原子力显微镜的原理及应用
《原子力显微镜》课件

未来发展趋势
未来,原子力显微镜技术将进一步提高分辨率和扫 描速度,并应用于更多领域。
七、参考文献
1 相关学术论文
1. Title 1 2. Title 2 3. Title 3
2 专业书籍
1. Title A 2. Title B 3. Title C
二、工作原理
探针的作用
原子力显微镜使用微小的探针探测物质表面,获得原子级别的高分辨率图像。
检测原理
通过探测器记录探针的弯曲变化,从而推断物体表面的高度和形貌。
显示方法
利用电子信号将探测到的数据转化为高清图像,可实时显示。
三、应用领域
表面形貌和结构分析
原子力显微镜可用于观察材料 表面的形貌和结构,帮助研究 纳米级别的材料。
《原子力显微镜》PPT课 件
本课件将介绍原子力显微镜的工作原理、应用领域和优缺点分析,以及操作 和维护的常见问题解答。
一、前言
什么是原子力显微镜
原子力显微镜是一种高分辨率的显微镜,能够 观测到物质的原子尺度细节。
发展历史
原子力显微镜于1986年由Gerd Binnig和Heinrich Rohrer发明,获得了诺贝尔奖。
原子力显微镜的分辨率可达到纳米级别,扫描范围取决于探针的尺寸和扫描区域。
如何正确操作原子力显微镜
正确操作原子力显微镜需要进行样品制备、参数设置和扫描操作等步骤。
原力显微镜的维护
维护原子力显微镜需要保持清洁,及时更换探针并进行校准。
六、结论
原子力显微镜对科学研究的重要性
原子力显微镜在纳米级别材料研究和生物学研究中 发挥着重要作用。
纳米尺度材料表征
该技术可用于研究纳米颗粒、 纳米管和纳米线等纳米材料的 特性。
原子力显微镜技术的原理和应用

原子力显微镜技术的原理和应用原子力显微镜(Atomic Force Microscopy,AFM)是一种利用压电陶瓷探针与样品之间的相互作用进行高分辨率成像的技术。
相比于传统的光学显微镜,原子力显微镜可以在纳米级别对样品表面形貌、力学性能、电学性质等进行非接触、高分辨率的观测和测量。
原理原子力显微镜的探针是由纳米尺寸的硅或氮化硅材料制成的,具有极高的机械强度和较小的弹性变形。
在扫描过程中,探针会通过扫描头的控制,使探针与样品表面接触,并在靠近距离内感受到样品表面的反弹力。
探针与样品表面之间的相互作用主要有万有引力、范德华力、静电力和化学键作用力等。
在不同的距离范围内,这些相互作用力数量级的变化可能非常大。
通过控制扫描头与样品之间的距离并检测探针反弹的强度,就可以获得样品表面的高分辨率图像。
应用原子力显微镜技术广泛应用于纳米材料和生物学领域中。
以下是原子力显微镜在不同应用领域中的应用情况:材料科学原子力显微镜技术对于纳米级别的材料表面形貌、结构、力学性能和电学性质的研究非常有用。
许多纳米材料例如碳纳米管、石墨烯和纳米线等,都具有特殊的表面结构和力学性能,这些特性是通过原子力显微镜技术进行高分辨率观测和测量得到的。
生命科学原子力显微镜技术可以用于生命科学中对细胞和蛋白质结构的研究。
通过原子力显微镜技术,科学家们可以研究单个分子的形态和机制,并观察生物分子的反应、扩散和结构变化等。
这项技术已经被用于细胞壁的形态学研究、蛋白质折叠过程的研究以及DNA结构的研究等。
纳米电子学原子力显微镜技术还可以用于纳米电子学中,特别是在研究半导体器件和纳米电子学元器件时。
举例来说,它被用于研究纳米晶体管的性能和导电性质,并且成功地对其器件的构造进行了重建和监测。
环境科学原子力显微镜技术可以用于对环境污染物的检测和监测。
例如,它可以用于研究气凝胶的形貌、结构和性质,与污染控制相关的表面湿润性研究等。
