高考数学模拟试题八-(理科word含解析)
2014届河南省开封高级中学等中原名校高三高考仿真模拟统一考试理科数学试题(含答案解析)word版

中原名校2014年高考仿真模拟统一考试(理科)数学试题(考试时间:120分钟 试卷满分:150分)本试卷分第1卷(选择题)和第.II 卷(非选择题)两部分。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
注意事项:1.答题前,考生务必先将自己的姓名,准考证号填写在答题卡上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号, 非选择题答案使用0,5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4保持答题卡面清洁,不折叠,不破损。
第I 卷选择题(共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1已知集合 {}{}222||2M y R y x N x R x y =∈==∈+=,则 M N =A {}(1,1),(1,1)- B.{1}C .[0,1] D. ⎡⎣2. 512z (34)ii i+=+=,则z = A . 125 B .135C . 512 D. 5133如图,在程序框图中输入n-14,按程序运行后输出的结果是 A .0 B . 2 C . 3 D .44.一只蚂蚁从正方体 1111ABCD A B C D -,的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点 1C 位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是5.等差数列 {}n a 的前项n 和为 n S ,满足 3539922014,(1,),(2014,a )n S S a a b ===,则a b ⋅的值为A. 2014B. -2014C. 1D. 06.已知双曲线 22221(0,0)x y a b a b-=>>的一条渐近线方程是y =,它的一个焦点在抛物线 248y x =的准线上,则双曲线线的方程为A. 22136108x y -= B . 221927x y -= C . 22110836x y -= D .221279x y -=7.设随机变量 ξ服从正态分布 2(,),(0)N μδδ>若 (0)(1)1p p ξξ<+<=,则 μ的值为A. -1B. lC. 12-D.128设变量x ,y 满足约束条件 40200x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则目标函数z= 2x+3y+l 的最大值为A. 11B. 10C. 9 .D. 13 9设 ,a b 为单位向量,若 c 满足 ()c a b a b -+=-,则c 的最大值为 A. B. 2C.D. 110.已知函数 ()f x 的导函数为 '()f x ,满足 ln '()2()x xf x f x x +=,且1()2f e e=,则()f x 的单调性情况为A .先增后减B 单调递增C .单调递减D 先减后增11已知函数 2()2(,)f x x bx c b c R =++∈的值域为 [)0,+∞,若关于x 的不等式()f x m <的解集为 (,10)n n +,则实数m 的值为A. 25B. -25C. 50D. -5012.过原点的直线交双曲线 22x y +=P ,Q 两点,现将坐标平面沿直线y= -x 折成直二面角,则折后PQ 长度的最小值等于A. B. 4 C. D.第II 卷非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分。
2023届高考理科数学模拟试卷八(含参考答案)

2023届高考理科数学模拟试卷八(含参考答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.注意事项:1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致. 务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰. 作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚. 必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将试卷和答题卡一并上交.参考公式:如果事件A B 、互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.3. 、是不同的直线,、、是不同的平面,有以下四命题:① 若,则; ②若,则;③ 若,则; ④若,则. 其中真命题的序号是( )A .①③B .①④C .②③D .②④m n αβγγαβα//,//γβ//αβα//,m ⊥β⊥m βα//,m m ⊥βα⊥α⊂n n m ,//α//m4.设函数,且其图象关于直线对称,则( )A.的最小正周期为,且在上为增函数B.的最小正周期为,且在上为减函数C.的最小正周期为,且在上为增函数 D.的最小正周期为,且在上为减函数 5.如右图,若程序框图输出的S 是126,则判断框①中应为 ( ) A .?5≤nB .?6≤nC .?7≤nD .?8≤n6.若定义在R 上的偶函数()f x 满足(2)()f x f x +=,且当[0,1]x ∈时,(),f x x =则方程3()log ||f x x =的解个数是( )A .0个B .2个C .4个D .6个7.若{}n a 是等差数列,首项公差0d <,10a >,且201320122013()0a a a +>,则使数列{}n a 的前n 项和0n S >成立的最大自然数n 是 ( )A .4027B .4026C .4025D .40248.已知00(,)M x y 为圆222(0)x y a a +=>内异于圆心的一点,则直线200x x y y a +=与该圆的位置关系是 ( ) A 、相切 B 、相交 C 、相离 D 、相切或相交 9.已知n 为正偶数,用数学归纳法证明11111111...2(...)2341242n n n n-+-++=++++++ 时,若已假设为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( )A .1n k =+B .2n k =+C .22n k =+D .2(2)n k =+10. 已知向量α、β、γ满足,,.若对每一确定的,的最大值和最小值分别为m 、n ,则对任意,m n -的最小值是 ( )())sin(2)(||)2f x x x πϕϕϕ=+++<x =()y f x =π(0,)2π()y f x =π(0,)2π()y f x =2π(0,)4π()y f x =2π(0,)4π2(≥=k k n ||1α=||||αββ-=()()0αγβγ-⋅-=β||γβ3主视图 俯视图侧视图A .12B .1C .2D第Ⅱ卷(共100分)二、填空题:本大题共共5小题,每小题5分,共25分11.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射 疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射 了疫苗的鸡的数量平均为 万只.12.二项式1022⎪⎪⎭⎫⎝⎛+x x 展开式中的第________项是常数项.13.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.14.已知z=2x +y ,x ,y 满足,2,,y x x y x a ≥⎧⎪+≤⎨⎪≥⎩且z 的最大值是最小值的4倍,则a 的值是 .15.给出如下四个结论:① 若“且”为假命题,则、均为假命题;② 命题“若,则”的否命题为“若,则”;③ 若随机变量~(3,4)N ζ,且(23)(2)P a P a ζζ<-=>+,则3a =; ④ 过点A (1,4),且横纵截距的绝对值相等的直线共有2条.其中正确结论的序号是______________________________.三、解答题:本大题共共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤16. (本小题满分12分)已知函数()2cos cos f x x x x m =-+()R m ∈的图象过点π(,0)12M . (Ⅰ)求m 的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若cos +cos =2cos c B b C a B ,求()f A 的取值范围.p q p q a b >221a b>-a b ≤221a b ≤-17.(本小题满分12分)已知函数()e x f x tx =+(e 为自然对数的底数). (Ⅰ)当e t =-时,求函数()f x 的单调区间;(Ⅱ)若对于任意(0,2]x ∈,不等式()0f x >恒成立,求实数t 的取值范围.18.(本小题满分12分)如图,已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC =AD =CD =DE =2,AB =1,F为CD 的中点.(Ⅰ)求证:AF ⊥平面CDE ;(Ⅱ)求面ACD 和面BCE 所成锐二面角的大小.19.(本小题满分12分)某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。
2020版高考数学人教版理科一轮复习课时作业:8 指数与指数函数 Word版含解析

课时作业8 指数与指数函数一、选择题1.化简4a ·b ÷的结果为( C )-(-23ab )A .-B .-2a 3b 8a b C .-D .-6ab6ab 2.设函数f (x )=Error!若f (a )<1,则实数a 的取值范围是( C )A .(-∞,-3) B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)解析:当a <0时,不等式f (a )<1为a-7<1,(12)即a <8,即a <-3,(12)(12)(12)因为0<<1,所以a >-3,12此时-3<a <0;当a ≥0时,不等式f (a )<1为<1,所以0≤a <1.a 故a 的取值范围是(-3,1),故选C.3.(2019·湖南永州模拟)下列函数中,与函数y =2x -2-x 的定义域、单调性与奇偶性均一致的是( B )A .y =sin xB .y =x 3C .y =xD .y =log 2x(12)解析:y =2x -2-x 是定义域为R 的单调递增函数,且是奇函数.而y =sin x 不是单调递增函数,不符合题意;y =x 是非奇非偶(12)函数,不符合题意;y =log 2x 的定义域是(0,+∞),不符合题意;y =x 3是定义域为R 的单调递增函数,且是奇函数符合题意.故选B.4.二次函数y =-x 2-4x (x >-2)与指数函数y =x的图象的交(12)点个数是( C )A .3B .2C .1D .0解析:因为函数y =-x 2-4x =-(x +2)2+4(x >-2),且当x =-2时,y =-x 2-4x =4,y =x=4,则在同一直角坐标系中画出y =-x 2(12)-4x (x >-2)与y =x的图象如图所示,由图象可得,两个函数图象(12)的交点个数是1,故选C.5.