北师大版八年级数学上册第四章第一节《函数》第一课时
北师大版-数学-八年级上册-4.1 函数教学课件

造成错解的原因是不能正确理解函数的定义,判断变量之间的关系是否存 在函数关系,首先看是否有两个变量,然后看这两个变量是否是一对一或多对一 的关系.
没有考虑实际意义 例4 一个等腰三角形的周长为12cm,底边的长为xcm, 腰长为y cm,求y与x的函数关系式,并求出自变量x的取 值范围.
解:y=6-0.5x. 因为x>0,2y>x, 所以2(6-0.5x)>x,所以x<6, 所以自变量x的取值范围是0<x<6.
故C错误;④当点P在线段AD上时,s随t的增大而增大,
故D正确.故选D.
知识链接 动点问题是最近几年中考的一个热点题型,所谓
“动点问题”是指题设图形中存在一个或多个动点,它 们在线段、射线上运动的一类开放性题目.解决函数图 像中的动点问题时,首先要抓住动点的瞬间状态,或者 相对静止时的状态,然后寻找它们之间的数量关系,以 及几何图形的相对位置关系,做到动中求静,灵活运用 有关数学知识解决问题.
A.y=10x+30 B.y=40x C.y=10+30x D.y=20x
解析:一名老师带领x名学生到动物园参观,已 知成人票每张30元,学生票每张10元.设门票的总 费用为y元,则y与x的函数关系式为y=10x+30.故 选A.
核心素养
例9 如图4-1-3,观察每个正方形图案,每条边上有n
(n≥2)个圆点,每个图案中圆点的总数是S.
题时要根据题意选择合适的表示方法
例2 某人匀速跑步到公园,在公园里某处停留了一段时
间,再沿原路速步行回家,此人离家的距离y与时 间x的关系的大致图像是( B )
解析:图像应分为三个阶段,第一阶段:匀速跑步到 公园,在这个阶段,离家的距离随着时间的增大而增 大;第二阶段:在公园停留了一段时间,这一阶段离 家的距离不随时间的变化而改变,所以D错误;第三 阶段:沿原路匀速步行回家,这一阶段,离家的距离 随时间的增大而减小,故A错误,并且这一阶段的速 度小于第一阶段的速度,所以C错误.故选B.
北师大版八年级数学上册第四章第一节《函数》第一课时课件

一般的,在某个变化过程中,有两个变 量x和y,如果给定一个x值,相应的就确 定一个y值,那么我们称y是x的函数 (function),其中x是自变量, y是因变量。
巩固练习1 下列各式中,x都是自变量,则y 是不是x的函数,为什么?
1.y =x 2 +3 2.y 2 =x+3 x x 0 3.y = - x x<0
§4.1 函数
想一想
问题一、你坐过摩天轮吗?你坐在摩天轮上时, 随着时间的变化,你离开地面的高度是如何变化 的?请你谈一谈自己的感受。
下图反映了旋转时间t(分)与摩天轮上的一点的高度h (米) 之间的关系。
学课本p75并完 下表
根据图象填表:
t/分 h/米 0 1 2 3 4 5 …… ……
3
议一议
上面的三个问题中,有什么共同特点和不同点?
都有两个变量:①时间 t 、相应的高度 h
;②层数 n、物体总数y;③摄氏温度t、热力学温度T。如
果给定其中一个变量(自变量)的值,相应地就确定 了另一个变量(因变量)的值。
不同点:在第一个问题中,是以图象的形式 表示两个变量之间的关系,第二个问题中是 以表格的形式表示两个变量之间的关系 第三个问题是以代数表达式的形式表示两个 变量之间的关系, 函数常用的三种表示方法: (1)图象法 (2)列表法 (3)关系式法
11
37
45
37
11
对于给定的时间 t ,相应的高度 h 确定吗?
其中对于给定的每一个时间 t ,高度 h 对应有 几个值?
初一我们学习了《变量之间的关系》,在上述的问题 中有几个变量?用什么方法表示了它们的变化关系?
