数列的概念及简单应用-课件
合集下载
《数列概念》课件

《数列概念》PPT课件
数列是一系列按一定规律排列的数值。本课件将介绍数列的基本概念,不同 类型的数列,以及数列的应用。
什么是数列
数列是一系列按照特定规律排列的数值,可以通过公式或递推关系来表示。 数列的概念在数学和实际生活中都有广泛的应用。
数列的基本形式
1 等差数列
数列中的每个数与它前一个数之差相等。
等差数列的求和公式
求和公式:Sn = n/2[2A1 + (n-1)d],其中Sn表示前n项和,A1表示第一项,d 表示公差。
等比数列
等比数列是一种数列,其中每个数与它前一个数之比相等。可使用通项公式和求和公式来计算等比数列 的任意项和总和。
等比数列的通项公式
通项公式:An = A1 * r^(n-1),其中An表示第n项,A1表示第一项,r表示公比。
单调有界数列的极限
根据单调有界数列的性质,可以推导出单调有界数列必定存在极限。极限可以是数列的最大值或最小值。
数列的应用
数列不仅在数学中有广泛应用,还在其他学科和实际生活中有很多应用,如 物理学、经济学、生态学等。
数列在物理学中的应用
物理学中的许多自然现象可以用数列来描述和解释,如运动轨迹、震动频率、 量子力学等。数列为解决实际问题提供了重要数学工具。
斐波那契数列的递推公式
递推公式:F(n) = F(n-1) + F(n-2) (n > 2)。
斐波那契数列的通项公式
通项公式:F(n) = (phi^n - (-phi)^(-n)) / sqrt(5),其中phi = (1 + sqrt(5)) / 2。
序列的极限
极限是数列中数值随着项数无限增加时的趋势或稳定值。极限理论既是数学学科中的重要内容,也有广 泛的应用。
数列ppt课件

判断一个数列是否为混合数列;
详细描述 利用混合数列的性质进行计算; 求混合数列的前n项和。
05
数列的发展历史与未来展望
数列的发展历史
中世纪数列
随着欧洲中世纪的数学发展,数 列研究逐渐丰富,如斐机技术的发展,数列的 应用领域不断扩大,如组合数学 、概率论和统计学等。
递推公式的求解方法
可以通过迭代法、特征根法、归纳法等方法求解递推公式。
03
数列的应用
数列在数学分析中的应用
数学分析基础
数列是数学分析中的基本概念, 是研究连续函数的基础。通过数 列,可以理解函数的极限、连续 性和可微性等基本性质。
级数理论
数列在级数理论中有着重要的应 用。通过数列的收敛性,可以研 究无穷级数的和,以及其在数学 分析中的各种应用。
在此添加您的文本16字
判断一个数列是否为等差数列。
等比数列习题与解析
总结词:等比数列是数列中的重要类 型,其习题主要考察等比数列的定义
、通项公式和性质等知识点。
详细描述
求等比数列的通项公式;
求等比数列的前n项和; 利用等比数列的性质进行计算;
判断一个数列是否为等比数列。
混合数列习题与解析
总结词:混合数列是由等差数列和等比数列混合而成的 数列,其习题主要考察混合数列的定义、通项公式和性 质等知识点。 求混合数列的通项公式;
数列的习题与解析
等差数列习题与解析
在此添加您的文本17字
总结词:等差数列是数列中的基础类型,其习题主要考察 等差数列的定义、通项公式和性质等知识点。
在此添加您的文本16字
详细描述
在此添加您的文本16字
求等差数列的通项公式;
在此添加您的文本16字
求等差数列的项数;
详细描述 利用混合数列的性质进行计算; 求混合数列的前n项和。
05
数列的发展历史与未来展望
数列的发展历史
中世纪数列
随着欧洲中世纪的数学发展,数 列研究逐渐丰富,如斐机技术的发展,数列的 应用领域不断扩大,如组合数学 、概率论和统计学等。
递推公式的求解方法
可以通过迭代法、特征根法、归纳法等方法求解递推公式。
03
数列的应用
数列在数学分析中的应用
数学分析基础
数列是数学分析中的基本概念, 是研究连续函数的基础。通过数 列,可以理解函数的极限、连续 性和可微性等基本性质。
级数理论
数列在级数理论中有着重要的应 用。通过数列的收敛性,可以研 究无穷级数的和,以及其在数学 分析中的各种应用。
在此添加您的文本16字
判断一个数列是否为等差数列。
等比数列习题与解析