(2019·福建厦门一模)已知a =0.3,b =log 0.3,c =a b ,则a ,b ,c(12)12的大小关系是( B )A .a <b <cB .c <a <bC .a <c <bD .b <c <a解析:b =log 0.3>log =1>a =0.3,c =a b <a .∴c <a <b .故选B.121212(12)6.已知a ,b ∈(0,1)∪(1,+∞),当x >0时,1<b x <a x ,则( C )A .0<b <a <1B .0<a <b <1C .1<b <aD .1<a <b解析:∵当x >0时,1<b x ,∴b >1.∵当x >0时,b x <a x ,∴当x >0时,x>1.(a b)∴>1,∴a >b .∴1<b <a ,故选C.ab7.如图,在面积为8的平行四边形OABC 中,AC ⊥CO ,AC 与BO 交于点E .若指数函数y =a x (a >0,且a ≠1)经过点E ,B ,则a 的值为( A )A. B.23C .2D .3解析:设点E (t ,a t ),则点B 的坐标为(2t,2a t ).因为2a t =a 2t ,所以a t =2.因为平行四边形OABC 的面积=OC ×AC =a t ×2t =4t ,又平行四边形OABC 的面积为8,所以4t =8,t =2,所以a 2=2,a =.2故选A.二、填空题8.不等式2x 2-x <4的解集为{x |-1<x <2}.解析:∵2x 2-x <4,∴2x 2-x <22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2.9.若直线y 1=2a 与函数y 2=|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是.(0,12)解析:(数形结合法)当0<a <1时,作出函数y 2=|a x -1|的图象,由图象可知0<2a <1,∴0<a <;12同理,当a >1时,解得0<a <,与a >1矛盾.12综上,a 的取值范围是.(0,12)10.已知函数f (x )=2x -,函数g (x )=Error!则函数g (x )的最小12x 值是0.解析:当x ≥0时,g (x )=f (x )=2x -为单调增函数,所以g (x )≥g (0)12x =0;当x <0时,g (x )=f (-x )=2-x -为单调减函数,所以g (x )>g (0)12-x =0,所以函数g (x )的最小值是0.11.(2019·湖南益阳调研)已知函数f (x )=(a ∈R )的图象关2x1+a ·2x 于点对称,则a =1.(0,12)解析:由已知,得f (x )+f (-x )=1,即+=1,2x 1+a ·2x 2-x1+a ·2-x 整理得(a -1)[22x +(a -1)·2x +1]=0,所以当a -1=0,即a =1时,等式成立.三、解答题12.设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求实数a 的值.解:令t =a x (a >0,且a ≠1),则原函数化为y =f (t )=(t +1)2-2(t >0).①当0<a <1,x ∈[-1,1]时,t =a x ∈,此时f (t )在上为[a ,1a ][a ,1a]增函数.所以f (t )max =f =2-2=14.所以2=16,解得a =(1a )(1a +1)(1a+1)-15(舍去)或a =.13②当a >1时,x ∈[-1,1],t =a x ∈,此时f (t )在上是增[1a ,a ][1a,a ]函数.所以f (t )max =f (a )=(a +1)2-2=14,解得a =3或a =-5(舍去).综上得a =或3.1313.(2019·河南八市第一次测评)设函数f (x )=x 2-a 与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与N =0.1的大小关系是( D )(1a)A .M =NB .M ≤NC .M <ND .M >N解析:因为f (x )=x 2-a 与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,所以a >2,所以M =(a -1)0.2>1,N =0.1<1,所(1a)以M >N ,故选D.14.已知函数f (x )=1-(a >0,a ≠1)且f (0)=0.42a x +a (1)求a 的值;(2)若函数g (x )=(2x +1)·f (x )+k 有零点,求实数k 的取值范围;(3)当x ∈(0,1)时,f (x )>m ·2x -2恒成立,求实数m 的取值范围.解:(1)对于函数f (x )=1-(a >0,a ≠1),由f (0)=1-=42a x +a 42+a 0,得a =2.(2)由(1)知f (x )=1-=1-.42·2x +222x +1因为函数g (x )=(2x +1)·f (x )+k =2x +1-2+k =2x -1+k 有零点,所以函数y =2x 的图象和直线y =1-k 有交点,∴1-k >0,即k <1.(3)∵当x ∈(0,1)时,f (x )>m ·2x -2恒成立,即1->m ·2x -222x +1恒成立,亦即m <-恒成立,32x 22x (2x +1)令t =2x ,则t ∈(1,2),且m <-==+.3t 2t (t +1)3t +1t (t +1)1t 2t +1由于y =+在t ∈(1,2)上单调递减,1t 2t +1∴+>+=,∴m ≤.1t 2t +11222+17676尖子生小题库——供重点班学生使用,普通班学生慎用15.已知实数a ,b 满足>a >b >,则( B )12(12)(22)14A .b <2B .b >2b -a b -aC .a <D .a >b -a b -a解析:由>a ,得a >1,由a >b,得2a >b ,故2a <b ,12(12)(12)(22)(22)(22)由b >,得b >4,得b <4.由2a <b ,得b >2a >2,a <<2,(22)14(22)(22)b2∴1<a <2,2<b <4.对于选项A ,B ,由于b 2-4(b -a )=(b -2)2+4(a -1)>0恒成立,故A 错误,B 正确;对于选项C ,D ,a 2-(b -a )=a +2-,12(b +14)由于1<a <2,2<b <4,故该式的符号不确定,故C ,D 错误.故选B.16.已知max(a ,b )表示a ,b 两数中的最大值.若f (x )=max(e |x |,e |x -2|),则f (x )的最小值为e.解析:由题意得,f (x )=Error!当x ≥1时,f (x )=e x ≥e(当x =1时取等号),当x <1时,f (x )=e |x -2|=e 2-x >e ,因此x =1时,f (x )有最小值f (1)=e.。
2022年高考数学课标通用(理科)一轮复习真题演练:第八章 立体几何8-7 Word版含解析

真题演练集训1.[2022·新课标全国卷Ⅱ]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)证明:由已知,得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H . 由AB =5,AC =6,得 DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解:如图,以H 为坐标原点,HF →的方向为x 轴正方向,HD →的方向为y 轴正方向,HD →′的方向为z 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0), AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0, 所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n|m||n|=-1450×10=-7525,sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.2.[2022·山东卷]在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点.求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值. (1)证明:设FC 的中点为I ,连接GI ,HI ,在△CEF 中,由于点G 是CE 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,由于H 是FB 的中点, 所以HI ∥BC .又HI ∩GI =I ,OB ∩BC =B , 所以平面GHI ∥平面ABC .由于GH ⊂平面GHI , 所以GH ∥平面ABC .(2)解:解法一:连接OO ′,则OO ′⊥平面ABC . 又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz .由题意,得B (0,23,0),C (-23,0,0), 所以BC →=(-23,-23,0). 过点F 作FM 垂直OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).故BF →=(0,-3,3).设m =(x ,y ,z )是平面BCF 的法向量, 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎪⎨⎪⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎪⎫-1,1,33.由于平面ABC 的一个法向量n =(0,0.1),所以cos〈m,n 〉=m·n|m||n|=77.所以二面角F-BC-A的余弦值为7 7.解法二:如图,连接OO′.过点F作FM垂直OB于点M,则有FM∥OO′.又OO′⊥平面ABC,所以FM⊥平面ABC.可得FM=FB2-BM2=3.过点M作MN垂直BC于点N,连接FN.可得FN⊥BC,从而∠FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BM sin 45°=6 2,从而FN=422,可得cos ∠FNM=77.所以二面角F-BC-A的余弦值为7 7.3.[2022·新课标全国卷Ⅲ]如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD ∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.(1)证明:由已知,得AM=23AD=2.如图,取BP的中点T,连接AT,TN.由N为PC的中点知,TN∥BC,TN=12BC=2.又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.由于AT⊂平面P AB,MN⊄平面P AB,所以MN∥平面P AB.(2)解:取BC的中点E,连接AE.由AB=AC,得AE⊥BC,从而AE⊥AD,且AE=AB2-BE2=AB2-⎝⎛⎭⎪⎫BC22= 5.以A为坐标原点,AE→的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝ ⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2.