总体来说,原子力显微镜是一种高分辨率成像和测量技术,其应用带来了许多已知和未知领域的新见解和突破。
原子力显微镜的原理及其在纳米技术中的应用

原子力显微镜的原理及其在纳米技术中的应用原子力显微镜(Atomic Force Microscope,AFM)是一种能够对物质表面进行高分辨率成像、观察和分析的工具。
其原理是运用针尖与材料表面间的相互作用力探测表面形貌和性质。
本文将详细介绍原子力显微镜的基本原理和在纳米技术中的应用。
一、原子力显微镜的原理1.扫描震动式的设计原子力显微镜是一种通过扫描针尖对样品表面进行精准探测的显微镜。
针尖运动时产生的振动能够检测到样品表面形貌和结构。
其扫描震动式的设计基于谐振原理。
扫描针尖与样品表面之间有作用力,这种结果会导致针尖的振动。
2.针尖与样品间的相互作用力AFM的针尖必须具备反射杆和尖端,拥有较好的尺度和形状效应。
仪器通过感应针尖与样品之间的互相作用力,以机械臂与探针的相对运动来探测样品表面形貌及性质。
针尖接触样品表面后产生的万斯力会改变针尖的振动的振幅。
3.信封式皮扫描仪的使用在现代原子力显微镜中,信封式皮扫描仪被广泛应用,可以快速检测样品的形貌和特性。
信封式皮扫描仪不仅能够以很高的分辨率,而且能够在大范围内扫描样品,从而获得更准确的表面图像。
二、原子力显微镜在纳米技术中的应用1.纳米材料的研究原子力显微镜可以用于研究各种纳米材料,如量子点、金纳米粒子等。
由于其高分辨率和强大的成像优势,它可以揭示所有细节和表面特性。
原子力显微镜可以在不损伤样品的情况下进行非破坏性成像和分析,具有广泛的研究应用。
2.生物医学领域的应用原子力显微镜可以在细胞水平上对生物体进行研究,甚至可以在细胞内进行。
它使用非破坏性的方式扫描样品表面,具有非常高的分辨率,能够揭示生物样品的分子结构、表面形貌和纳米尺度下的物理和化学特性等,对于研究分子的运动、受体结构、细胞和组织的结构等方面具有重要的科学和生物医学意义。
3.纳米加工和表面处理原子力显微镜提供了一种便捷而强大的方式,可以实现在纳米尺度下进行样品加工和表面处理。
它可以通过控制扫描针尖与样品表面间的距离和采取不同的物理或化学手段,在表面上进行制造、刻蚀和表面修饰,从而生成微小的纳米结构或复杂纳米体系。
原子力显微镜的原理及应用

ห้องสมุดไป่ตู้
等信息。
接触热力学探头等,获得更多的表面物
理性质信息。
3
数据图像处理
通过对采集的数据和图像进行处理和分 析,实现对样品表面形貌、力学性质等 信息的定量研究。
原子力显微镜的优势和局限性
优势
高分辨率、高精度、高灵敏度的观测和表征能 力。
局限性
不能直接观测样品三维结构,对样品表面有要 求,无法观测活体生物样品。
原子力显微镜在材料科学中的应用
材料表征
原子力显微镜可以对各种材料进行表征研究,例如 纳米粒子、原子层材料、碳纳米管等。
材料力学性质
原子力显微镜可以实现对材料力学性质的高精度测 试,如硬度、弹性、塑性等。
原子力显微镜在生物科学中的应用
1
生物样品表征
原子力显微镜可以对生物细胞、蛋白质、分子等进行表征和成像,为生物学中的 结构研究提供了高分辨率的手段。
原子力显微镜的原理及应 用
原子力显微镜,是一种基于扫描探针显微技术的高分辨率显微镜。它是现代 科学领域中不可或缺的工具之一,被广泛应用于材料科学、生物科学和纳米 技术领域。
原子力显微镜的基本原理
原子结构
原子力显微镜是基于原子结构的探测原理,通过探 测力的作用,实现对样品进行微观的表面观测和分 析。
2
材料学和生物学的融合
利用原子力显微镜的高分辨率和灵敏度,可以实现生物和材料科学的融合,如生 物医学材料的研究和开发等。
原子力显微镜在纳米技术中的应用