总结词:等比数列是数列中的重要类 型,其习题主要考察等比数列的定义
、通项公式和性质等知识点。
详细描述
求等比数列的通项公式;
求等比数列的前n项和; 利用等比数列的性质进行计算;
判断一个数列是否为等比数列。
混合数列习题与解析
总结词:混合数列是由等差数列和等比数列混合而成的 数列,其习题主要考察混合数列的定义、通项公式和性 质等知识点。 求混合数列的通项公式;
数列的习题与解析
等差数列习题与解析
在此添加您的文本17字
总结词:等差数列是数列中的基础类型,其习题主要考察 等差数列的定义、通项公式和性质等知识点。
在此添加您的文本16字
详细描述
在此添加您的文本16字
求等差数列的通项公式;
在此添加您的文本16字
求等差数列的项数;
数列ppt课件

等差数列的求和公式
总结词
等差数列的求和公式是用来计算数列 中所有项的和的数学公式。
详细描述
等差数列的求和公式是 S_n = n/2 * (2a_1 + (n - 1)d),其中 S_n 表示前 n 项的和,a_1 表示首项,d 表示公差, n 表示项数。这个公式可以帮助我们快 速计算出等差数列中所有项的和。
03 等比数列
等比数列的定义
总结词
等比数列是一种特殊的数列,其中任意项与它的前一项的比值都相等。
详细描述
等比数列是一种有序的数字排列,其中任意一项与它的前一项的比值都等于同一个常数。这个常数被称为公比, 通常用字母q表示。
等比数列的通项公式
总结词
等比数列的通项公式是用来表示数列中每一项的数学表达式。
04 数列的极限与收敛
数列的极限定义
极限的定义
对于数列${ a_{n}}$,如果当$n$ 趋于无穷大时,$a_{n}$趋于某个
常数$a$,则称$a$为数列${ a_{n}}$的极限。
极限的性质
极限具有唯一性、有界性、保序性 等性质。
极限的运算性质
极限具有可加性、可乘性、可分离 性等运算性质。
收敛数列的性质
在经济学中的应用
在经济学中,很多问题也可以转化为求和问题,例如计算总收益、总成本等。而求和问题 同样可以转化为数列的极限问题。因此,数列的极限和收敛的概念在经济学中也有着广泛 的应用。
05 数列的级数
级数的定义与分类
要点一
定义
级数是无穷数列的和,可分为数项级数和函数项级数。
要点二
分类
根据项的正负和收敛性,级数可分为正项级数、负项级数 、交错级数等。
正项级数的审敛法
数列的概念与简单表示法 课件

数列的通项公式与递推公式
数列的递推公式
如果已知数列{an}的第1项(或前几项),且从第2项(或某一项) 开始的任一项an与它的前一项_a_n_-1_(或前几项)(n≥2,n∈N*) 间的关系可以用一个公式来表示,那么这个公式就叫做这个
数列的递推公式.
数列的递推公式 已知一个数列的首项为a1=a,从第二项起每一项都等于它的前 一项的b倍再加c,即an=ban-1+c,该式子体现了相邻两项之间 的关系,称之为数列的递推公式,结合该定义探究下面的问题:
2.(1)由an为负数,得n2-5n+4<0,解得1<n<4.
因为n∈N*,所以n=2,3.故数列有两项为负数.
(2)因为an=n2-5n+4(=n
5 2
)2
9 ,4 所以对称轴为n=
=2.5.
又因n∈N*,故n=2或3时,an有最小值.
5 2
其最小值为22-5×2+4=-2.
类型二 由递推公式求数列的项
an1 an2
a2 a1
an
an a n 1
a n 1 an2
a3 a2
a2 a1
a1
an-1=a1+2a2+…+(n-2)an-2(n≥3).
两式相减得:an-an-1=(n-1)an-1(n≥3),
所以an=n·an-1,即 =n(n≥3),
an a n1
所以 a3 a4 a5 an1 an =3×4a×2 5a×3 …a4 ×(na-n12)×ann1,
所以 an (nn!≥3). 又因为a2a1=21,a2=a1=1,所以an=
1.根据框图,建立所打印数列的递推公式,数列的前5项
数列的递推公式
如果已知数列{an}的第1项(或前几项),且从第2项(或某一项) 开始的任一项an与它的前一项_a_n_-1_(或前几项)(n≥2,n∈N*) 间的关系可以用一个公式来表示,那么这个公式就叫做这个
数列的递推公式.