设n =(x ,y ,z )为平面PMN 的法向量, 则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎨⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN 所成角的正弦值为8525.4.[2021·新课标全国卷Ⅰ]如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3. 由BE ⊥平面ABCD ,AB =BC 可知,AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 由于EG ⊂平面AEC , 所以平面AEC ⊥平面AFC .(2)解:如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G -xyz .由(1)可得A (0,-3,0),E (1,0,2),F ⎝⎛⎭⎪⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.5.[2021·新课标全国卷Ⅱ]如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 解:(1)交线围成的正方形EHGF 如图所示.(2)作EM ⊥AB ,垂足为M , 则AM =A 1E =4,EM =AA 1=8. 由于四边形EHGF 为正方形, 所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向, 建立如图所示的空间直角坐标系D -xyz , 则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8), FE →=(10,0,0),HE →=(0,-6,8). 设n =(x ,y ,z )是平面α的法向量, 则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0, 所以可取n =(0,4,3).又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面α所成角的正弦值为4515. 课外拓展阅读巧用向量法求立体几何中的探究性问题立体几何中的探究性问题立意新颖,形式多样,近年来在高考中频频消灭,而空间向量在解决立体几何的探究性问题中扮演着举足轻重的角色,它是争辩立体几何中的探究性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探究性问题供应了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探究性问题的常见类型及其求解策略.1.条件追溯型解决立体几何中的条件追溯型问题的基本策略是执果索因.其结论明确,需要求出访结论成立的充分条件,可将题设和结论都视为已知条件,即可快速找到切入点.这类题目要求考生变换思维方向,有利于培育考生的逆向思维力量.[典例1] 如图所示,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CEBE =λ,当实数λ的值为________时,∠AFE 为直角.[思路分析][解析] 由于SA ⊥平面ABCD ,∠BAD =90°, 故可建立如图所示的空间直角坐标系A -xyz .由于AB =4,SA =3, 所以B (0,4,0),S (0,0,3). 设BC =m ,则C (m,4,0), 由于SF BF =CEBE =λ,所以SF →=λFB →.所以AF →-AS →=λ(AB →-AF →).所以AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3).所以F ⎝ ⎛⎭⎪⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝ ⎛⎭⎪⎪⎫m 1+λ,4,0, 所以FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. 由于F A →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角,即F A →·FE →=0, 则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,所以16λ=9, 解得λ=916. [答案] 916 2.存在推断型以“平行、垂直、距离和角”为背景的存在推断型问题是近年来高考数学中创新型命题的一个重要类型,它以较高的新颖性、开放性、探究性和制造性深受命题者的青睐,此类问题的基本特征是:要推断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种状况:假如存在,找出一个来;假如不存在,需要说明理由.这类问题常用“确定顺推”的方法.求解此类问题的难点在于涉及的点具有运动性和不确定性,所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简洁、解法固定、操作便利.[典例2] 如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.[思路分析][解] (1)如图所示,以D 为坐标原点,建立空间直角坐标系D -xyz . 依题意,得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E ⎝ ⎛⎭⎪⎫12,1,0, 所以NE →=⎝⎛⎭⎪⎫-12,0,-1,AM →=(-1,0,1),由于|cos 〈NE →,AM →〉|=|NE →·AM →||NE →||AM →|=1252×2=1010. 所以异面直线NE 与AM 所成角的余弦值为1010.(2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN . 连接AE ,如图所示.由于AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ), 又EA →=⎝⎛⎭⎪⎫12,-1,0,所以ES →=EA →+AS →=⎝⎛⎭⎪⎫12,λ-1,λ.由ES ⊥平面AMN ,得⎩⎨⎧ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,(λ-1)+λ=0,解得λ=12,此时AS →=⎝ ⎛⎭⎪⎫0,12,12,|AS →|=22.经检验,当|AS |=22时,ES ⊥平面AMN .故在线段AN 上存在点S ,使得ES ⊥平面AMN ,此时|AS |=22. 3.结论探究型立体几何中的结论探究型问题的基本特征是:给出肯定的条件与设计方案,推断设计的方案是否符合条件要求.此类问题的难点是“阅读理解”和“整体设计”两个环节,因此,应做到审得认真、找得有法、推得有理、证得有力,整合过程无可辩驳.[典例3] 某设计部门承接一产品包装盒的设计(如图所示),客户除了要求AB ,BE 边的长分别为20 cm,30 cm 外,还特殊要求包装盒必需满足:①平面ADE ⊥平面ADC ;②平面ADE 与平面ABC 所成的二面角不小于60 °;③包装盒的体积尽可能大.若设计出的样品满足:∠ACB 与∠ACD 均为直角且AB 长20 cm ,矩形DCBE 的边长BE =30 cm ,请你推断该包装盒的设计是否符合客户的要求,并说明理由.[思路分析]建立空间直角坐标系→验证所给样品是否满足条件①②③→得出结论[解] 该包装盒的样品设计符合客户的要求.理由如下: 由于四边形DCBE 为矩形,∠ACB 与∠ACD 均为直角,所以以C 为原点,分别以直线CA ,CB ,CD 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系C -xyz .由于BE =30 cm ,AB =20 cm , 设BC =t cm ,则AC =400-t 2 cm , 则A (400-t 2,0,0),B (0,t,0),D (0,0,30),E (0,t,30),设平面ADE 的法向量为n 1=(x ,y ,z ), DA →=(400-t 2,0,-30),DE →=(0,t,0),由于n 1·DA →=0且n 1·DE →=0,所以⎩⎨⎧400-t 2x -30z =0,ty =0,取x =1,则n 1=⎝⎛⎭⎪⎪⎫1,0,400-t 230. 又平面ADC 的一个法向量CB →=(0,t,0), 所以n 1·CB →=1×0+0×t +400-t 230×0=0, 所以n 1⊥CB →,所以平面ADE ⊥平面ADC ,所以满足条件①. 由于平面ABC 的一个法向量为n 2=(0,0,1),设平面ADE 与平面ABC 所成二面角的平面角为θ,则cos θ≤12,所以cos θ=|cos 〈n 1,n 2〉|=400-t 2301+400-t 2900≤12,所以10≤t ≤20,即当10≤t <20时,平面ADE 与平面ABC 所成的二面角不小于60°.由∠ACB 与∠ACD 均为直角知, AC ⊥平面DCBE ,该包装盒可视为四棱锥A -BCDE ,所以V A -BCDE =13S 矩形BCDE ·AC =13·30t ·400-t 2=10·t 2(400-t 2) ≤10⎝ ⎛⎭⎪⎪⎫t 2+400-t 222=2 000,当且仅当t2=400-t2,即t=10 2 cm时,V A-BCDE的体积最大,最大值为2 000 cm3.而10<t=102<20,可以满足平面ADE与平面ABC所成的二面角不小于60°的要求.综上可知,该包装盒的设计符合客户的要求.方法总结解决立体几何中的结论探究型问题的策略是:先把题目读懂,全面、精确地把握题目所供应的全部信息和题目提出的全部要求,分析题目的整体结构,找好解题的切入点,对解题的主要过程有一个初步的设计,在此基础上建立空间直角坐标系,把所求的问题转化为空间几何体中的证明线面位置关系、角与最值等问题.。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.6 抛物线 Word版含答案

