、N 为左、右焦点,长半轴长为2,短半轴长为√3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(Ⅱ)对于曲线C 上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R=2.所以当圆P 的半径最长时,其方程为(x-2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2√3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q,则|QP||QM|=R r 1,可求得Q(-4,0),所以可设l:y=k(x+4).由l 与圆M 相切得√1+k 2=1,解得k=±√24. 当k=√24时,将y=√24x+√2代入x 24+y 23=1,并整理得7x 2+8x-8=0,解得x 1,2=-4±6√27.所以|AB|=√1+k 2|x 2-x 1|=187. 当k=-√24时,由图形的对称性可知|AB|=187.综上,|AB|=2√3或|AB|=187. 评析 本题考查了直线和圆的位置关系,考查了椭圆的定义和方程,考查了分类讨论的方法和运算求解能力.利用数形结合的方法是解题的关键.在求曲线C 的方程时容易忽视对左顶点和直线倾斜角为90°时的讨论而造成失分.21.解析 (Ⅰ)由已知得f(0)=2,g(0)=2, f '(0)=4,g'(0)=4.而f '(x)=2x+a,g'(x)=e x (cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(Ⅱ)由(Ⅰ)知, f(x)=x 2+4x+2,g(x)=2e x (x+1).设函数F(x)=kg(x)-f(x)=2ke x (x+1)-x 2-4x-2,则 F'(x)=2ke x (x+2)-2x-4=2(x+2)(ke x -1).由题设可得F(0)≥0,即k≥1.令F'(x)=0,得x1=-ln k,x2=-2.(i)若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F'(x)<0;当x∈(x1,+∞)时,F'(x)>0.即F(x)在(-2,x1)上单调递减,在(x1,+∞)上单调递增.故F(x)在[-2,+∞)上的最小值为F(x1).而F(x1)=2x1+2-x12-4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.(ii)若k=e2,则F'(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F'(x)>0,即F(x)在(-2,+∞)上单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.(iii)若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0.从而当x≥-2时, f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].评析本题考查了导数的几何意义以及利用导数研究函数的单调性,考查了分类与整合、函数与方程的思想;结合特值限定参数的范围,可减少分类的情况,有利于提高效率,掌握利用两根大小作为讨论的分界点,是解题关键.22.解析(Ⅰ)连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,DB=DC,.故DG是BC的中垂线,所以BG=√32设DE 的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF ⊥BF,故Rt △BCF 外接圆的半径等于√32.23.解析 (Ⅰ)将{x =4+5cost,y =5+5sint消去参数t,化为普通方程(x-4)2+(y-5)2=25, 即C 1:x 2+y 2-8x-10y+16=0.将{x =ρcosθ,y =ρsinθ代入x 2+y 2-8x-10y+16=0得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(Ⅱ)C 2的普通方程为x 2+y 2-2y=0.由{x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得{x =1,y =1或{x =0,y =2. 所以C 1与C 2交点的极坐标分别为(√2,π4),(2,π2).24.解析 (Ⅰ)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y={ -5x, x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(Ⅱ)当x ∈[-a 2,12)时, f(x)=1+a. 不等式f(x)≤g(x)化为1+a ≤x+3.所以x ≥a-2对x ∈[-a 2,12)都成立.故-a 2≥a-2,即a ≤43.]. 从而a的取值范围是(-1,43。
2013年全国高考数学(理科)试题及答案-新课标1卷(解析版)

绝密★启用前2013年普通高等学校招生全国统一考试(新课标I 卷)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.(1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则 (A )A B =ΦI (B )A B =R U (C )A B ⊆ (D )B A ⊆(2)若复数z 满足()i 34i 43+=-z(A )4- (B )54- (C )4 (D )54 (3)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(A )简单的随机抽样 (B )按性别分层抽样(C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :)0,0(12222>>=-b a b y a x 的离心率为25,则C 的渐近线方程为 (A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±= (5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于(A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,-(6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π(7)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6(8)某几何体的三视图如图所示,则该几何体的体积为(A )8π16+(B )8π8+(C )π6116+(D )16π8+(9)设m 为正整数,()m y x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m =(A )5 (B )6 (C )7 (D )8(10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。
