波长间隔和工作波段
DWDM理论

OTU光模块表示
OTU 速率 位置 距离 FEC 波长数 波长
A:接入 2.5Gb/s B:接入 10Gb/s C:多码率接入
T:发送 OTU R:接收 OTU G:中继 OTU L:12800ps/nm M:7200ps/nm S:1800ps/nm
21:192.1THz 22:192.2THz ..........
— 光转发技术
— 光波分复用器和解复用器技术 — 掺铒光纤放大器(EDFA)技术 — 光纤传输技术 — WDM系统的监控技术
7
光发射部分
• 发送端涉及:
– 光转发器 – 合波器 – 光功率放大器。
8
光转发技术
• DWDM对光波频率有特殊的要求: G.692中允许的WDM的通道频率是基于192.1THz,最小间隔
• 优点:通道间隔离度好、温度稳定性好
入射光(λ1, λ2... λn)
λ2
λ1
λ3
λn-1
多层介质模 λn
25
主要参数解释
• 复用通路数: • 插入损耗:是指波分复用器件本身对光信号的衰减作用。
• 合波器:当N=32时,大概为17dB。但实际小于17dB。 • 分波器:插损略小于合波器
• 信道隔离度:仅对波长敏感型器件有意义,表征复用器本身对光通路信号的隔 离程度。
2
WDM系统的特点
• 充分利用光纤带宽资源,使单纤传输容量增加 几倍至几十倍。
• 波分复用通道各波长相互独立,且对数据格式 透明。
• DWDM+EDFA技术在长途骨干网应用时,可大大 延长无电中继距离。
• 未来光网络的基石。
3
WDM和DWDM
• DWDM—— Dense Wavelength Division Multiplexer
遥感名词解释

名词解释1.图像分割:图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。
它是由图像处理到图像分析的关键步骤。
现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。
2.多源遥感影像融合:是对多遥感器的图像数据和其他信息的处理过程。
将多种遥感平台,多时相遥感数据与非遥感数据之间的信息组合匹配的技术。
着重于把空间和时间上冗余或互补的多源数据,按一定的规则(或算法)进行运算处理,获得比任何单一数据更精确、更丰富的信息,生成一副具有新的空间、波谱、时间特征的合成图像。
它不仅仅是数据间的简单复合,而强调信息的优化,以突出有用的专题信息。
3.KT变换:是Kauth-Thomas变换的简称,也称穗帽变换。
这种变换也是一种线性组合变换,变换公式为:Y=BX,式中,X为变换前多光谱空间的像元矢量;Y为变换后的新坐标空间的像元矢量;B为变换矩阵。
是一种特殊的主成分分析,不同的是转换系数是固定的。
将MSS的四个波段转换产生4个新轴,土壤亮度指数,绿度指数,黄度指数和噪声。
随着作物生长这个分布显示出一个似“穗帽”的形状和一个“土壤面的底部。
随着作物生长农作物像元值移到穗帽区,当作物成熟及凋落时,像元值回到土壤面。
K-T 变换的应用主要针对TM数据和曾经广泛使用的MSS数据。
它抓住了地面景物,特别是植被和土壤在多光谱空间中的特征。
4.监督分类:又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。
5.非监督分类:非监督分类的前提是假定遥感影像上同类物体在同样条件下具有相同的光谱信息特征。
不必对影像地物获取先验知识,仅依靠影像上不同地物光谱信息进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的各个类别的实际属性进行确认。
6.黑体辐射:如果一个物体对任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。
《遥感原理与应用》试题答案及要点