§8.6抛物线A组基础题组1.(2022安徽,3,5分)抛物线y=x2的准线方程是( )A.y=-1B.y=-2C.x=-1D.x=-22.(2021浙江杭州六中期末)已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是( )A. B. C.2 D.-13.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.4.(2021浙江嘉兴桐乡第一中学调研卷一,9,5分)抛物线y2=x的焦点为F,点P(x,y)为该抛物线上的动点,点A,则的最小值是( )A. B. C. D.5.(2022四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.6.(2021陕西,14,5分)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p= .7.(2021浙江名校(镇海中学)沟通卷一,14)过抛物线y2=2x的焦点的直线与该抛物线交于A,B两点,且|AB|=4,则AB的中点的横坐标是.8.(2021浙江模拟训练冲刺卷一,11)已知点F为抛物线x2=4y的焦点,O为坐标原点,点M是抛物线准线上一动点,A在抛物线上,且|AF|=2,则|OA|= ;|MA|+|MO|的最小值是.9.(2021浙江新高考争辩卷四(舟山中学),11)已知抛物线C:y2=2px(p>0),抛物线C上横坐标为的点到焦点的距离为3.(1)p= ;(2)点M在抛物线C上运动,点N在直线x-y+5=0上运动,则|MN|的最小值等于.10.(2022超级中学原创猜测卷七,11,6分)已知正六边形ABCDEF的边长是2,抛物线y2=2px(p>0)恰好经过该正六边形的四个顶点,,过抛物线的焦点Q的直线交抛物线于M,N两点.若焦点Q是弦MN靠近点N的三等分点,则该抛物线的标准方程是,直线MN的斜率k等于.11.(2021浙江冲刺卷一,14,4分)已知直线x=my+2与抛物线y2=8x交于A,B两点,点C(-1,0),若∠ACB=90°,则m= .12.(2021浙江名校(绍兴一中)沟通卷五,14)已知M(a,4)为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,N 为y轴上的动点,当sin∠MNF的值最大时,△MNF的面积为5,则p的值为.13.(2021浙江七校联考,18)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值. 14.(2021福建,19,12分)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.15.(2021浙江,22,14分)已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.16.(2021浙江模拟训练冲刺卷一,19)已知抛物线C1:x2=4y的焦点为F,过点F且斜率不为零的直线l与抛物线C1相交于不同的两点A,C,并与曲线C2:x2=-4(y-2)相交于不同的两点B,D,其中A,B两点在y轴右侧.(1)求A,B两点的横坐标之积;(2)记直线OA,OB,OC,OD的斜率分别为k1,k2,k3,k4,是否存在常数λ,使得k1+k3=λ(k2+k4)?若存在,求出λ的值;若不存在,请说明理由.B组提升题组1.(2021陕西,3,5分)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)2.(2022课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=( )A.1B.2C.4D.83.(2021宁波高考模拟考试,5,5分)已知F是抛物线y2=4x的焦点,A,B是抛物线上的两点,|AF|+|BF|=12,则线段AB的中点到y轴的距离为( )A.4B.5C.6D.114.(2021河南焦作期中,11)已知点P在抛物线y2=4x上,点M在圆(x-3)2+(y-1)2=1上,点N的坐标为(1,0),则|PM|+|PN|的最小值为( )A.5B.4C.3D.+15.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )A. B.6 C.12 D.76.已知点P为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,直线l过点P且与x轴平行,若同时与直线l、直线PF、x轴相切且位于直线PF左侧的圆与x轴相切于点Q,则( )A.Q点位于原点的左侧B.Q点与原点重合C.Q点位于原点的右侧D.以上均有可能7.(2021四川,10,5分)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)8.(2021稽阳联考,13,6分)过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.9.(2021浙江六校联考,13,4分)已知F为抛物线C:y2=2px(p>0)的焦点,过F作斜率为1的直线交抛物线C于A、B两点,设|FA|>|FB|,则= . 10.(2021杭州二中高三仿真考,13,4分)已知点A在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若·=3,则点A到动直线MN的最大距离为.11.(2021嘉兴教学测试二,14,4分)抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为.12.(2022超级中学原创猜测卷五,14,6分)已知抛物线y2=4x的焦点为F,则点F的坐标为,若A,B是抛物线上横坐标不相等的两点,且线段AB的垂直平分线与x轴的交点为M(4,0),则|AB|的最大值为.13.(2021稽阳联考文,19,15分)点P是在平面坐标系中不在x轴上的一个动点,满足:过点P可作抛物线x2=y 的两条切线,切点分别为A,B.(1)设点A(x1,y1),求证:切线PA的方程为y=2x1x-;(2)若直线AB交y轴于R,OP⊥AB于点Q,求证:R是定点并求的最小值.14.(2021浙江五校二联文,19,15分)已知抛物线y2=2x上有四点A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),点M(3,0),直线AB、CD都过点M,且都不垂直于x轴,直线PQ过点M且垂直于x轴,交AC于点P,交BD于点Q.(1)求y1y2的值;(2)求证:MP=MQ.15.(2021浙江冲刺卷一,22)已知点M(0,-1),抛物线E:x2=4y,过点N(-4,1)的直线l交抛物线E于A,B两点,点A在第一象限.(1)若直线MA与抛物线相切,求直线MA的方程;(2)若直线MA交抛物线E于另一点C,问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.16.(2022浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若||=3,求点M的坐标;(2)求△ABP面积的最大值. A组基础题组1.A 由y=x2得x2=4y,焦点在y轴正半轴上,且2p=4,即p=2,因此准线方程为y=-=-1.故选A.2.D 由题意知,抛物线的焦点为F(1,0),设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1,易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为=,所以d+|PF|-1的最小值为-1.3.D 易知直线AB的方程为y=,与y2=3x联立并消去x得4y2-12y-9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=-.S△OAB=|OF|·|y1-y2|=×==.故选D.4.C 点A是抛物线的准线与x轴的交点,过P作抛物线准线的垂线,记垂足为B,则由抛物线的定义可得==sin∠PAB,当∠PAB最小时,的值最小,此时,直线PA与抛物线相切,可求得直线PA的斜率k=±1,所以∠PAB=45°,的最小值为,故选C.5.B 依题意不妨设A(x1,),B(x2,-),·=2⇒x1x2-=2⇒=2或=-1(舍去).当x1=x2时,有x1=x2=2,则S△ABO+S△AFO=2+=;当x1≠x2时,直线AB的方程为y-=(x-x1),则直线AB与x轴的交点坐标为(2,0).于是S△ABO+S△AFO=×2×(+)+×=+≥2=3当且仅当=时取“=”,而>3.故选B.6.答案 2解析抛物线y2=2px(p>0)的准线方程为x=-(p>0),故直线x=-过双曲线x2-y2=1的左焦点(-,0),从而-=-,得p=2.7.答案解析由已知得AB为抛物线的焦点弦,则|AB|=x A+x B+1=4,∴x A+x B=3,故AB的中点的横坐标是.8.答案;解析易知F(0,1).设A(x,y),由|AF|=2,得y+1=2,∴y=1,代入x2=4y得x=±2,所以A(±2,1),则|OA|=.设B(0,-2),因点M在抛物线准线上,则|MO|=|MB|,从而|MA|+|MO|的最小值就是|MA|+|MB|的最小值.因A,B为定点,则|MA|+|MB|的最小值即为|AB|=,故|MA|+|MO|的最小值是.9.答案(1)1 (2)解析(1)依题意得+=3,解得p=1.(2)设M(x,y),则y2=2x.则|MN|的最小值等于点M到直线x-y+5=0的距离d的最小值.而d====,则当y=1时,d min=,故|MN|的最小值等于.10.答案y2=x;±2解析如图所示,依据对称性,可设正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px(p>0)上,A(x1,1),F(x2,2),则即x2=4x1,又|AF|==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,则p===,则抛物线的方程是y2=x,则Q,设直线MN的方程为x=my+.将直线MN的方程与抛物线的方程联立,消去x得y2-my-=0.设M(x3,y3),N(x4,y4),所以y3+y4=m①,y3y4=-②,由于焦点Q是弦MN靠近点N的三等分点,所以=2,所以y3=-2y4③,联立①②③消去y3,y4,得m=±,所以直线MN的斜率k=±2.11.答案±解析设A(x1,y1),B(x2,y2),联立得消去x得y2-8my-16=0,则有y1+y2=8m,y1y2=-16.由∠ACB=90°,知·=0,即有(x1+1)(x2+1)+y1y2=0,则有(my1+3)(my2+3)+y1y2=0,即(m2+1)y1y2+3m(y1+y2)+9=0,则-16(m2+1)+24m2+9=0,解得m=±.12.答案2或8解析设N(0,n),当sin∠MNF的值最大时,有∠MNF=,从而有·=0,得ap+n2-4n=0.又2ap=16,所以n2-4n+4=0,所以n=2,所以N的坐标为(0,2)时,sin∠MNF的值最大.过M作MM'⊥y轴,垂足为M',则梯形OFMM'的面积为10,10=·4,又ap=8,得p=2或8.13.解析(1)直线AB的方程是y=2,由消去y得4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,4x2-5px+p2=0可得x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4).设=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2), 由=8x3,得[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.14.解析(1)由抛物线的定义得|AF|=2+.由于|AF|=3,即2+=3,解得p=2,所以抛物线E的方程为y2=4x.(2)证法一:由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),所以k GA==,k GB==-,所以k GA+k GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.证法二:设以点F为圆心且与直线GA相切的圆的半径为r.由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),故直线GA的方程为2x-3y+2=0,从而r==.又直线GB的方程为2x+3y+2=0,所以点F到直线GB的距离d===r.