2013年高考试题分类汇编(集合)

2013年高考试题分类汇编(集合)考点1 集合的基本概念1.(2013·全国大纲卷·理科)设集合{}1,2,3A =,{}4,5B =,{|,M x x a b ==+ ,}a A b B ∈∈,则M 中元素的个数为A.3B.4C.5D.62.(2013·山东卷·理科)设集合{}0,1,2A =,则集合{},B x y x A y A =-∈∈中元素的个数是A. 1B. 3C. 5D.93.(2013·江西卷·文科)若集合{}210A x R ax ax =∈++=中只有一个元素, 则a =A.4B.2C.0D.0或44.(2013·江苏卷)集合}1,0,1{-共有 个子集.考点2 集合的基本关系1.(2013·福建卷·理科)已知集合{}a A ,1=,{}3,2,1=B ,则”“3=a 是”“B A ⊆的 A.充分不必要条件B.必要不充分条件C.充要条件D. 既不充分也不必要条件2.(2013·福建卷·文科)若集合{}=1,2,3A ,{}=1,3,4B ,则A B 的子集个数为A .2B .3C .4D .163.(2013·全国卷Ⅰ·理科)已知集合{}220A x x x =->,{B x x =<<,则A.A B =∅B.A B R =C.B A ⊆D.A B ⊆ 考点3 集合的基本运算考法1 交集1.(2013·浙江卷·文科)设集合{}2S x x =>-,{}41T x x =-≤≤,则S T =A.[)4,-+∞B.(2,)-+∞C.[]4,1-D.(]2,1-2.(2013·四川卷·文科)设集合{1,2,3}A =,集合{2,2}B =-,则A B =A.∅B.{2}C.{2,2}-D.{2,1,2,3}-3.(2013·四川卷·理科)设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =A.{2}-B.{2}C.{2,2}-D.∅4.(2013·广东卷·文科)设集合{}220,S x x x x R =+=∈,2{20,T x x x =-= }x R ∈则S T = A.{}0 B.{}0,2 C.{}20-, D.{}20,2-,5.(2013·全国卷Ⅱ·文科)已知集合{}31M x x =-<<,{}3,2,1,0,1N =---,则M N =A.{}2,1,0,1--B.{}3,2,1,0---C.{}2,1,0--D.{}3,2,1---6.(2013·辽宁卷·文科)已知集合{}1,2,3,4A =,{}|2B x x =<,则A B =A.{}0B.{}0,1C.{}0,2D.{}0,1,27.(2013·北京卷·文理科)已知集合{}1,0,1A =-,{}11B x x =-≤<,则A B =A.{}0B.{}1,0-C.{}0,1D.{}1,0,1-8.(2013·天津卷·文理科)已知集合{}2A x R x =∈≤, {}1B x R x =∈≤, 则 A B =A.(],2-∞B.[]1,2C.[]2,2-D.[]2,1-9.(2013·全国卷Ⅰ·理科)已知集合{}1,2,3,4A =,{}2,B x x n n A ==∈,则 A B =A.{}1,4B.{}2,3C.{}9,16D.{}1,210.(2013·全国卷Ⅱ·理科)已知集合{}2(1)4M x x x R =-<∈,,{1,0,1,N =- 2,3},则M N =A.{}0,1,2B.{}1,0,1,2-C.{}1,0,2,3-D.{}0,1,2,311.(2013·江西卷·理科)设集合{}1,2,M zi =,i 为虚数单位,{}3,4N =, {}4M N =,则复数z =A.2i -B.2iC.4i -D.4i12.(2013·辽宁卷·理科)已知集合{}4|0log 1A x x =<<,{}|2B x x =≤,则A B =A.()01,B.(]02,C.()1,2D.(]12, 考法2 并集1.(2013·广东卷·理科)设集合{}220,M x x x x R =+=∈,{}220,N x x x x R =-=∈,则M N =A.{}0B.{}0,2C.{}20-,D.{}20,2-, 考法3 补集1.(2013·全国大纲卷·文科)设集合{}1,2,3,4,5U =,集合{}1,2A =,则u A =A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅2.(2013·安徽卷·文科)已知{}10A x x =+>,{}2,1,0,1B =--,则()R C A B =A.{}2,1--B.{}2-C.{}2,0,1-D.{}0,13.(2013·陕西卷·理科)设全集为R , 函数()f x =M , 则 U C M 为 A.[1,1]- B.(1,1)- C.(,1][1,)-∞-+∞ D.(,1)(1.)-∞-+∞4.(2013·陕西卷·文科)设全集为R , 函数()f x =M , 则 U C M 为A.(,1)-∞B.(1,)+∞C.(],1-∞D.[)1,+∞ 考法4 交、并、补集混合运算1.(2013·湖北卷·文科)已知全集{}12345U =,,,,,集合{}12A =,,{}234B =,,,则()U B C A =A .{}2B .{}34,C .{}145,,D .{}2345,,,2.(2013·山东卷·文科)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且 (){4}U A B =,{1,2}B =,则U A B =A.{}3B.{}4C.{}3,4D.∅3.(2013·重庆卷·文理科)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =A.{1,3,4}B.{3,4}C.{3}D.{4}4.(2013·安徽卷·文科)已知{}10A x x =+>,{}2,1,0,1B =--,则()R C A B = A.{}2,1-- B.{}2- C.{}2,0,1- D.{}0,15.(2013·浙江卷·理科)设集合{}2S x x =>-,{}2340T x x x =+-≤,则 ()R C S T = A.[)4,-+∞ B.(2,)-+∞ C.[]4,1- D.(]2,1-6.(2013·湖南卷·文科)已知集合{2,3,6,8}U =,{2,3}A =,{2,6,8}B =,则 ()C A B = .7.(2013·湖北卷·理科)已知全集为R ,1{()1}2x A x =≤,2{680}B x x x =-+≤, 则()A C B = A.{0}x x ≤ B.{24}x x ≤≤ C.{024}x x x ≤<>或 D.{024}x x x <≤≥或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国高考理科数学试题分类汇编1:集合