纳米材料成像
原子力显微镜可以实现对纳米粒 子、溶胶凝胶等纳米材料的表征 和成像。
纳米器件制造
利用原子力显微镜的纳米级控制 能力,可以实现各种纳米器件的 制造和加工,如纳米电路、存储 器等。
原子力显微镜

原子力显微镜原子力显微镜(Atomic Force Microscope,简称AFM)是一种高分辨率的显微镜技术,通过探针与样品表面的相互作用,可以获取纳米级的表面形貌和力学性质信息。
本文将介绍原子力显微镜的原理、应用以及未来的发展前景。
一、原理原子力显微镜的工作原理基于触针与样品表面的相互作用力,通过探测器对这种相互作用力进行检测和测量。
主要包括力探头、支撑结构、扫描部件、力传感器等多个部分。
当力探头接近样品表面时,表面原子与力探头上的原子之间会发生排斥或吸引的作用力,力探头被弯曲,力的大小和方向与样品表面的形貌和力学性质有关,通过探测器的测量,可以得到样品表面精细的拓扑信息。
二、应用领域原子力显微镜在材料科学、生物科学、纳米技术等领域有着广泛的应用。
1. 材料科学原子力显微镜可以用于材料的表面结构和形貌研究。
通过观察样品表面的凹凸不平、纳米级的颗粒分布等可以得到材料的表面形貌信息。
同时,还可以通过测量样品表面的硬度和弹性模量来评估材料的力学性质。
2. 生物科学生物领域中,原子力显微镜可以用于观察和研究生物分子的结构和相互作用。
通过将生物样品固定在一个稳定的平台上,可以观察到生物分子的三维结构,从而研究其功能和性质。
此外,原子力显微镜还可以用于细胞力学性质的研究,例如细胞的刚度、粘附性等。
3. 纳米技术在纳米技术领域,原子力显微镜扮演着重要的角色。
可以利用原子力显微镜来观察纳米颗粒的形貌、尺寸和分布,对纳米结构进行表征和分析。
此外,原子力显微镜还可以用于纳米加工、纳米操纵等方面的研究。
三、未来发展前景原子力显微镜作为一种重要的纳米级表征工具,其发展前景非常广阔。
1. 提高分辨率随着技术的不断发展,原子力显微镜的分辨率得到了大幅度的提高。
未来,我们可以预期原子力显微镜的分辨率将越来越高,可以观察到更加微小的结构和表面特征。
2. 多种模式的结合目前已经存在多种不同的原子力显微镜工作模式,例如接触模式、非接触模式、谐振模式等。
原子力显微镜的成像原理和应用

原子力显微镜的成像原理和应用现代科技的发展让我们能够看到世界上更微小的结构,而原子力显微镜(Atomic Force Microscope, AFM)是一种广泛应用于纳米尺度的表面形貌和力学性质研究的工具之一。
AFM不像光学显微镜一样使用光学或电子束来成像样品表面,而是基于扫描探针显微镜和原子力成像的原理。
本文将详细介绍AFM的成像原理和应用。
一、成像原理原子力显微镜(AFM)是基于扫描探针显微镜的工作原理设计的一种纳米级表面形貌探测仪器。
与扫描电子显微镜(SEM)等其他扫描探针显微镜不同的是,AFM的探针具有纳米级的精度,并且能够在不破坏样品的情况下进行表面成像。
其主要包括以下两个关键技术:1、扫描探针技术扫描探针技术是AFM成像的核心,也是其特色之一。
AFM的探针通常是一块非常细小的针尖,通过微机电系统(MEMS)和纳米加工技术制作而成,通常使用硅、钨、铂等材料。
在扫描探针技术中,探针轻轻接触样品表面,并通过针尖的弹性形变来感知样品表面的形态,使AFM能够高精度地观察样品表面的形貌变化。
2、原子力显像技术AFM的工作原理是在探针与样品之间建立一个非常小的力场,在探针和样品之间建立一个距离梯度,探针靠近样品时受到吸引力,避免探针破坏表面结构,探针与样品之间的力极小化,探针受到的力非常微弱,很难被探针本身所感知。