《遥感原理》试题及答案重点 (3-12)《遥感原理》试题三答案重点一、名词解说( 20 分)1、多波段遥感:探测波段在可见光与近红外波段范围内,再分为若干窄波段来探测目标。
2、维恩位移定律:黑体辐射光谱中最强辐射的波长与黑体的绝对温度成反比。
黑体的温度越高,其曲线的峰顶就越往左移,即往短波方向挪动。
3、瑞利散射与米氏散射:前者是指当大气中的粒子直径比波长小得多的时候所发生的大气散射现象。
后者是指气中的粒子直径与波长相当时发生的散射现象。
4、大气窗口;太阳辐射经过大气时,要发生反射、散射、汲取,进而使辐射强度发生衰减。
对传感器而言,某些波段里大气的投射率高,成为遥感的重要探测波段,这些波段就是大气窗口。
5、多源信息复合:遥感信息图遥感信息,以及遥感信息与非遥感信息的复合。
6、空间分辨率与波谱分辨率:像元多代表的地面范围的大小。
后者是传感器在接收目标地物辐射的波谱时,能分辨的最小波长间隔。
7、辐射畸变与辐射校订:图像像元上的亮度直接反应了目标地物的光谱反射率的差异,但也遇到其余严肃的影响而发生改变,这一改变的部分就是需要校订的部分,称为辐射畸变。
经过简易的方法,去掉程辐射,使图像的质量获得改良,称为辐射校订。
8、光滑与锐化;图像中某些亮度变化过大的地区,或出现不应有的亮点时,采取的一种减小变化,使亮度缓和或去掉不用要的“燥声”点,有均值光滑和中值滤波两种。
锐化是为了突出图像的边沿、线状目标或某些亮度变化大的部分。
9、多光谱变换;经过函数变换,达到保存主要信息,降低数据量;加强或提取实用信息的目的。
本质是对遥感图像推行线形变换,使多光谱空间的坐标系按照必定的规律进行旋转。
10、监察分类:包含利用训练样本成立鉴别函数的“学习”过程和把待分像元代入鉴别函数进行判其余过程。
二、填空题( 10 分)1、1999 年,我国第一颗地球资源遥感卫星(中巴地球资源卫星)在太原卫星发射中心发射成功。
2、陆地卫星的轨道是太阳同步轨道- 轨道,其图像覆盖范围约为185-185 平方公里。
高分辨宽光谱微型拉曼光谱仪的设计

高分辨宽光谱微型拉曼光谱仪的设计谈梦科;郑海燕;田胜楠;郭汉明【摘要】为了同时满足光谱分辨率、光谱范围、探测器(CCD)上光谱信号覆盖区域要求,提出一种基于Czerny-Turner(CT)结构拉曼光谱仪的综合设计方法,通过Zemax软件采用逐步手动调节光栅倾斜,自动优化聚焦镜、柱面镜以及CCD间倾角和距离的方式,设计出全波段光谱分辨率优于4 cm-1,光谱波数范围为80~3 967 cm-1,光学结构尺寸为90 mm×130 mm×40 mm的微型拉曼光谱仪.%In this paper,to simultaneously meet the requirements of the spectral resolution,spectral range and the spectrum signal coverage area on detector(CCD),we used Zemax to adjust the grating angle gradually and manually,optimize the focusing mirror,the cylindrical lens,the CCD angles and distances between all of them automatically.We proposed a comprehensive design method of Raman spectrometer,which is based on the Czerny-Turner(CT) structure,and successfully designed this micro-Raman spectrometer that owned the full-band spectral resolution better than 4 cm-1,wave number spectral range of 80~3 967 cm-1and the optical structure size of 90 mm×130 mm×40 mm.【期刊名称】《光学仪器》【年(卷),期】2017(039)003【总页数】7页(P75-81)【关键词】拉曼光谱仪;光学设计;Czerny-Turner结构;Zemax【作者】谈梦科;郑海燕;田胜楠;郭汉明【作者单位】上海理工大学光电信息与计算机工程院, 上海 200093;上海理工大学教育部光学仪器与系统工程研究中心, 上海 200093;上海理工大学上海市现代光学系统重点实验室, 上海 200093;上海理工大学上海市现代光学系统重点实验室, 上海 200093【正文语种】中文【中图分类】O436光谱仪是进行光谱研究和物质成分分析的仪器,有着广泛的应用[1]。
光波分复用(WDM)技术