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.15.解析(1)由题意可设抛物线C的方程为x2=2py(p>0),则=1,所以抛物线C的方程为x2=4y.(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1.由消去y,整理得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4.从而|x1-x2|=4.由解得点M的横坐标x M===.同理,点N的横坐标x N=.所以|MN|=|x M-x N|==8=.令4k-3=t,t≠0,则k=.当t>0时,|MN|=2>2.当t<0时,|MN|=2≥.综上所述,当t=-,即k=-时,|MN|的最小值是.16.解析(1)设A(x1,y1),B(x2,y2),则x1>0,x2>0.又易知F(0,1),则由A,B,F三点共线得=,即x2=x1,得(x1+x2)x1x2=4(x1+x2),∵x1>0,x2>0,∴x1+x2>0,∴x1x2=4,故A,B两点的横坐标之积为4.(2)存在.明显直线l的斜率存在,且不为零,故可设直线l的方程为y=kx+1(k≠0).由得x2-4kx-4=0.设C(x3,y3),则有x1+x3=4k,且x1x3=-4.则k1+k3=+=+=+==k.由得x2+4kx-4=0.设D(x4,y4),则有x2+x4=-4k,且x2x4=-4.则k2+k4=+=+=+--=+k=+k=3k,∵k≠0,∴k1+k3=(k2+k4).故存在常数λ=,使得k1+k3=λ(k2+k4).B组提升题组1.B 抛物线y2=2px(p>0)的准线方程为x=-,由题设知-=-1,即=1,所以焦点坐标为(1,0).故选B.2.A 由y2=x得2p=1,即p=,因此焦点F,准线方程为l:x=-,设A点到准线的距离为d,由抛物线的定义可知d=|AF|,从而x0+=x0,解得x0=1,故选A.3.B 记A,B在抛物线准线x=-1的投影分别为A',B',故|AA'|+|BB'|=|AF|+|BF|=12,由中位线定理可得所求距离d=-1=5,故选B.4.C 由于抛物线y2=4x的焦点为N(1,0),所以|PM|+|PN|的最小值等于点M到抛物线的准线x=-1的距离的最小值.而点M在圆(x-3)2+(y-1)2=1上,则点M到准线x=-1的距离的最小值等于圆心(3,1)到准线的距离减去半径1,即(|PM|+|PN|)min=4-1=3,故选C.5.C 焦点F的坐标为,直线AB的斜率为,所以直线AB的方程为y=, 即y=x-,代入y2=3x,得x2-x+=0,设A(x1,y1),B(x2,y2),则x1+x2=,所以|AB|=x1+x2+=+=12,故选C.6.B 如图,设直线l,x轴分别与抛物线的准线交于C,D两点,由抛物线的定义知|PC|=|PF|,由圆的切线性质知|PA|=|PB|,于是|AC|=|BF|.又|AC|=|DO|,|BF|=|FQ|,所以|DO|=|FQ|,而|DO|=|FO|,得O,Q两点重合.故选B.7.D 明显0<r<5.当直线l的斜率不存在时,存在两条满足题意的直线,所以当直线l的斜率存在时,存在两条满足题意的直线,设直线l的斜率为k,由抛物线和圆的对称性知,k>0、k<0时各有一条满足题意的直线.设A(x1,y1),B(x2,y2),M(x0,y0),k====.记圆心为C(5,0).∵k CM=,k·k CM=-1,∴x0=3.∴r2=(3-5)2+>4(y0≠0),即r>2.另一方面,由AB的中点为M,知B(6-x1,2y0-y1),∴(2y0-y1)2=4(6-x1),又∵=4x1,∴-2y0y1+2-12=0.∴Δ=4-4(2-12)>0,即<12.∴r2=(3-5)2+=4+<16,∴r<4.综上,r∈(2,4).故选D.8.答案±解析由题意设l:x=ty+1,A(x1,y1),B(x2,y2).将x=ty+1代入y2=4x,得y2-4ty-4=0,∴y1+y2=4t,y1y2=-4.又=3,∴y1=-3y2,∴∴t2=,即k=±.9.答案3+2解析过抛物线C的焦点,斜率为1的直线方程为y=x-,代入抛物线C的方程,整理得4x2-12px+p2=0.又由题意可得x A>x B,解得x A=p,x B=p,所以====3+2.10.答案解析由题意知抛物线的准线方程为x=-=-,解得p=1,所以抛物线的方程为y2=2x.设直线MN的方程为x=ty+m,M(x1,y1),N(x2,y2),直线MN与x轴的交点为D(m,0),联立直线MN与抛物线的方程,得y2-2ty-2m=0,所以y1y2=-2m.由于·=3,所以x1x2+y1y2=3,即(y1y2)2+y1y2-3=0.由于M,N位于x轴的两侧,所以y1y2=-6,所以m=3,则直线MN恒过点D(3,0).当直线MN绕定点D(3,0)旋转时,旋转到AD⊥MN时,点A到动直线MN的距离最大,且为=.11.答案 4解析设A(x1,y1),B(x2,y2),直线AB的方程为y-3=kx(k<0),即y=kx+3,联立直线AB的方程与抛物线方程消去y,得k2x2+(6k-4)x+9=0,所以x1+x2=.又p=2,依据抛物线的定义有|AF|+|BF|=x1+x2+p=x1+x2+2=6,所以x1+x2==4,解得k=(舍)或k=-2,所以y1+y2=-2(x1+x2)+6=-2,所以线段AB的中点坐标为(2,-1),所以线段AB的垂直平分线的方程为y+1=(x-2),即x-2y-4=0,令y=0,得x=4,所以点D的横坐标为4.12.答案(1,0);6解析抛物线y2=4x的焦点为F(1,0).设A(x1,y1),B(x2,y2),由于线段AB的垂直平分线与x轴的交点为M(4,0),所以|MA|2=|MB|2,即(x1-4)2+=(x2-4)2+,又A,B是抛物线上两点,所以=4x1,=4x2,代入上式并化简得-=4x1-4x2,又x1≠x2,所以x1+x2=4,所以|AB|≤|AF|+|BF|=x1+1+x2+1=6(当且仅当A,B,F三点共线时取等号),所以|AB|的最大值为6.13.解析(1)证明:设以A(x1,)为切点的切线方程为y-=k(x-x1),与x2=y联立得x2-kx+kx1-=0,由Δ=k2-4kx1+4=(k-2x1)2=0得k=2x1,所以切线PA的方程为y=2x1x-.(2)设B(x2,y2),由(1)知点P的坐标为,设直线AB的方程为y=kx+m,与x2=y联立得x2-kx-m=0,所以P,由题意知k·k OP=k·=-2m=-1⇒m=,即R.|PQ|=,|QR|==,所以==|k|+≥2,当且仅当|k|=时,的最小值为2.14.解析(1)设直线AB的方程为x=my+3,与抛物线联立得:y2-2my-6=0,∴y1y2=-6.(2)证明:直线AC的斜率为=,∴直线AC的方程为y=(x-x1)+y1,∴点P的纵坐标为y P===,同理,点Q的纵坐标为y Q=,∴y P+y Q=0,又PQ⊥x轴,∴MP=MQ.15.解析(1)设A(x1,y1)(x1>0),则直线MA的方程为y=x-1,与x2=4y联立消去y,得x1x2-(+4)x+4x1=0,由Δ=-16=0,得=4,而x1>0,故x1=2,即有A(2,1).则直线MA的方程为y=x-1.(2)明显直线BC的斜率存在,设直线BC的方程为y=kx+n,与x2=4y联立消去y,得x2-4kx-4n=0.设B(x2,y2),C(x3,y3),则有x2+x3=4k,x2x3=-4n.由(1)知x1,x3是方程x1x2-(+4)x+4x1=0的两根,且x1≠2.则有x1x3=4,即x1=,从而y1==.由于N,A,B三点共线,所以===+,即有-1=+x2++,化简得x2+x3+x2x3+4=0,即有4k-4n+4=0,得n=k+1.从而直线BC的方程为y=kx+k+1=k(x+1)+1,故直线BC过定点,且定点坐标为(-1,1). 16.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或P(-2,2).由=3,分别得M或M.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0). 由得x2-4kx-4m=0,于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x0,1-y0)=3(2k,2k2+m-1),所以由=4y0得k2=-m+.由Δ>0,k2≥0,得-<m≤.又由于|AB|=4·,点F(0,1)到直线AB的距离为d=,所以S△ABP=4S△ABF=8|m-1|=.记f(m)=3m3-5m2+m+1.令f'(m)=9m2-10m+1=0,解得m1=,m2=1.可得f(m)在上是增函数,在上是减函数,在上是增函数.又f=>f,所以,当m=时,f(m)取到最大值,此时k=±.所以,△ABP面积的最大值为.。
高考理科数学模拟试题含答案及解析5套).pptx

AF 4 15.抛物线 y2 4x 的焦点为 F ,过 F 的直线与抛物线交于 A , B 两点,且满足 BF ,
点 O 为原点,则 △AOF 的面积为
.
f x 2 3 sin xcosx 2cos2 x0
16.已知函数
22
2
的周期为
2π 3
,当
x
0,π3
时,函
数 g x f x m 恰有两个不同的零点,则实数m 的取值范围是
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.已知a , b 都是实数,那么“ 2a 2b ”是“ a2 b2 ”的(
)
A.充分不必要条件 B.必要不充分条件 C.充要条件 条件
2.抛物线 x 2 py2 ( p 0) 的焦点坐标为( )
的距离相等,则
1 2
y1
y2
1 2
,即
y 1
y 2 1
.有
2x1 2x2 1 .由基本不等式 得: 2x1 2x2 ≥2 2x1 2x2 ,整理得 2x1x2 ≤ 1 ,解得
4
x1 x2 2 .(因为 x1 x2 ,等号取不到).故选 B.
10、【答案】C
学海无涯
【解析】如图所示,该四面体的四个顶点为长方体的四个顶点,设长、宽、高分
19、某高校在 2017 年自主招生考试成绩中随机抽取 100 名学生的笔试成绩,按成绩共分为
五组,得到如下的频率分布表:
组
号分
组频
数频
率
第一组 [145,155)
5
0.05
第二组 [155,165)
高考模拟试题(八)数学(后附参考答案解析)