数列的递推公式 已知一个数列的首项为a1=a,从第二项起每一项都等于它的前 一项的b倍再加c,即an=ban-1+c,该式子体现了相邻两项之间 的关系,称之为数列的递推公式,结合该定义探究下面的问题:
2.(1)由an为负数,得n2-5n+4<0,解得1<n<4.
因为n∈N*,所以n=2,3.故数列有两项为负数.
(2)因为an=n2-5n+4(=n
5 2
)2
9 ,4 所以对称轴为n=
=2.5.
又因n∈N*,故n=2或3时,an有最小值.
5 2
其最小值为22-5×2+4=-2.
类型二 由递推公式求数列的项
an1 an2
a2 a1
an
an a n 1
a n 1 an2
a3 a2
a2 a1
a1
an-1=a1+2a2+…+(n-2)an-2(n≥3).
两式相减得:an-an-1=(n-1)an-1(n≥3),
所以an=n·an-1,即 =n(n≥3),
an a n1
所以 a3 a4 a5 an1 an =3×4a×2 5a×3 …a4 ×(na-n12)×ann1,
所以 an (nn!≥3). 又因为a2a1=21,a2=a1=1,所以an=
1.根据框图,建立所打印数列的递推公式,数列的前5项
数列的概念与简单表示 课件

所以f1>f2,
a<2, 即12-1>2a-2.
解得 a<74,故选 C. [答案] C
[误区] 本题易受函数单调性的影响形成思维定式,只考虑两段与分界点,得
a<2, 122-1≥2a-2,
即 a≤183,错选 B. [防范措施] 因为数列可以看作是定义域为正整数集或其子集的一类特殊的 函数,所以数列具备一般函数应具备的性质.用函数的观点研究数列时不要 忽视数列的特殊性,特别注意数列中的项数应为正整数的条件.
[解析] (1)是常数列且是有穷数列; (2)是无穷摆动数列; (3)是无穷递增数列因为n-n 1=1-n1; (4)是无穷递减数列; (5)是无穷摆动数列. [答案] (1) (2)(3)(4)(5) (3) (4) (1) (2)(5)
探究二 根据数列的前几项写出通项公式 [典例 2] 根据数列的前几项,写出下面各数列的一个通项公式. (1)-3,0,3,6,9,…; (2)3,5,9,17,33,…; (3)2,0,2,0,2,0,…; (4)12,14,-58,1136,-2392,6614,….
探究三 数列通项公式的应用 [典例 3] 已知数列 2, 5,2 2, 11,…. (1)写出数列的一个通项公式,并求出它的第 20 项; (2)问 4 2是否是该数列的项?10 呢?
[解析] (1)原数列可写为 2, 5, 8, 11,…,不难发现,“ ” 下 面 的 数 值 后 一 项 比 前 一 项 大 3 , 故 通 项 公 式 可 写 为 an =
2+n-1×3= 3n-1, 即 an= 3n-1. 所以 a20= 3×20-1= 59. (2)令 4 2= 3n-1,即 32=3n-1,解得 n=11, ∴4 2是数列的第 11 项. 再令 10= 3n-1,即 3n-1=100,解得 n=1031∉N*, ∴10 不是该数列的项.
a<2, 即12-1>2a-2.
解得 a<74,故选 C. [答案] C
[误区] 本题易受函数单调性的影响形成思维定式,只考虑两段与分界点,得
a<2, 122-1≥2a-2,
即 a≤183,错选 B. [防范措施] 因为数列可以看作是定义域为正整数集或其子集的一类特殊的 函数,所以数列具备一般函数应具备的性质.用函数的观点研究数列时不要 忽视数列的特殊性,特别注意数列中的项数应为正整数的条件.