做一做
问题二、瓶子或罐头盒等圆柱
优秀课件北师大版八年级数学上册4.1《函数》教学课件 (共26张PPT)

读一读: 数学世家的光荣——函数的出现
17世纪,在瑞士的巴塞尔有一个祖孙五代数学家,成员数十人 的家族——贝努利家族,其中最著名的是雅各、约翰、丹尼尔.欧 拉从12岁起,就是这个家族成员的好朋友.他和同龄人尼古拉、丹 尼尔结识,成为终生盟友,这两位兄长给欧拉讲了许多有趣的数学 故事,吸引了他那颗幼小好奇的心灵,使欧拉从小立志,将来能像 贝努利家族成员一样,腾飞于数学长空.1720年,欧拉在约翰· 贝努 利教授的推荐下,13岁成为巴塞尔大学的学生,从此他在约翰· 贝努 利的指导下迅速成长着.欧拉成为了贝努利家庭的一个成员,被世人 传为佳话. 函数是中学数学中最重要的概念之一,函数 概念产生于300年前.笛卡儿引入了坐标系,使数 学发生了巨大变革,但他没用变量这个词.在数学 上使用变量这个词最早的是欧拉的老师约翰· 贝努 利,他给函数下了这样的定义:“所谓变量的函数, 就是变量与常量组成的表达式”. 1775年,欧拉在《微分学》中给出了我们教科书中的定义.
v s 300
一般地,在某个变化过程中,有两个变量x和y, 并且对于变量x的每一个值,变量y都有唯一确定的值 与它对应,那么我们称y是x的函数,其中x是自变量, 1 2 3 4 5 · · · · · · n y层数 是因变量 . · · · · · · 物体总数y 1 3 6 15 10 关键词:两个变量,一个x值对应唯一确定的一个y值.
v2 滑行s米,一般地有经验公式 s ,其中v表示刹车 300 前汽车的速度(单位:千米/时).
速度v
在该问题中,有两个变量v和s, 其中:给定一个v(自变量)的值, 相应的就确定了一个s(因变量) 的值.
v s 300
距离s
2
想一想: 以上三个问题,从变量的个数及变量之间
北师大版八年级上册数学第4章一次函数 第1节函数

一次函数
4.1
函数
学习目标
1 课时讲解 函数的定义
函数的三种表示方法
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 函数的定义
知1-讲
1.函数的定义 一般地,如果在一个变化过程中有两个变量 x 和 y,并且对于变量 x 的每一个值,变量 y 都有唯一的值 与它对应,那么我们称 y 是 x 的函数,其中 x 是自变量 .
x/h 2 4 8 12 16 18 20 22 y/℃ 35.5 36 37 36.5 37 37.5 37 36.5
感悟新知
(3) y 是 x 的函数吗? 解:y 是 x 的函数 .
知2-练
课堂小结
函数
列表法
自变量的取值范围
关系式法 函 数
图象法
函数值
课后作业
作业1 必做: 请完成教材课后作业 作业2 补充: 请完成对应习题
表法
函数值
变化规律
感悟新知
关系式法 图象法
用数学式子表 示函数关系的 方法叫做关系 式法. 其中的 等式叫做函数 关系式
能准确地反映 整个变化过程 中自变量与函
数值的对应关 系
用图象表示两 个变量间的函 数关系的方法 叫做图象法
直观、形象地 反映出函数关 系变化的趋势 和某些性质
知2-讲
从函数关系式 很难直观看出 函数的变化规 律,而且有些函 数不能用关系 式法表示出来
感悟新知Biblioteka 知识点 2 函数的三种表示方法
知2-讲
1.函数的三种表示方法
表示方法 列表法
定义
优点
缺点
通过列出自变 一目了然 ,对 列出的对应值
最新北师版初中数学八年级上册上册精品课件1 函数

• 当人坐在摩天轮上时,人的高度随时间在变化,那么 变化有规律吗?
摩天轮上一点的高 度h与旋转时间t之 间有一定的关系, 右图就反映了时间 t(分)与摩天轮上 一点的高度h(米) 之间的关系.
你能从上图观察出,有几个变化的量吗?当t 分别取3,6,10时,相应的h是多少?