绝密★启用前高考模拟试题(八)数学时间:120 分钟 分值:150 分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集}4,3,2,1,0{=U ,集合}4,2{}3,2,1{==B A ,,则=B A C U )(()A.}4,2,1{ B.}4,3,2{ C.}4,2,0{ D.}4,3,2,0{2.欧拉公式x i x e ix sin cos +=(i 为虚数单位)是瑞士数学家欧拉发明的,将指数的定义域扩大到复数集,建立了三角函数和指数函数的联系,被誉为“数学中的天桥”.根据欧拉公式可知,ie 3π表示的复数的模为()A.1B.21 C.23 D.3π3.设随机变量ξ服从正态分布)7,(μN ,若)4()2(>=<ξξP P ,则μ与)(ξD 的值分别为()A.7)(3==ξμD ,B.7)(3==ξμD ,C.7)(3==ξμD ,D.7)(3==ξμD ,4.已知53)4cos(=-x π,则=x 2sin ()A.2518 B.2524-C.257-D.2575.下列不等式一定成立的是()A.)0(lg )41lg(2>>+x x x B.)(1112R x x ∈>+C.)(2sin 1sin Z k k x xx ∈≠≥+,π D.)(||212R x x x ∈≥+6.函数)(cos ππ≤≤-=x x x y 的图象可能是()A BC D7.已知正方体1111D C B A ABCD -的棱长为1,点E 是底面ABCD 上的动点,则111)(B D CA CE ⋅-的最大值为()A.22 B.1C.2 D.68.定义运算32414321:a a a a a a a a -=,将函数)0(cos 1sin 3)(>=ωωωxx x f 的图象向左平移32π个单位长度,所得图象对应的函数为偶函数,则ω的最小值是()A.41 B.43 C.45 D.479.数列}{n a 中,)1()2(1*11≥∈-=+=+n N n a a a n n n ,,,n S 是数列}{n a 的前n 项和,则=10S ()A.682- B.682C.62- D.6210.经过双曲线1422=-y x 的右焦点的直线与双曲线交于两点B A 、,若4=AB ,则这样的直线有()条.A.4B.3C.2D.111.对于三次函数)0()(23≠+++=a d cx bx ax x f ,给出定义:设)(x f '是函数)(x f y =的导数,)(x f ''是的)(x f '导数,若方程0)(=''x f 有实数解0x ,则称点))(,(00x f x 为函数)(x f y =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数12532131)(23-+-=x x x x g ,则=+⋅⋅⋅++)20192018()20192()20191(g g g ()A.2019B.2018C.2017D.201612.已知椭圆134:22=+y x C ,直线4:=x l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于BA ,两点,点C 在直线l 上,则“x BC ∥轴”是“直线AC 过线段EF 中点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第Ⅱ卷(非选择题共100分)二、填空题:把答案填在相应题号后的横线上(本大题共4小题,每小题5分,共20分).13.已知点P 在曲线14:+=x e y C 上,则曲线C 在P 处切线的倾斜角的取值范围是_______.14.《中国诗词大会》亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.因为前四场播出后反响很好,所以节目组决定《将进酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有_______种.(用数字作答)15.已知球O 是正三棱锥BCD A -(底面为正三角形,顶点在底面的射影为底面中心)的外接球,3=BC ,32=AB ,点E 在线段BD 上,且BE BD 3=,过点E 作球O 的截面,则所得截面圆面积的取值范围是_______.16.已知在ABC △中,角C B A ,,的对边分别为c b a ,,,则下列四个论断中正确的是_______.(把你认为是正确论断的序号都写上)①若b B a A cos sin =,则4π=B ;②若324===c b B ,π,则满足条件的三角形共有两个;③若c b a ,,成等差数列,A sin ,B sin ,C sin 成等比数列,则ABC △为正三角形;④若25==c a ,,ABC △的面积4=ABC S △,则53cos =B .三、解答题:共70分。
资料:高三数学8模 理科 参考答案
2011年普通高等学校招生全国统一考试西工大附中第八次适应性训练数学(理科)参考答案-.选择题:A D B B A D C D C A二.填空题:11.75%; 12.14m ≥; 13.63;14.90,tan tan tan tan tan tan 1αβγαββγγα++=++=当时15.A .()3,+∞; B .377; C .2a =或8a =- 三.解答题:16.解:(1)()1cos 23sin 223sin 2cos 22xf x x aa x a x +=+-=+,…3分 故236f a π⎛⎫=+ ⎪⎝⎭,23322a a +=+,解得1a =…………………6分(2)由题知()f x ϕ+为奇函数,∴()00f ϕ+=,………………8分 即()6sin 20πϕ+=,又20πϕ<<,………………10分 ∴125πϕ=…………………………12分17.解:(1)记“该选手通过初赛”为事件A ,“该选手通过复赛”为事件B ,“该选手通过决赛”为事件C ,则()()()311,,424P A P B P C ===,那么该选手在复赛阶段被淘汰的概率()()3314281P P AB ==⨯-=………………6分(2)ξ可能取值为1,2,3.()311144P ξ==-=,()3132(1)428P ξ==⨯-=,()3133428P ξ==⨯= ξ的分布列为:ξ 123P418383ξ的数学期望178E ξ=,3964D ξ=…………………12分18.(1)由1244(1)n n a a n n ++=-≥,212(1)44n n a a n +++=+-22n n a a +⇒-= 又21224419a a a +=-⇒=-,同理得:34521,17,19a a a =-=-=-.……6分 (2)由(1)得22n n a a +-=,故2n c =,又21()n n b a n N +-=∈,由2n c =得{}n b 是首项为-23,公差为2的等差数列.从而225n b n =- 令10,0,n n b b +≤>得n=12时n S 取最小值.……………………12分19.解:(1)证明:如图,以AB ,AC ,AA 1分别为x ,y ,z 轴,建立空间直角坐标系A -xyz .则P (λ,0,1),N (12,12,0),M (0,1,12),…………………2分从而PN =(12-λ,12,-1),AM =(0,1,12),PN AM ⋅=(12-λ)×0+12×1-1×12=0,所以PN ⊥AM .…………………4分 (2)平面ABC 的一个法向量为n =1AA =(0,0,1). 设平面PMN 的一个法向量为m =(x ,y ,z ),由(1)得MP =(λ,-1,12).由⎪⎪⎩⎪⎪⎨⎧=+-=+--⎪⎩⎪⎨⎧=⋅=⋅.021,021)21(,0,0z y x z y x MP m NP m λλ得………………6分解得))1(2,12,3(,3.3)1(2,312λλλλ-+==⎪⎪⎩⎪⎪⎨⎧-=+=m x x z x y 得令.……………8分 ∵平面PMN 与平面ABC 所成的二面角为45°,∴|cos 〈m ,n 〉|=|m ·n|m |·|n ||=|2(1-λ)|9+(2λ+1)2+4(1-λ)2=22, 解得λ=-12.…………………10分故点P 在B 1A 1的延长线上,且|A 1P |=12.…………………12分 20.解:(理)(1)设直线l 的方程为:2y kx =+(0)k ≠,联立方程可得224y kx y x =+⎧⎨=⎩得:22(44)40k x k x +-+= ①设11(,)A x y ,22(,)B x y ,2(,0)C k -,则12244k x x k -+=-,1224x x k⋅= ② 2221224(1)||||10|10|k MA MB k x k x k +⋅=+-⋅+-=,而2222224(1)||(10|)k MC k k k+=+--=,∴2||||||0MC MA MB =⋅≠, 即||MA ,||MC 、||MB 成等比数列 …………7分 (2)由MA AC α=,MB BC β=得,11112(,2)(,)x y x y k α-=---,22222(,2)(,)x y x y kβ-=---即得:112kx kx α-=+,222kx kx β-=+,则212122121222()2()4k x x k x x k x x k x x αβ--++=+++由(1)中②代入得1αβ+=-,故αβ+为定值且定值为1-…………13分 21.解:(1)()'1xf x x-=………………………………2分 ()0,1x ∴∈时,()'0f x >,函数()f x 单调递增; ()1,x ∴∈+∞时,()'0f x <,函数()f x 单调递减.故,当1x =时,()f x 取最大值()11f =-.…………………4分(2)由(1)知ln 1x x -+≤-,∴ln 1x x ≤-,取1()n x n N n++=∈,可得 22334411ln1;ln 1;ln 1;ln 1;112233n n n n++≤-≤-≤-⋅⋅⋅≤-以上各式相加得()()111ln 1123n n N n++<+++⋅⋅⋅+∈…………………8分(3)直线12PP 的斜率为2211212121ln ln ln ln ax x ax x x x k a x x x x +---==+--……9分 由(1)知ln 1x x -+≤-,当且仅当1x =时取等号.222221************ln ln 1ln 1ln 1ln ln x x x x x x x x x x x x x x x x x x --∴-+<-⇒<-⇒-<⇒<-,同理可得由1122ln 1x xx x -+<-得21212ln ln 1x x x x x ->-,…………………13分故12PP 的斜率2111,k a a x x ⎛⎫∈++ ⎪⎝⎭,又在()12,x x x ∈上,()'21111,f x a a a x x x ⎛⎫=+∈++ ⎪⎝⎭,所以()f x 图象上存在点000102(,),P x y x x x <<满足,且()f x 图象上以P 0为切点的切线与直线P 1P 2平行. …………………14分。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.5 双曲线 Word版含答案