AFM测量样品时,可以通过扫描探针和样品之间的距离和针尖的反射率等来建立样品表面的三维形貌图像。
与其他扫描探针显微镜不同的是,AFM 采用了力显像原理,使其能够同时显示样品表面的形貌和力学性质。
二、应用领域1、物理学AFM在物理学研究中扮演重要的角色。
纳米科学是物理学领域中研究特别结构和性能的分支,在纳米水平上,各种物理现象表现出宏观科学无法看到的新特性。
AFM通过成像样品表面的原子级别的结构,可以研究物质的各种物理属性。
它可以提供关于纳米结构和物质力学性质的重要信息,这些信息对深入理解物质和性能的特性非常重要。
原子力显微镜的技术原理及运用

原子力显微镜的技术原理及运用原子力显微镜(AFM)是利用扫描探针对样品表面进行扫描和探测的一种高分辨率的显微镜。
其分辨率可以达到纳米级别,因此被广泛应用于表面形貌、力学性质、磁性质和电性质的研究。
本文将详细介绍AFM的技术原理和运用。
一、技术原理AFM的探针是由弹性力常数极高的硅制成的,探针端面有一个纳米级的监测针头。
在扫描的过程中,探针在样品表面扫过,针尖的与样品之间的相互作用力会引起探针振动,从而可以探测到样品表面的形貌和性质。
AFM可以实时反馈探针与样品之间的相互作用力,在扫描过程中反馈控制该力,以维持探针与样品之间的接触力相等,因此可以获得样品表面的形态图像。
AFM的扫描分为接触模式和非接触模式。
接触模式是探针与样品之间保持接触状态下进行的扫描,此时探针与样品相互作用的力包含弹性力、粘附力和表面张力等多种力量;而非接触模式是探针与样品之间不保持接触状态下进行的扫描,此时探针与样品之间的相互作用力主要包括范德华力和静电吸引力等。
非接触模式的分辨率更高,但接触模式对于表面粗糙度较大的样品更加适用。
二、运用领域1. 表面形貌研究AFM可以用于表面形貌研究,对于材料的微观结构和形态特征进行分析和研究。
通过对样品表面形貌的扫描和观察,可以获得微观结构的信息,如表面形态、颗粒尺寸、表面缺陷、薄膜厚度等。
2. 表面力学性质研究AFM可以测量样品的弹性模量、硬度和黏性等力学性质,通过观察扫描数据,可以对不同结构材料的力学性质进行研究。
3. 表面磁性质研究AFM可以测量样品表面的磁力学性质,如磁滞回线、磁域结构、磁畴壁等。
通过对样品进行磁化,再通过AFM实时观测其磁性变化,并测量样品的磁场分布等参数,可以对材料表面的磁性进行研究。
4. 表面电学性质研究AFM可以测量样品表面的电学性质,如电荷分布、电势分布等。
通过把AFM的探针改为电极,可以进行电学物性和电化学反应的研究。
三、未来发展目前,AFM已被广泛应用于物理学、材料科学、生物医药等领域,但是仍然存在一些问题,如成像效率、分辨率和可靠性等方面的不足。
原子力显微镜的基本原理与应用

原子力显微镜的基本原理与应用作为材料科学中的一项重要工具,原子力显微镜(Atomic Force Microscopy, AFM)可以实现对于物质的高分辨率的三维成像,提供了对于物质的局部微观颗粒状态的详细了解。
它不需要特殊的标记和处理,适用于各种不同形态的应用场景,是当前最为先进的光学性质测试手段之一。
本文将对原子力显微镜的基本原理以及应用做一个简要介绍。
一、基本原理原子力显微镜是一种通过探针测量表面形貌的技术,它能够探测物体表面的特征,包括高度,层析等信息。
与传统的光学显微镜不同,原子力显微镜常常使用细小的探针在样品表面扫描,通过对于样品的局部电化学反应进行分析,进而得到关于样品表面形态信息的表征。
具体来说,原子力显微镜是通过力的探测方式来进行成像的。
探针的测量精度非常高,可以达到亚埃级别的精度,即微米尺度之内的物体都能被精确地探测到。
同时,它还能够提供物体的力学特性等信息,包括物体的弹性、刚性等信息。