心电图
记录的是心脏本身的生物电在每一心动 周期中发生的电变化情况.
1.函数
• 函数是刻画变量之间的关系的常用模型,其中 最为简单的是一次函数。什么是函数?他对应 的图像有什么特点?用函数能解决现实生活中 的那些问题?
• 你想了解这些吗? • 让我们一起来走进函数世界吧!
问题1
你去过游乐园吗? 你坐过摩天轮吗?
问题3 • 瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放。
随着层数的增加,物体的总数是如何变化的?
以上三个问题有什么共同点吗?
在上面的问题中,都有两个变量,给定其中一 个变量(自变量)的值,相应地就确定了另一个变 量(因变量)的值.
一般地,在某个变化过程中,有两个变量x和y, 如果给定一个x值,相应地就确定了一个y值,那么 我们称y是x的函数,其中x是自变量,y是因变量.
给定一个t值,你都能找到相应的 h值吗?
问题2 • 一定质量的气体在体积不变时,假若温度降低到 • -273℃,则气体的压强为零.因此,物理学把-273℃作
为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃) 之间有如下数量关系:T=t+273,T≥0. • (1)当t分别等于-43,-27,0,18时,相应的热力学 温度T是多少? • (2)给定一个大于-273 ℃的t值,你能求出相应的T 值吗?
关键词:两个变量 ,一个x值确定一个y值
北师大版八年级数学上册第四章一次函数1.1函数(教案)

(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数量关系随着另一个数量的变化而变化的情况?”(如:购物时,商品的总价随着购买数量的增加而增加。)这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
三、教学难点与重点
1.教学重点
-函数的定义:使学生掌握函数的基本概念,理解函数是一种特殊的多对一关系,能够正确表示函数关系;
-一次函数的一般形式:y=kx+b(k≠0,k、b为常数),让学生熟练记忆并能够运用一次函数的一般形式解决相关问题;
-一次函数图像的绘制:掌握一次函数图像的绘制方法,了解图像与函数性质之间的关系;
-一次函数的性质:理解并掌握一次函数的单调性、奇偶性等性质,并能运用这些性质解决实际问题。
举例解释:
(1)函数定义:通过实例让学生理解,例如,一个班级的学生和他们的身高构成一个函数关系,每个学生的身高是唯一的,对应于他的姓名;
(2)一次函数一般形式:通过实际例子(如购买物品,价格和数量之间的关系)让学生理解k和b的物理意义;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(3)一次函数性质的应用:通过具体问题,如一次函数在某个区间上的取值范围,让学生学会如何将性质应用于求解实际问题,理解单调性在求解过程中的关键作用。
北师大版数学八年级上册一次函数的应用(第1课时)课件
解得:bk
3 6
这个一次函数的解析式为y=-3x+6.
巩固新知
已知一次函数的图象过点(3,5)与(0,-4),求这个 一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(3,5)与(0,-4)分别代入,得:
5 3k b 4 b
解得
k 3 b 4
,
所以这个一次函数的解析式为 y=3x-4.
所以解析式为 y=-x+2.
方法点拨:两
直线平行,则 一次函数中x的 系数相等,即k
的值不变.
巩固新知
已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直 线l的解析式.
解:设直线l为y=kx+b, 因为l与直线y= -2x平行,所以k= -2. 又因为直线过点(0,2), 所以2=-2×0+b,解得b=2, 所以直线l的解析式为y=-2x+2.
(2)当x=30时,y=_-_1_8__; (3)当y=30时,x=_-_4_2__.
因为正比例函数y=k1x的图象过点(3,4),
得
4 k1 3
,
因此 y 4 x ,
3
S△AOB=5×4÷2=10.
课堂练习
1.正比例函数的图象经过点(2,4),则这个函数解析式是( C )
A.y=4x B. y=-4x C. y=2x D. y=-2x2
2.若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m的值是
(2)列:把图象上的点 x1, y1 ,x2 , y2 代入一次
函数的解析式,组成几个__一__次_____方程; (3)解:解几个一次方程得k,b; (4)还原:把k,b的值代入一次函数的解析式.
