2017江西高考文科数学真题及答案
2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品

2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。
2017年高考文科数学试题全国Ⅰ卷全国卷高考真题精校Word版含答案

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
12560分。
在每小题给出的四个选项中,只有一项是符合题一、选择题:本大题共分,共小题,每小题目要求的。
????0???22xx|3x|x B1A==,则.已知集合,3???|xx ABABAB= ??..??2??3???x|x?ABRCADB=..??2??2n.nkgxx…,.为评估一种农作物的种植效果,选了块地作试验田)分别为这,块地的亩产量(单位:,21x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是n Axx…xBxx…x 的标准差,..,,,,,的平均数nn2211Cxx…xDxx…x 的中位数,的最大值,.,,.,,nn21123 .下列各式的运算结果为纯虚数的是222Di(1+i)i B (1-i)C(1+i)i(1+i)A....4ABCD.正方形内切圆中的黑色部分和白色部分关于正方形如图,正方形内的图形来自中国古代的太极图.. 在正方形内随机取一点,则此点取自黑色部分的概率是的中心成中心对称ππ11 CAD B....82442y25FCx-=1PCPFxA(1,3).APF△是双曲线上一点,且:的坐标是.已知与的右焦点,则是轴垂直,点 3 的面积为1123 D B C A ....22336ABMNQ为所在棱的中点,则在这四个正方为正方体的两个顶点,,.如图,在下列四个正方体中,,,ABMNQ 不平行的是体中,直接与平面x?3y?3,??x?y?1,zy=x+y 7x的最大值为满足约束条件.设,则??y?0,?A0 B1 C2 D3 ....sin2x?y 8.的部分图像大致为函数.1?cosxf(x)?lnx?ln(2?x) 9,则.已知函数f(x)f(x)0,2AB0,2 )单调递减在(.)单调递增在(.f(x)f(x)1,0=1Cy=Dy= x)对称对称的图像关于点(..的图像关于直线nn10n1000??23两个空白框中,可以分别填入的最小偶数,那么在.如图是为了求出满足和AA>1000n=n+1BA>1000n=n+2 和.和.CA≤1000n=n+1DA≤1000n=n+2和..和sinB?sinA(sinC?cosC)?0、、、、==2cb11ABCAcBaCa,.△,的内角的对边分别为,。
2017江西高考数学真题

2017江西高考数学真题2017年江西省高考数学科目的考题共分为选择题和解答题两部分,下面将逐一展示其中的部分题目:一、选择题1.如图所示,A、B为原点的两个顶点,∠AOB= π / 3,∠COD= π / 4,点C、D、O都在第四象限,则四边形ABCD的对角线AC的斜率为A.1,B.-1,C.-,2D.22.已知a,b,c均为正实数,p为正奇数,若对任意x≥0,都有[a(p+1)x^p+2b]^(1/p)+[b(p+1)x^p+2c]^(1/p)≥[a+b]^(1/p)x+[b+c]^(1/p)x,则abc的取值范围是A.(0, 1),B.[0, 1],C.(1, +∞),D.[1, +∞)3.过定点A(a, 0),直线x=2a与椭圆x^2/2^2+y^2/1^2=1相交于B、C 两点,B、C两点在椭圆的一张弧上,则△ABC的面积为A.4,B.6,C.8,D.164.已知函数f(x)=sin(x)+cos(x)+tan(x),则f(x)的最大值为A.3,B.√3,C.√2,D.√65.随机选取一数,求其是3的倍数或小于3的概率为A.1/4,B.1/3,C.1/2,D.2/3二、解答题1.函数f(x)=4ax^3+6ax^2-4(x^2+x)定义域为R,则实数a的取值范围为多少?解:由题意知4ax^3+6ax^2-4(x^2+x)=0,整理得(a-1)x^2+3ax=0,又因为最高次项系数不为0,所以(a-1)×3a≠0,解得a=1/3。
因此,实数a的取值范围为a=1/3。
2.设函数f(x)=|x^2-5x-6|+|x^2-5x+6|+|2x-12|,求函数f(x)的最小值。
解:当x∈(-∞,2)时,有f(x)=-(x^2-5x-6)-(x^2-5x+6)-(2x-12)=-5x+4;当x∈[2,3)时,有f(x)=-(x^2-5x-6)-(x^2-5x+6)+(2x-12)=4;当x∈[3,+∞)时,有f(x)=(x^2-5x-6)-(x^2-5x+6)+(2x-12)=8x-24。
2017年江西省全国统一考试文科数学高考仿真试卷(八)有答案