二、应用场景1.材料表面成像原子力显微镜在材料科学领域中的一个重要应用是材料表面成像。
通过使用原子力显微镜,我们可以了解到各种材料表面的各种细节信息,包括高度、层析等信息,从而更加深入地了解材料的物理、化学等性质。
2.生物医学应用在生物医学科学领域中,原子力显微镜可以用于单个细胞或微生物的成像和表征。
在这方面的应用中主要是通过原子力显微镜检测这些细胞或微生物表面的变化,比较常见的例子包括癌症细胞成像等。
3.纳米材料研究原子力显微镜在纳米材料研究领域中也有着广泛的应用。
通过它,我们可以了解到纳米材料的表面结构、晶胞等信息,并且可以通过对于这些信息的分析,以提高纳米材料性质的研究水平。
4.电子学研究原子力显微镜可以通过扫描紧密相互作用材料的表面,以了解材料的电学性质等信息。
这种技术在芯片及半导体研究、催化剂研究等领域中有着广泛的应用。
三、总结原子力显微镜是目前最为先进的光学性质测试手段之一,它能够提供关于物质的高分辨率的三维成像等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录:
AFM的发展历史 AFM的原理 AFM的分类 AFM机器的组成 影响AFM分辨率的因素 AFM技术应用举例 照片举例 AFM的缺点
高级显微镜
1938年,德国工程师Max Knoll和Ernst Ruska 制造出了世界上第一台透射电子显微镜(TEM) 1952年,英国工程师Charles Oatley制造出了 第一台扫描电子显微镜(SEM)
类似非接触式AFM,比非接触式更靠近样品表 面。损害样品的可能性比接触式少(不用侧面 力,摩擦或者拖拽)。 轻敲模式的分辨率和接触模式一样好,而且由 于接触时间非常短暂,针尖与样品的相互作用 力很小,通常为1皮牛顿(pN)~1纳牛顿( nN),剪切力引起的分辨率的降低和对样品 的破坏几乎消失,所以适用于对生物大分子、 聚合物等软样品进行成像研究。
5. 超高密度信息存储 6. 分子间力和表面力研究 7 摩擦学及各种力学研究 8 在线检测和质量控制
返回
IBM科学家首次拍下单分子照片
二氧化锡薄膜
分选和搬运
火星土壤
遭疟疾感染的人体红血球和蓝藻
返回
AFM的缺点
受样品因素限制较大(不可避免) 针尖易磨钝或受污染(磨损无法修复;污染清 洗困难) 针尖—样品间作用力较小 近场测量干扰问题 扫描速率低 针尖的放大效应
返回
AFM应用技术举例
AFM可以在大气、真空、低温和高温、不同气 氛以及溶液等各种环境下工作,且不受样品导 电性质的限制,因此已获得比STM更为广泛的 应用。主要用途: 1. 导体、半导体和绝缘体表面的高分辨成像 2. 生物样品、有机膜的高分辨成像 3. 表面化学反应研究 4. 纳米加工与操纵
微悬臂检测方法
AFM是通过检测微悬臂形变的大小来获得 样品表面形貌信息的,所以微悬臂形变检 测技术至关重要。到目前为止,检测微悬 臂形变的方式主要有以下几种: 1)隧道电流检测法 2)电容检测法 3)光学检测法 4)压敏电阻检测法
5)光束偏转法。此方法由Meyer和Amer于 1988年发明,简便实用,广泛应用于目前 的商品化仪器。 须指出,由于针尖—样品之间的作用力是 微悬臂的力常数和形变量之积,所以无论 哪种检测方法,都应不影响微悬臂的力常 数,而且对形变量的检测须达到一纳米以 下。
AFM出现的意义
STM的原理是电子的“隧道效应”,所以只能 测导体和部分半导体
1985年,IBM公司的Binning和Stanford大学的 Quate研发出了原子力显微镜(AFM),弥补了 STM的不足
返回
成像原理
atom atom