[解析] (1)是常数列且是有穷数列; (2)是无穷摆动数列; (3)是无穷递增数列因为n-n 1=1-n1; (4)是无穷递减数列; (5)是无穷摆动数列. [答案] (1) (2)(3)(4)(5) (3) (4) (1) (2)(5)
探究二 根据数列的前几项写出通项公式 [典例 2] 根据数列的前几项,写出下面各数列的一个通项公式. (1)-3,0,3,6,9,…; (2)3,5,9,17,33,…; (3)2,0,2,0,2,0,…; (4)12,14,-58,1136,-2392,6614,….
探究三 数列通项公式的应用 [典例 3] 已知数列 2, 5,2 2, 11,…. (1)写出数列的一个通项公式,并求出它的第 20 项; (2)问 4 2是否是该数列的项?10 呢?
[解析] (1)原数列可写为 2, 5, 8, 11,…,不难发现,“ ” 下 面 的 数 值 后 一 项 比 前 一 项 大 3 , 故 通 项 公 式 可 写 为 an =
2+n-1×3= 3n-1, 即 an= 3n-1. 所以 a20= 3×20-1= 59. (2)令 4 2= 3n-1,即 32=3n-1,解得 n=11, ∴4 2是数列的第 11 项. 再令 10= 3n-1,即 3n-1=100,解得 n=1031∉N*, ∴10 不是该数列的项.
数列的概念与简单表示法 课件

由数列的前几项求通项公式
[典例]
(1)数列
3 5
,
1 2
,
5 11
,
3 7
,…的一个通项公式是
________.
(2)根据以下数列的前4项写出数列的一个通项公式.
①2×1 4,3×1 5,4×1 6,5×1 7,…;
②-3,7,-15,31,…;
③2,6,2,6,….
[解析] (1)数列可写为:35,48,151,164,…,分子满足:3 =1+2,4=2+2,5=3+2,6=4+2,…,
已知数列{an}的通项公式,判断某一个数是否是数列{an}的 项,即令通项公式等于该数,解关于n的方程,若解得n为正整 数k,则该数为数列{an}的第k项,若关于n的方程无解或有解且 为非正整数解则该数不是数列{an}中的项.
[点睛] (1)数列中的数是按一定顺序排列的.因此,如 果组成两个数列的数相同而排列顺序不同,那么它们就是 不同的数列.例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4 是不同的数列.
(2)在数列的定义中,并没有规定数列中的数必须不 同,因此,同一个数在数列中可以重复出现.例如:1,- 1,1,-1,1,…;2,2,2,….
2.数列的分类
分类标准 名称
含义
按项的 个数
按项的变 化趋势
有穷数列 无穷数列 递增数列
递减数列 常数列 摆动数列
项数_有__限__的数列 项数_无__限__的数列
从第_2_项起,每一项都_大__于__它的前 一项的数列
从第_2_项起,每一项都_小__于__它的前 一项的数列
_各__项__相__等__的数列 从第_2_项起,有些项_大__于__它的前一 项,有些项小__于__它的前一项的数列
数列(共84张PPT)

Leabharlann 3.2等差数列及其通项公式
观察
在自然数集N中,能被2整除的数称为偶数.按照从小到大的次序写出偶数:
0,2,4,6,8,10,12,16, ⋯ .
偶数数列的第1项是0,从第2项起,每一项减去它前面一项所得的差都等于2.
3.2
等差数列及其通项公式
抽象
定义
如果一个数列从第2项起,每一项减去它前面一项所得的差都等
由已知,4 = 7,9 = 22,根据通项公式得
1 + 4 − 1 = 7,
ቊ
1 + 9 − 1 = 22.
整理,得
1 + 3 = 7,
ቊ
1 + 8 = 22.
解得
1 = −2, = 3.
因此
20 = −2 + 20 − 1 × 3 = 55.
即第20项是55.
1.2
如果一个数列的第项能用它前面若干项的表达式来表示,那么把
这个表达式称为这个数列的递推公式.
公式(2)是斐波那契数列的递推公式,1 ,2 称为初始项.
3.1
例 1
数列的概念
己知下述数列的通项公式,分别求出它们的前4项:
(1) = 3 + 1;
(2) =
1
;
(3) =
1
;
2
(4) = −1
= 1 + ,
⋯,
−2 + 3 = 1 + − 2 − 1 + 1 + − 2 − 1 −
= 1 + ,
−1 + 2 = 1 + − 1 − 1 + + − 1 − 1 −
观察
在自然数集N中,能被2整除的数称为偶数.按照从小到大的次序写出偶数:
0,2,4,6,8,10,12,16, ⋯ .