光波分复用(WDM)技术一、波分复用技术的概念波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
通信系统的设计不同,每个波长之间的间隔宽度也有不同。
按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。
CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。
CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。
冷却激光采用温度调谐,非冷却激光采用电子调谐。
由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。
CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。
CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。
在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。
二、波分复用技术的优点WDM技术之所以在近几年得到迅猛发展是因为它具有下述优点:(1) 传输容量大,可节约宝贵的光纤资源。
对单波长光纤系统而言,收发一个信号需要使用一对光纤,而对于WDM系统,不管有多少个信号,整个复用系统只需要一对光纤。
例如对于16个2.5Gb/s系统来说,单波长光纤系统需要32根光纤,而WDM系统仅需要2根光纤。
遥感期末试卷知识重点

复习重点:一、名词解释瑞利散射和米氏散射瑞利散射(分子散射):当大气中粒子的直径比波长小得多时发生的散射;主要由大气中的原子和分子引起。
散射强度与波长的四次方成反比。
(大气颗粒对可见光,距离地面9-10km,电磁波长小于1um)米氏散射:当大气中粒子的直径与波长相当时发生的散射;主要由大气中的烟尘、小水滴和气溶胶引起。
散射强度与波长的二次方成反比。
米氏散射在光线前进方向比向后方的散射更强。
(云雾对红外的散射、潮湿天气;距地面0-5km,电磁波长集中在0.76-15um)瑞利散射——分子散射发生条件:当微粒直径D<<电磁波波长λ散射效应(规律):散射系数γ∝(1/ λ4 )短波强于长波米氏散射:主要大气中固态微粒引起发生条件:当微粒直径D≈电磁波波长λ散射效应(规律):散射系数γ∝(1/ λ2 )主动遥感与被动遥感主动遥感,遥感器发射人工探测信号,到达目标后信号反射回来被传感器接收从而对目标性质、数量、空间位置进行识别的遥感方式。
如,夜晚拍照通常要在相机上装闪光灯。
主要是“微波遥感”.被动遥感:遥感本身并不发射任何人工探测信号,只是被动接收来自于目标的信号,从而实现对目标性质、数量、空间位置等特征进行识别的遥感方式。
“无源遥感”,如中午拍照。
电磁波谱与大气窗口电磁波谱:按照波长的长短顺序将各种电磁波依次排列而制成的一张图表,从左到右按波长增加排列为:宇宙射线—r 射线—X射线—紫外线—可见光—红外—微波—无线电波和工业用波大气窗口:是指在大气中传播受到衰减作用较轻因而透射率较高的电磁波段加色法与减色法加色法:用于物理学、计算机中颜色合成.是指用两种或两种以上的原色按一定比例混合而得到新颜色的方法,就成为加色法。
减色法:常用于颜料色混合、印刷出版业.是指颜料吸收了白光中一种或一种以上的原色将剩余色光反射出来而获得新颜色的方法。
减色法三原色:黄、品红、青。
影像解译与直接解译标志遥感图像解译:根据遥感图像所提供的影像特征及其对应目标的特点进行推理和判断将目标识别出来,并进行定性、定量分析的工作就称为遥感图像解译(判读). 直接解译标志:能在遥感影像上直接看到可供判读的影像特征,如形状、大小、阴影、纹理、色调等.遥感图像的光谱分辨率与时间分辨率光谱分辨率:指遥感器所选用的波段数量的多少、各波段的波段位置及波长间隔的大小。
DWDM 和OTN 原理 试卷(含答案)