§8.5双曲线A组基础题组1.(2021安徽,6,5分)下列双曲线中,渐近线方程为y=±2x的是( )A.x2-=1B.-y2=1C.x2-=1D.-y2=12.(2022广东,4,5分)若实数k满足0<k<9,则曲线-=1与曲线-=1的( )A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等3.(2021广东,7,5分)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为( )A.-=1B.-=1C.-=1D.-=14.(2021四川,5,5分)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=( )A. B.2 C.6 D.45.(2021课标Ⅰ,5,5分)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若·<0,则y0的取值范围是( )A. B.C. D.6.(2021课标Ⅱ,11,5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. B.2 C. D.7.(2021浙江冲刺卷四,6)已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,A和B是以坐标原点O为圆心,以|OF2|为半径的圆与该双曲线的渐近线在y轴右侧的两个交点,且△AF1B是正三角形,则双曲线的离心率为( )A. B. C.2 D.8.(2021绍兴一模,6,5分)曲线x2-3y2=0与双曲线C:-=1(a>0,b>0)的四个交点与C的两个虚轴顶点构成一个正六边形,则双曲线C的离心率为( )A. B. C. D.9.(2021杭州二中仿真考,7,5分)已知点P为双曲线-=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左,右焦点,且|F1F2|=,I为三角形△PF1F2的内心,若=+λ成立,则λ的值为( )A. B.2-1 C.+1 D.-110.(2021浙江名校(柯桥中学)沟通卷三,6)若双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,点P是第一象限内双曲线上的点,若直线PA,PB的倾斜角分别为α,β,则α+β的值是( ) A. B. C. D.11.(2021浙江测试卷,6)已知双曲线x2-=1,点A(-1,0),在双曲线上任取两点P,Q满足AP⊥AQ,则直线PQ恒过点( )A.(3,0)B.(1,0)C.(-3,0)D.(4,0)12.(2021哈三中二模)过双曲线-=1(a>0,b>0)的右焦点F作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同交点,则双曲线离心率的取值范围为( )A.(1,)B.(1,+1)C.(+1,)D.(,)13.(2021江苏,12,5分)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为.14.(2022领航高考冲刺卷五,15,4分)若等轴双曲线C的左,右顶点A,B分别为椭圆+y2=1(a>0)的左,右焦点,点P是双曲线上异于A,B的点,直线PA,PB的斜率分别为k PA,k PB,则k PA·k PB= .15.(2022超级中学原创猜测卷十,13,4分)设F1,F2分别是双曲线-=1(a>0,b>0)的左,右焦点,若双曲线的右支上存在一点P,使点P在以F1F2为直径的圆上,且|PF1|=|PF2|,则该双曲线的离心率为.16.(2021浙江镇海中学测试卷二,14)双曲线x2-y2=2021的左、右顶点分别为A1、A2,P为其右支上不同于A2的一点,且∠A1PA2=4∠PA1A2,则∠PA1A2= .B组提升题组1.(2021福建,3,5分)若双曲线E:-=1的左、右焦点分别为F1、F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于( )A.11B.9C.5D.32.(2021浙江名校(绍兴一中)沟通卷五,6)已知双曲线-=1的右焦点为F,左顶点为P,上,下虚轴端点为M,N,若FM与PN交于点A,已知|AF|=|AP|,则此双曲线的离心率为( )A. B. C. D.3.(2021杭州一模,7,5分)设F为双曲线C:-=1(a>0,b>0)的右焦点,过点F且斜率为-1的直线l与双曲线C 的两条渐近线分别交于A,B两点,若=-3,则双曲线C的离心率e=( )A. B. C. D.4.(2022领航高考冲刺卷六,7,5分)设A1、A2分别为双曲线C:-=1(a>0,b>0)的左、右顶点,若在双曲线C上存在点M,使得·<2,则双曲线C的离心率的取值范围是( )A.(,3)B.(1,)C.(,+∞)D.(1,3)5.(2022山西八校联考,12,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A. B. C.3 D.26.(2021温州二模,8,5分)如图所示,A,B,C是双曲线-=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是( )A. B. C. D.37.(2021浙江六校联考,7,5分)已知双曲线-=1(a>0,b>0)的左,右焦点分别为F1,F2,P为双曲线上任一点,且·最小值的取值范围是,则该双曲线的离心率的取值范围为( )A.(1,]B.[,2]C.(1,2]D.[2,+∞)8.(2021浙江名校(衢州二中)沟通卷二,7)过双曲线-=1(b>a>0)的左焦点F(-c,0)(c>0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为坐标原点,若E为FP的中点,则双曲线的离心率为( )A. B. C. D.9.已知双曲线-=1的左、右焦点分别为F1、F2,P为双曲线左支上一点,M为双曲线渐近线上一点(渐近线的斜率大于零),则|PF2|+|PM|的最小值为( )A.2-B.2C.2+D.2+210.(2021湖北,8,5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则( )A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e211.(2021浙江测试卷,10,5分)设动点A,B均在双曲线C:-=1(a>0,b>0)的右支上,O为坐标原点,双曲线C的离心率为e,则( )A.若e>,则·存在最大值B.若1<e≤,则·存在最大值C.若e>,则·存在最小值D.若1<e≤,则·存在最小值12.(2021太原二模)已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1、F2,点O为双曲线的中心,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是( )A.|OA|>|OB|B.|OA|<|OB|C.|OA|=|OB|D.|OA|与|OB|大小关系不确定13.(2021湖南,13,5分)设F是双曲线C:-=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为. 14.(2021山东文,15,5分)过双曲线C:-=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为.15.(2022山东,15,5分)已知双曲线-=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F.若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为.A组基础题组1.A A选项中,渐近线方程为x2-=0,即y=±2x.故选A.2.A ∵0<k<9,∴9-k>0,25-k>0.∴-=1与-=1均表示双曲线,又25+(9-k)=34-k=(25-k)+9,∴它们的焦距相等,故选A.3.C 由已知得解得故b=3,从而所求的双曲线方程为-=1,故选C.4.D 双曲线x2-=1的右焦点为F(2,0),其渐近线方程为x±y=0.不妨设A(2,2),B(2,-2),所以|AB|=4,故选D.5.A 若·=0,则点M在以原点为圆心,半焦距c=为半径的圆上,则解得=.可知:·<0⇒点M在圆x2+y2=3的内部⇒<⇒y0∈.故选A.6.D 设双曲线E的标准方程为-=1(a>0,b>0),则A(-a,0),B(a,0),不妨设点M在第一象限内,则易得M(2a,a),又M点在双曲线E上,于是-=1,解得b2=a2,∴e==.7.C 设点A(x,y)在第一象限,由得即得A(a,b).同理得B(a,-b).由|AB|=|AF1|,得2b=,即(c+a)2=3b2=3(c2-a2).又c+a≠0,从而c+a=3(c-a),即c=2a,故离心率e==2.8.B 设曲线x2-3y2=0与双曲线C:-=1(a>0,b>0)在第一象限的交点为A(x A,y A),则正六边形的边长为2|y A|=b.又由曲线方程与双曲线方程联立消去x得|y A|2=,所以|y A|2==⇒5a2=3b2,所以=,所以双曲线C的离心率为==,故选B.9.D 设△PF1F2的内切圆半径为r,由双曲线的定义得|PF1|-|PF2|=2a,|F1F2|=2c,=r|PF1|,=r|PF2|,=r·2c=cr.由题意得r|PF1|=r|PF2|+λcr,所以λ==.由于|F1F2|=,所以2c==,即+-1=0,解得=-1或=--1(舍去),故选D.10.D 双曲线的左顶点为A(-a,0),右顶点为B(a,0).设P(m,n)(m>a,n>0),则直线PA的斜率k PA=,直线PB的斜率k PB=,∴k PA·k PB=①.∵P(m,n)是双曲线x2-y2=a2上的点,∴m2-n2=a2,将n2=m2-a2代入①式得k PA·k PB=1.∴α+β=.11.A 明显直线AP,AQ的斜率存在,且不为0,设直线AP的斜率为k,k≠±.则AP的方程为y=k(x+1).由得(k2-2)x2+2k2x+k2+2=0,则-1·x P=,故x P=,则有P.以-代替k,得Q.当k≠±1且k≠±时,k PQ=,直线PQ的方程为y=(x-3),此时直线PQ过点(3,0).当k=±1时,有x P=x Q=3,直线PQ的方程为x=3,此时,直线PQ也过点(3,0).故选A.12.D 由题意可得2<<3,则双曲线的离心率e===∈(,),故选D.13.答案解析双曲线x2-y2=1的一条渐近线为直线y=x,明显直线y=x与直线x-y+1=0平行,且两直线之间的距离为=.由于点P为双曲线x2-y2=1的右支上一点,所以点P到直线y=x的距离恒大于0,结合图形可知点P到直线x-y+1=0的距离恒大于,结合已知可得c的最大值为.14.答案 1解析由题意得,等轴双曲线C的方程为x2-y2=a2(a>0),∴双曲线的左顶点为A(-a,0),右顶点为B(a,0),设P(m,n),则直线PA的斜率为k PA=,直线PB的斜率为k PB=,∴k PA·k PB=①,∵P(m,n)是双曲线x2-y2=a2(a>0)上的点,∴m2-n2=a2,∴n2=m2-a2,代入①式得k PA·k PB=1.15.答案+解析由点P在以F1F2为直径的圆上,可知PF1⊥PF2.在Rt△F1PF2中,|PF1|2+|PF2|2=|F1F2|2=4c2.由已知|PF1|=|PF2|,得|PF1|=c,|PF2|=c.由双曲线的定义知|PF1|-|PF2|=2a,即c-c=c=2a,所以双曲线的离心率e===+.16.答案解析设∠PA1A2=α,则∠PA2x=5α.又设P(x0,y0),则-=2021.tan5α==,tanα==,∴tan5α·tanα=·==1,从而sin5αsinα=cos5αcosα,即cos6α=0,∴α=.B组提升题组1.B |PF1|=3<a+c=8,故点P在双曲线的左支上,由双曲线的定义得|PF2|-|PF1|=2a=6,所以|PF2|=9,故选B.2.C 设双曲线的左焦点为F',连结NF',则必有FM∥F'N,所以==⇒=⇒3c2=4a2⇒e=.3.D F(c,0),直线l的方程为y=-x+c,而渐近线的方程是y=±x,由得A,由得B.∴=,=.由=-3,得=-,得5a=3b,结合c2=a2+b2得c2=a2+a2,解得e=.4.B 由题意知A1(-a,0),A2(a,0),设M(x,y),则=,=,∴·=(*).∵M(x,y)在双曲线-=1上,∴y2=b2,代入(*)式得,=,则<2,即=e2-1<2,又e>1,故1<e<.5.A 解法一:设椭圆方程为+=1(a1>b1>0),离心率为e1,双曲线的方程为-=1(a2>0,b2>0),离心率为e2,它们的焦距为2c,不妨设P为两曲线在第一象限的交点,F1,F2分别为左,右焦点,则易知解得在△F1PF2中,由余弦定理得(a1+a2)2+(a1-a2)2-2(a1+a2)·(a1-a2)cos60°=4c2,整理得+3=4c2,所以+=4,即+=4.