偶数数列的第1项是0,从第2项起,每一项减去它前面一项所得的差都等于2.
3.2
等差数列及其通项公式
抽象
定义
如果一个数列从第2项起,每一项减去它前面一项所得的差都等
由已知,4 = 7,9 = 22,根据通项公式得
1 + 4 − 1 = 7,
ቊ
1 + 9 − 1 = 22.
整理,得
1 + 3 = 7,
ቊ
1 + 8 = 22.
解得
1 = −2, = 3.
因此
20 = −2 + 20 − 1 × 3 = 55.
即第20项是55.
1.2
如果一个数列的第项能用它前面若干项的表达式来表示,那么把
这个表达式称为这个数列的递推公式.
公式(2)是斐波那契数列的递推公式,1 ,2 称为初始项.
3.1
例 1
数列的概念
己知下述数列的通项公式,分别求出它们的前4项:
(1) = 3 + 1;
(2) =
1
;
(3) =
1
;
2
(4) = −1
= 1 + ,
⋯,
−2 + 3 = 1 + − 2 − 1 + 1 + − 2 − 1 −
= 1 + ,
−1 + 2 = 1 + − 1 − 1 + + − 1 − 1 −
数列ppt课件

数列的分类
有穷数列和无穷数列
• 有穷数列的项数是有限的,无穷数列的项数是无限的 。
等差数列和等比数列
• 等差数列的相邻两项之差是一个常数,等比数列的相 邻两项之比是一个常数。
有序数列和无序数列
• 有序数列是指各项按照一定的顺序排列的数列,无序 数列是指各项没有固定的顺序排列的数列。
数列的应用
在数学领域的应用
数列极限的性质
唯一性
如果数列$\{ a_n \}$收敛于$A$ ,则其极限是唯一的。
有界性
如果数列$\{ a_n \}$收敛于$A$ ,则存在正数$M$,使得当$n$
充分大时,有$|a_n| < M$。
保号性
如果数列$\{ a_n \}$收敛于$A$ ,且当$n$充分大时,有$a_n > 0$(或$a_n < 0$),则有$A >
数学分析
收敛数列在数学分析中有 着广泛的应用,如泰勒级 数、洛朗兹级数等。
THANKS
感谢观看
公式
03
an=a1+(n-1)d
等差数列的通项公式
通项公式的推导
由等差数列的定义可知,an=a1+(n-1)d,当n=1时,a1=a1+(1-1)d,即 a1=a1+0d=a1,当n=2时,a2=a1+d=(a1+d),当n=3时, a3=a1+2d=(a1+d)+d=a2+d,依次类推,得出通项公式an=a1+(n-1)d。
减法
如果$\lim_{n \rightarrow \infty} a_n = A$且$\lim_{n \rightarrow \infty} b_n = B$, 则有$\lim_{n \rightarrow \infty}(a_n - b_n) = A - B$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
返回
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/12021/3/1M onday, March 01, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/12021/3/12021/3/13/1/2021 10:26:43 AM
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月1日星期 一2021/3/12021/3/12021/3/1
•
15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/12021/3/12021/3/13/1/2021
•
16、业余生活要有意义,不要越轨。2021/3/12021/3/1Marc h 1, 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/12021/3/12021/3/12021/3/1
谢谢观赏
You made my day!
我们,还在路上…
•
11、越是没有本领的就越加自命不凡 。2021/3/12021/3/12021/3/1M ar-211- Mar-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/12021/3/12021/3/1M onday, March 01, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/12021/3/12021/3/12021/3/13/1/2021
返回
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/12021/3/1M onday, March 01, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/12021/3/12021/3/13/1/2021 10:26:43 AM
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月1日星期 一2021/3/12021/3/12021/3/1
•
15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/12021/3/12021/3/13/1/2021
•
16、业余生活要有意义,不要越轨。2021/3/12021/3/1Marc h 1, 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/12021/3/12021/3/12021/3/1
谢谢观赏
You made my day!
我们,还在路上…
•
11、越是没有本领的就越加自命不凡 。2021/3/12021/3/12021/3/1M ar-211- Mar-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/12021/3/12021/3/1M onday, March 01, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/12021/3/12021/3/12021/3/13/1/2021