DWDM 和OTN 原理试卷一、填空题:40分(每空1分)1、光纤传输网的复用技术经历了三个阶段:空分复用(SDM)、时分复用(TDM)和_波分复用(WDM)2、WDM分类:粗波分复用(CWDM)和密集波分复用(DWDM)。
3、DWDM网元基本类型:OTM、OLA、OADM和OXC。
4、光纤的结构:涂覆、包层和纤芯。
5、光纤传输特性:损耗、色散和非线性。
6、波分复用器件包括:合波器和分波器。
7、OM/OD器件类型:光栅型光波分复用器、介质薄膜滤波器型(DTF)、耦合器型(熔锥型)和阵列波导光栅型(AWG)8、EDFA主要是由掺铒光纤、泵浦源、耦合器和光隔离器组成。
9、OTN在光域内可以实现业务信号的传递、复用、路由选择、监控,并保证其性能要求和生存。
10、OTN的优点:透明传送能力、支持多种客户信号的封装传送、交叉连接的可升级性、强大的带外前向纠错功能(FEC)、串连监控、丰富的维护信号。
11、OTN的实现方式:为实现T比特传输,传输层采用DWDM技术(OMS层);定义3种G比特网络速率接口2.5G,10G,40G;SDH/SONET, ETHERNET, ATM, IP, MPLS,GFP 业务都可以透明传输。
减少了网络的层次Shortest physical layer stack for data services (IP/TDM ⇒ OTN ⇒ Fiber)二、对错题:40分(每题2分)1、E DFA的增益平坦度:解决增益均衡的途径首先是实现增益谱的平坦可采用的方法大体上可分为滤波器型和本征型两类。
(对)2、E DFA的泵浦源分类:1330nm 和1550nm。
(错)3、标称中心频率是指WDM系统中每个复用通路对应的中心波长(频率)。
(对)4、8/16/32/40/48 波系统:工作波长范围:C波段(1530nm~1565nm);频率范围:191.3 THz ~ 196.0THz;通路间隔:100 GHz;中心频率偏差:±20GHz(速率低于2.5Gbit/s);±12.5GHz(速率10Gbit/s)(对)5、80/96 波系统:工作波长范围:C波段(1530nm~1565nm);频率范围:C波段—191.30 ~ 196.00THz 与191.35 ~ 196.05 THz;通路间隔:50GHz;中心频率偏差:±5GHz。
光纤通信复习

新型的G.
光纤损耗的计算: Loss= P i / P o 谱线宽 20-50nm
调制是用数字或模拟信号改变载波的幅度、频率或相位的过程。
P i — 为输入功率 即:L(km)= (Pout-Prec-Ac-Pm)/Af
发散角大,与光纤的耦合效率低 (5-10%)
P o —为输出功率
常以分贝dB来表示 Ltot 所有损耗
DWDM技术 DWDM当前水平:
目前1.6Tbit/s WDM系统已经大量商用。
100km 10.9Tbit/s(273x40Gbit/s) 50GHz S、C和L波段
100km 10.2Tbit/s(256x40Gbit/s)交替75和 50GHz ,C和L波段
CWDM技术 技术参数:
波长组合:三种,即4、8和16个 波长通路间隔:20nm 允许波长漂移±6.5nm
LD特点 : 受激辐射、相干光、谱线窄、功率高 发光面小、发散较小,与光纤耦合效率高 寿命和可靠性比LED稍低
Table - Comparison of LEDs and Lasers
Characteristic
LEDs
Lasers
Output Power
Pr=10 μW=10log(10μ W/1mW)
<0.1
光检测器和光接收机
PIN光电二极管是在掺杂浓度很高的P型、N型半导 体之间,加一层轻掺杂的N型材料,称为I(本征 层)。由于是轻掺杂,电子浓度很低,经扩散后形 成一个很宽的耗尽层。这样可以提高其响应速度和 转换效率。
PIN光电二极管的优点
提高了响应速度
提高了长波的量子效率
噪声小
APD光电二极管 雪崩光电二极管,又称APD(Avalanche