Expulsive force
atom atom
Attractive force
恒定力量或者恒定高度
探针如何成像
表面形貌和材料如何测量
垂直信號的變化 即樣本的表面變化 水平信號的變化 即樣本的材質變化
Z
X Y
Cantilever 擺動 的方向
Z
X Y
Cantilever 擺動 的方向
Mover
Mover
返回
AFM有多种工作模式
1. 接触模式(Contact Mode):作用力在斥力范围,力 的量级为10-9∼10-8N,或1∼10eV/Å。可达到原子级 分辨率。 2. 非接触模式(Non-Contact Mode):作用力在引力范 围,包括范德华力、静电力或磁力等。 3. 轻敲模式(Tapping Mode) 4. Interleave模式(Interleave Normal Mode/Lift Mode) 5. 力调制模式(Force Modulation Mode) 6. 力曲线模式(Force Curve Mode)
特点:
由于为非接触状态,对于研究柔软或有弹性的 样品较佳,而且针尖或者样品表面不会有钝化 效应,不过会有误判现象。这种模式的操作相 对较难,通常不适用于在液体中成像,在生物 中的应用也很少。
非接触式(non contact mode)
间歇接触式原子力显微镜
微悬臂在其共振频率附近做受迫振动,振荡的 针尖轻轻的敲击表面,间断地和样品接触。当 针尖与样品不接触时,微悬臂以最大振幅自由 振荡。当针尖与样品表面接触时,尽管压电陶 瓷片以同样的能量激发微悬臂振荡,但是空间 阻碍作用使得微悬臂的振幅减小。反馈系统控 制微悬臂的振幅恒定,针尖就跟随表面的起伏 上下移动获得形貌信息。
至此,电子显微镜的分辨率达到纳米级
1983年,IBM公司苏黎世实验室的两位科学家 Gerd Binnig和Heinrich Rohrer发明了扫描隧 道显微镜(STM)
应用电子的“隧道效应”这一原理,对导体或 半导体进行观测
隧道效应
经典物理学认为,物体越过势垒,有一阈值能量;粒子能量小 于此能量则不能越过,大于此能量则可以越过。例如骑自行车 过小坡,先用力骑,如果坡很低,不蹬自行车也能靠惯性过去。 如果坡很高,不蹬自行车,车到一半就停住,然后退回去。 量子力学则认为,即使粒子能量小于阈值能量,很多粒子冲向 势垒,一部分粒子反弹,还会有一些粒子能过去,好像有一个 隧道,故名隧道效应(quantum tunneling)。可见,宏观上 的确定性在微观上往往就具有不确定性。虽然在通常的情况下, 隧道效应并不影响经典的宏观效应,因为隧穿几率极小,但在 某些特丁的条件下宏观的隧道效应也会出现。
接触式原子力显微镜
接触式AFM是一个排斥性的模式,探针尖端和 样品做柔软性的“实际接触”,当针尖轻轻扫 过样品表面时,接触的力量引起悬臂弯曲,进 而得到样品的表面图形。 由于是接触式扫描,在接触样品时可能会是样 品表面弯曲。 经过多次扫描后,针尖或者样品有钝化现象。
特点:
通常情况下,接触模式都可以产生稳定的、分 辨率高的图像。但是这种模式不适用于研究生 物大分子、低弹性模量样品以及容易移动和变 形的样品。
AFM针尖放大效应
AFM是依靠尖端曲率半径很小的微悬臂针尖接触在 表面上进行成像,所得到的图像是针尖与样品真实 形貌卷积后的结果。如图所示,实线代表样品的真 实形貌,虚线就是针 尖扫描所得到的表观 图像。二者之间的差 别在于针尖与样品真 实接触点和表观接触 点随针尖移动的函数 变化关系。
针尖效应不仅会将小的结构放大,而且还 会造成成像的不真实,特别是在比较陡峭 的突起和沟槽处。 一般来说,如果针尖尖端的曲率半径远远 小于表面结构的尺寸,则针尖效应可以忽 略,针尖走过的轨迹基本上可以反映表面 结构的起伏变化。