一、选择题
1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =,集合{}=12A ,,{}=23B ,,则()=U A B ( )
A.{}134,
, B.{}34, C. {}3 D. {}4 【答案】D
2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合
{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则
A.()01,
B.(]02,
C.()1,2
D.(]12, 【答案】D
3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=
(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]
【答案】D
4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )
A.*,A N B N ==
B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或
C.{|01},A x x B R =<<=
D.,A Z B Q ==
【答案】D
5 .(2013年高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )
(A) (,2)-∞
(B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B.
6 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是
(A) 1 (B) 3 (C)5 (D)9
【答案】C
7 .(2013年高考陕西卷(理))设全集为R , 函数()f x =M , 则C M R 为
(A) [-1,1] (B) (-1,1)
(C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-
【答案】D
8 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为
(A)3 (B)4 (C)5 (D)6
【答案】B
9 .(2013年高考四川卷(理))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )
(A){2}- (B){2} (C){2,2}- (D)∅
【答案】A
10.(2013年高考新课标1(理))已知集合{}{2|20,|A x x x B x x =->=<<,则 ( ) A.A∩B=∅ B.A∪B=R C.B ⊆A
D.A ⊆B
【答案】B. 11.(2013年高考湖北卷(理))已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭
,{}2|680B x x x =-+≤,则
R A C B =( )
A.{}|0x x ≤
B.{}|24x x ≤≤
C. {}|024x x x ≤<>或
D.{}|024x x x <≤≥或
【答案】C
12.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知集合{}{}2|(1)4,,1,0,1,2,3M x x x R N =-<∈=-,则=N M
(A){}2,1,0 (B){}2,1,0,1- (C){}3,2,0,1- (D){}3,2,1,0
【答案】A
13.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M
N =( ) A . {}0 B.{}0,2 C.{}2,0- D.{}2,0,2-
【答案】D
14.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )(
A.(2,1]-
B. ]4,(--∞
C. ]1,(-∞
D.),1[+∞
【答案】C
15.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设整数4n ≥,集合{}1,2,3,,X n =.
令集合
(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )
A . (),,y z w S ∈,(),,x y w S ∉ B.(),,y z w S ∈,(),,x y w S ∈
C.(),,y z w S ∉,(),,x y w S ∈
D.(),,y z w S ∉,(),,x y w S ∈
(一)必做题(9~13题)
【答案】B
16.(2013年高考北京卷(理))已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( )
A.{0}
B.{-1,0}
C.{0,1}
D.{-1,0,1}
【答案】B
17.(2013年上海市春季高考数学试卷(含答案))设全集U R =,下列集合运算结果为R 的是( )
(A)u Z N (B)u N N (C)()u u ∅ (D){0}u
【答案】A
二、填空题
18.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))集合}1,0,1{-共有___________个子集.
【答案】8
三、解答题
19.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))对正整数n ,记{}
1,2,3,,m I n =,,m m m P I k I ⎫=∈∈⎬⎭
. (1)求集合7P 中元素的个数;
(2)若m P 的子集A 中任意两个元素之和不是..
整数的平方,则称A 为“稀疏集”.求n 的最大值,使m P 能分成两人上不相交的稀疏集的并.
【答案】。