设a=,b=,∴+=a·b≤|a|·|b|=×=×=,故+的最大值是,故选A.解法二:不妨设P在第一象限,|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理得m2+n2-mn=4c2.设椭圆的长轴长为2a1,离心率为e1,双曲线的实轴长为2a2,离心率为e2,它们的焦距为2c,则+===.∴===,易知-+1的最小值为.故=.故选A.6.A 如图所示,设左焦点为F',由OA=OB,OF=OF',BF⊥AC以及双曲线的对称性可知四边形AFBF'为矩形,设AF=m,则|FC|=|FB|=|AF'|=2a+m,|CF'|=4a+m.在Rt△ACF'中,|AF'|2+|AC|2=|CF'|2,即(2a+m)2+(2a+2m)2=(4a+m)2,整理得m=a.在Rt△FAF'中,|AF|2+|AF'|2=|F'F|2,即a2+(3a)2=(2c)2,整理得4c2=10a2,故e=,故选A.7.B 设P(x,y),则·=(x+c,y)·(x-c,y)=x2-c2+y2=x2-c2-b2,|x|≥a,所以当|x|=a时,(·)min=a2-c2∈,则即所以离心率e=∈[,2],故选B.8.D 设右焦点为F2,连结F2P,OE,则F2P⊥FP,且|PF2|=2|OE|=2a,∴|EF|=b.∴|PF|=2b.过点P作直线x=-c的垂线,垂足为M,则|PM|=|PF2|=2a.∴|MF|==2.在Rt△FPF2中,2=|PF|·|PF2|=|FF2|·|MF|,即2b·2a=2c·2,平方整理得a2c2=(c2-a2)b2=(c2-a2)2,即有ac=c2-a2,∴e2-e-1=0,∴e=,故选D.9.C 由题意,知双曲线的焦点为F1(-4,0),F2(4,0),符合题意的渐近线方程为y=x,即x-y=0.作出符合题意的几何图形如图所示,连结PF1,F1M,由双曲线的定义,可知|PF2|-|PF1|=2,所以|PF2|+|PM|=|PF1|+|PM|+2.由图形可知|PF1|+|PM|≥|F1M|,所以当F1,P,M三点共线时,|PF1|+|PM|的值最小,即|F1M|最小,故依据点到直线的距离公式可得此时的最小值为d==,故所求的最小距离为2+.10.D 依题意有e1==,e2==.而-=,∵a>0,b>0,m>0,∴当a>b时,<,有e1<e2;当a<b时,>,有e1>e2.故选D.11.D 设A(x1,y1),B(x2,y2),其中x1≥a,x2≥a,则·=x1x2+y1y2=x1x2±.若·=x1x2+,明显没有最大值,而当x1=x2=a时,·有最小值a2.若·=x1x2-=x1x2-,由+≥2x1x2,得·≥x1x2-·=x1x2-(x1x2-a2),即·≥x1x2+b2,若a2≥b2,即1<e≤,则·≥·a2+b2=a2. 当x1=x2=a时,·有最小值a2.故若1<e≤,则·存在最小值.12.C 由于点Q为三角形PF1F2内切圆的圆心,故过点F2作PQ的垂线并延长交PF1于点N,易知垂足B为F2N的中点,连结OB,则|OB|=|F1N|=(|F1P|-|F2P|)=a.设内切圆与PF1,PF2分别切于G,H,则由内切圆性质可得|PG|=|PH|,|F1G|=|F1A|,|F2A|=|F2H|,故|F1P|-|F2P|=|F1A|-|F2A|=2a,设|OA|=x,则有x+c-(c-x)=2a,解得|OA|=a,故有|OA|=|OB|=a,故选C.13.答案解析不妨设F为左焦点(-c,0),点P在第一象限,由于线段PF的中点恰为双曲线C虚轴的一个端点,由中点坐标公式得P(c,2b),又P在双曲线C上,∴-=1,∴=5,∴e==.14.答案2+解析如图,F1,F2为双曲线C的左,右焦点,将点P的横坐标2a代入-=1中,得y2=3b2,不妨令点P的坐标为(2a,-b),此时==,得到c=(2+)a,即双曲线C的离心率e==2+.15.答案x±y=0解析c2=a2+b2,①由双曲线截抛物线的准线所得线段长为2c知,双曲线过点,即-=1.②由|FA|=c,得c2=a2+,③由①③得p2=4b2.④将④代入②,得=2.∴=2,即=1,故双曲线的渐近线方程为y=±x,即x±y=0.。
(完整word版)高考数学模拟试题及答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵C D=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理科数学
本试卷共4页。
全卷满分150分,考试时间120分钟。
注意事项:
1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A={183|2--x x x <0},B={12
|-x x >1},则 ==B A A. (1,3) B. (1,6) C. (2,3) D. (2,6)
2.已知复数z 满足i i
zi 2111+=-+,则其共轭复数z 的虚部为 A.-2 B.-1 C.1 D.2
3.设向量)2
1,21(),1,0(-=-=b a ,则下列结论中正确的是
A.a//b
B.(a+b)丄b
C.(a-b)丄b
D.|a-b|=|b| 4.已知x ,y 满足约束条件⎪⎩
⎪⎨⎧≥+≤-+≥--0120301y y x y x ,则的最小值为 A. 21B. 1C. 2
3D.2 5.“2=
a ”是“函数)21lg()(2ax x x f -+=为奇函数”的 A.充分不必要条件
B. 必要不充分条件
C. 充要条件
D.既不充分也不必要条件
6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为
A.8
B.16
C.24
D.48
7.设2ln 21,)1(43,31022
1=-==⎰-c dx x b a ,则 A. a<b 〈c B. b<a<c C.c 〈a 〈b D.c<b 〈a
8.中国有个名句“运筹帷幄之中,决胜千里之外”。
其中的“筹”原意是指《孙子算经》中记载的
算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运
算,算筹的摆放形式有纵横两种形式,如下表:
表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位用纵式表示,十位,千位,十万位用横式表示,以此类推,例如2268用算筹表示就是=||丄|||.执行如图所示程序框图,若输人的x=1, y = 2,则输出的S 用算筹表示为
9.过双曲线C:122
22=-b
y a x (a>b>0)的一个焦点F 向其一条渐近线引垂线,垂足为E ,0为坐标原点,若△O EF 的面积为1,其外接圆面积为4
5π,则C 的离心率为 A.2
5B.3C.2 D.5 10.设α>0,β>0,将函数x x f sin )(=的图像向左平移α个单位长度得到图像C 1,将函数)6cos()(π
+=x x g 的图像向右平移β个单位长度得到图像C 2,若C 1与C 2重合,则=+)cos(βα
A.23-
B.23
C.21-
D.2
1 11.在正方体ABCD-A 1B 1C 1D 1中,三棱锥A 1-BC 1D 内切球的表面积为π4,则正方体外接球的体积为 A.π68 B.π36 C.π33
2 D.π664
12.已知函数⎪⎩⎪⎨⎧-≤-=0>,12
10,1)(x x x e x f x ,若n m <且)()(n f m f =,则m n -的最小值为
A.12lg 2-
B.2lg 2-
C.2lg 1+
D. 2
二、填空题:本题共4小题,每小题5分,共20分。
13.若6)2(a x -的展开式中3x 的系数为-20,则a =.
14.抛物线py x 22= (p>0)上纵坐标为4的点A 到其焦点F 的距离为5,则点A 到原点的距离为.
15.函数x x x f cos 22sin )(+=在区间],0[π上的值域为.
16.已知a,b,c 分别为△ABC 内角A,B,C 的对边,B A b a 2sin cos ,3,62===,则△ABC 的面积为.
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17〜21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(―)必考题:共60分。
17.(12分)
已知等比数列{a n }的各项均为正数,其前n 项和为S n ,且112
3+=+n n n a a S . (1)是否存在常数λ,使得n n n a a a λλ++=++12)1(?请说明理由;
(2)求数列{a n }的通项公式及其前n 项和.
18. (12分)
如图,四棱锥P-ABCD 中,底面ABCD 为正方形,PA 丄底面ABCD,且PA=2AB ,F 是AB 的中点,点E 在线段PC 上,且PE 丄PC 3
1.
(1)证明:平面丄平面
ABCD;
(2)求二面角B-AE-D 的余弦值.
19.(12分)
随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯,由此催生了一批外卖点餐平台。
已知某外卖平台的送餐费用与送餐距离有关(该平台只给5千米范围内配送),为调査送餐员的送餐收入,现从该平台随机抽取80名点外卖的用户进行统计,按送餐距离分类统计结果如下表:
以这80名用户送餐距离位于各区间的频率代替送餐距离位于该区间的概率。
(1)若某送餐员一天送餐的总距离为80千米,试估计该送餐员一天的送餐份数;
(2)若该外卖平台给送餐员的送餐费用与送餐距离有关,规定1千米内为短距离,每份3元, 2千米到4千米为中距离,每份5元,超过4千米为远距离,每份9元。
(i)记X 为送餐员送一份外卖的收入(单位:元),求X 的分布列和数学期望;
(ii)若送餐员一天的0标收入不低于150元,试估计一天至少要送多少份外卖?
20.(12分)
已知椭圆C: 122
22=+b
y a x (a>b>0)的上顶点E 与其左、右焦点F 1、F 2构成面积为1的直角三角形。
(1)求椭圆C 的方程;
(2)过点F 2的直线l 交C 于A (11,y x ),B(22,y x )两点,P 是C 上的动点,当
3112
1=+x x 吋,求△PAB 面积的最大值。
21.(12分)
设函数)1ln()(++=x b ae x f x ,曲线)(x f y =在点(0, )0(f )处的切线方程为:12+=x y .
(1)求b a ,的值;
(2)若当0≥x 时,mx x f +≥1)(,求m 的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 1: 142
2
=+y x ,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2是圆心极坐标为(3,π),半径为1的圆。
(1)求曲线C 1的参数方程和C 2的直角坐标方程;
(2)设M ,N 分别为曲线C 1、C 2上的动点,求|MN|的取值范围.
23.[选修4 一5 :不等式选讲](10分)
已知函数|2||12|)(+--=x x x f .
(1)求不等式)(x f >0的解集;
(2)若关于x 的不等式|5|3)3(|12|+++≥+x x f m 有解,求实数m 的取值范围.。