接触式( contact mode)
非接触式原子力显微镜
在非接触模式中,针尖在样品表面的上方振动 ,始终不与样品接触,探测器检测的是范德华 作用力和静电力等对成像样品没有破坏的长程 作用力。 需要使用较坚硬的悬臂(防止与样品接触)。 所得到的信号更小,需要更灵敏的装置,这种 模式虽然增加了显微镜的灵敏度,但当针尖和 样品之间的距离较长时,分辨率要比接触模式 和轻敲模式都低。
提高图像分辨率
1、发展新的技术或模式来提高分辨率,即从硬件 设备以及成像机理上提高成像分辨率。如最近 Fuchs等发明的Q控制技术,可以提高成像分辨率 和信噪比。采用力调制模式或频率调制模式等也 可以有效提高成像分辨率。 2、选择尖端曲率半径小的针尖,减小针尖与样品 之间的接触面积,减小针尖的放大效应,以提高 分辨率。
特点:
对于一些与基底结合不牢固的样品,轻敲模式 与接触模式相比,很大程度地降低了针尖对表 面结构的“搬运效应”。 样品表面起伏较大的大型扫描比非接触式的更 有效。
间歇接触式(tapping mode)
返回
原子力显微镜的构成
在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检 测部分、反馈系统。
力检测部分: 在原子力显微镜(AFM)的系统中,所要检测的 力是原子与原子之间的范德华力。所以在本系统中是 使用微小悬臂(cantilever)来检测原子之间力的变 化量。这微小悬臂有一定的规格,例如:长度、宽度、 弹性系数以及针尖的形状,而这些规格的选择是依照 样品的特性,以及操作模式的不同,而选择不同类型 的探针。
反馈系Leabharlann :在原子力显微镜(AFM)的系统中,将信号经 由激光检测器取入之后,在反馈系统中会将此 信号当作反馈信号,作为内部的调整信号,并 驱使通常由压电陶瓷管制作的扫描器做适当的 移动,以保持样品与针尖保持合适的作用力。
原子力显微镜(AFM)便是结合以上三个部分来将 样品的表面特性呈现出来的:在原子力显微镜 (AFM)的系统中,使用微小悬臂(cantilever) 来感测针尖与样品之间的交互作用,测得作用力。 这作用力会使cantilever摆动,再利用激光将光照 射在cantilever的末端,当摆动形成时,会使反射 光的位置改变而造成偏移量,此时激光检测器会记 录此偏移量,也会把此时的信号给反馈系统,以利 于系统做适当的调整,最后再将样品的表面特性以 影像的方式给呈现出来。 返回
位置检测部分: 在原子力显微镜(AFM)的系统中,当针 尖与样品之间有了交互作用之后,会使得悬臂 (cantilever)摆动,所以当激光照射在 cantilever的末端时,其反射光的位置也会因 为cantilever摆动而有所改变,这就造成偏移 量的产生。在整个系统中是依靠激光光斑位置 检测器将偏移量记录下并转换成电的信号,以 供控制器作信号处理。
3、尽量避免针尖和样品表面的污染。如果针尖上有污染物 ,就会造成与表面之间的多点接触,出现多针尖现象,造成 假像。如果表面受到了污染,在扫描过程中表面污染物也可 能粘到针尖上,造成假像的产生。 4、控制测试气氛,消除毛细作用力的影响。由于毛细作用 力的存在,在空气中进行AFM成像时会造成样品与针尖的接 触面积增大,分辨率降低。此时,可考虑在真空环境下测定 ,在气氛控制箱中冲入干燥的N2,或者在溶液中成像等。溶 液的介电性质也可以影响针尖与样品间范德华作用力常数, 从而有可能减小它们之间的吸引力以提高成像分辨率。不过 液体对针尖的阻尼作用会造成反馈的滞后效应,所以不适用 于快速扫描过程。