北师大版八年级数学上册一次函数一次函数的应用优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
根据图象回答下列问题: (1)哪条线表示B到海岸的距离与追赶时间之间的关系? 当t=0时,B距海岸 0 n mile,即s=0,故 l1表示B到海岸的 距离与追赶时间之间的关系。
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(3)15min内B能否追上A? 延长 l1,l2,可以看出,当t=15时,l1 上的对应点 在 l2 上对应点的下方,这表明,15min时B尚未追上 A。
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(2)A,B哪个速度快? t从0增加到10时,l2 的纵坐标增加了2,而 l1 的纵 坐标增加了5,即10min内,A行驶了2 n mile,B 行驶了5n mile,所以B的速度快。
元,销售成本= 元,销售成本=
元;
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(3)当销售量等于 时,销售收入等于销售成本;
(4)当销售量 时,该公司盈利(收入大于成本);
当销售量 时,该公司亏损(收入小于成本);
(5)l1对应的函数表达式是 式是 .
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
思考:
(1)水库干旱前的蓄水量是多少?
(2)干旱持续10天,蓄水量是多少?干旱持续23天呢?
北师大版初二数学上册4.1函数.1《函数》教学设计
第四章一次函数4.1 函数西电科大附中太白校区王俊彪一、【教材分析】1、教学内容本节课内容是北师大版教材《数学八年级(上)》第四章《一次函数》第一课时,教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。
2、课标要求初步掌握函数的概念,能判断两个变量间的关系是否可以看成函数;给个变量的值,会求另一个变量的值;了解函数的三种表示方法。
3 、地位与作用变量和函数的引入标志着数学从初等数学向变量数学的迈进。
而一次函数是初中阶段研究第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
二、【学情分析】1、知识基础:学生在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性。
2、认知水平与能力:在以往的学习过程当中,学生积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础,有一定的合作、探究、交流的意识。
3、任教班级学生特点:我班学生基础知识比较扎实、思维较活跃,能够很好的掌握教材上的内容,能较好地应用所学的知识解决问题,但函数这一块相对还是空白。
平时表现中用数学语言进行正确表达的能力还有待进一步提高。
三、【目标分析】教学目标依据教材的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标:(1)知识与技能初步掌握函数的概念,能判断两个变量间的关系是否可以看成函数;根据两个变量之间的关系式,给定其中一个量,会求出另一个量的值;了解函数的三种表示方法。
北师大版八年级数学上册《函数》一次函数PPT课件
(5)当关系式是实际问题的关系式时,自变量的取值 需使实际问题有意义;
(6)当关系式是复合形式时,自变量的取值需使所有 式子同时有意义.
知2-讲
知例(1)3识y=点求3x下+列7;函(2数) 中y=自3变x1量2x;的(取3) 值y=范围x: 4 .
干旱持续时间t/天 蓄水量V/万立方米
0 10 20 30 40 50 60
(3)当t取0至60之间的任一值时,对应几个V值? (4)V可以看作t的函数吗?若可以,写出函数关系式.
知3-讲
知导引识:点(1)通过读图可知,横坐标表示干旱持续时间,纵坐标表
示水库蓄水量,因此它表示的是干旱持续时间与水库蓄水 量之间的关系;(2)根据图象信息确定每个特殊点的坐标即 可;(3)观察图象即可得解;(4)可根据函数的定义来判断. 解:(1)这个图象反映了干旱持续时间与水库蓄水量之间的关
知1-讲
例1 已知三角形的一边长为12,这边上的高是h,
则三角形的面积S= 1 ×12·h,即S=6h.在 2
这个式子中,常量和变量分别是什么? 导引:根据常量和变量的定义分析.由于三角形的面
积是边长与该边上的高的长度的乘积的一半, 已知边长,因此可以得出常量是边长的一半, 变量是高和面积. 解: 常量是6,变量是h和S.
(1)根据图填表:
t/min 0 1 2 3 4 5 …
h/m
…
(2)对于给定的时间t,相应的高度h确定吗?
知识点 1 函 数
知1-导
做一做 1. 罐头盒等圆柱形的物体常常如下图那样堆放,随着
层数的增加,物体的总数是如何变化的?
知1-导