绝密 ★ 启用前江西省2017年普通高等学校招生全国统一考试仿真卷文科数学(八)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2017四川四市一模]已知i 是虚数单位,若()1i 13i z +=+,则z =( ) A .2i + B .2i -C .1i -+D .1i --【答案】A【解析】由题意,得13i (13i)(1i)2i 1i (1i)(1i)z ++-===+++-,故选A . 2.[2017昆明一中]已知集合{}012345A =,,,,,,集合40x B x x -⎧⎫=∈⎨⎬⎩⎭N ,≤,则A B =ð( ) A .{}5 B .{}05,C .{}15,D .{}045,,【答案】B【解析】由题意得,集合{}1234B =,,,,所以{}05A B =,ð,故选B . 3.[2017成都一模]命题“a b >,则a c b c +>+”的逆命题是( ). A .若a b >,则a c b c ++≤ B .若a c b c ++≤,则a b ≤ C .若a c b c +>+,则a b > D .若a b ≤,则a c b c ++≤【答案】C 【解析】“若p 则q ”的逆命题是“若q 则p ”,所以原命题的逆命题是“若c b c a +>+,则b a >”,故选C .4.[2017广东联考]设函数()()1232e 2log 1 2x x f x x x -⎧<⎪=⎨-⎪⎩,,≥,则()()2f f 的值为( ) A .0 B .1 C .2D .3【答案】C 【解析】()()()()032log 312e2ff f f ===⨯=,选C .5.[2017江西联考]运行如图所示框图的相应程序,若输入 a b ,的值分别为4log 3和3log 4,则输出M 的值是( )A .0B .1C .3D .1-【答案】D【解析】43log 3 log 4a b ==,,∴ 1 01b a ><<,,∴b a >,根据程度框图,432log 3log 421M a b =⨯-=⋅-=-,故选D .6.[2017抚州七校]在ABC △中,,,A B C 的对边分别是,,a b c ,若2c o s c o s ,2b A a B c a b +===,则ABC △的周长为( ) A .7.5 B .7 C .6 D .5【答案】D【解析】∵2cos cos ,2b A a B c a b +===,∴由余弦定理可得:222222222b c a a c b b a c bc ac+-+-⨯+⨯=,整理可得:2322c c =, ∴解得:1c =,则ABC △的周长为5122=++=++c b a ,故选D .7.[2017天水一中]函数()sin()f x A x ωϕ=+的图象如下图所示,为了得到()cos g x A x ω=-的图象,可以将()f x 的图象( )A .向右平移π12个单位长度 B .向右平移5π12个单位长度 C .向左平移π12个单位长度 D .向左平移5π12个单位长度 【答案】B【解析】由已知可得:2πππ1,π=2()sin(2)()sin()063A T f x x f ωϕϕω===⇒⇒=+⇒-=-+=ππ3π()sin(2),()cos 2sin(2)332f x x g x x x ϕ⇒=⇒=+=-=+⇒将()f x 的图象向左平移3ππ723π212-=⇒将()f x 的图象向右平移5π12,故选B . 8.[2017凉山一模]某四棱锥的三视图如图所示,该三棱锥的体积是( )A .43B .83C .4 D.6+【答案】A【解析】由三视图可知,该三棱锥底面是一个等腰直角三角形,直角边长为2,该棱锥的高为2,所以该三棱锥的体积为114222323V =⨯⨯⨯⨯=,故选A . 9.[2017重庆一模]已知ABC △的外接圆半径为2,D 为该圆上的一点,且AB AC AD +=,则ABC △的面积的最大值为( ) A .3 B .4C.D.【答案】B【解析】由题设AB AC AD +=可知四边形ABDC 是平行四边形,由圆内接四边形的性质可知90BAC ∠=︒,且当AB AC =时,四边形ABDC 的面积最大,则ABC △的面积的最大值为(2max 11sin90422S AB AC =⨯︒=⨯=,应选答案B .10.[2017淮北一中]若直线 :l y ax =将不等式组20600,0x y x y x y -+⎧⎪+-⎨⎪⎩≥≤≥≥,表示的平面区域的面积分为相等的两部分,则实数a 的值为( ) A .711B .911C .713D .513【答案】A【解析】画出可行域如下图所示,由图可知,阴影部分总面积为14,要使7ABC S =△,只需1147,26AC h h ⋅⋅==,将146h =代入60x y +-≤,解得113x =,即147611113a ==.11.[2017南固一中]椭圆2222:1(0)x y M a b a b+=>>左右焦点分别为12F F P ,,为椭圆M 上任一点且12PF PF 最大值取值范围是2223c c ⎡⎤⎣⎦,,其中c e 取值范围( )A.12⎫⎪⎪⎣⎭B.32⎢⎥⎣⎦, C.13⎫⎪⎢⎪⎣⎭D .1132⎡⎫⎪⎢⎣⎭,【答案】B【解析】2122122PF PF PF PF a ⎛⎫+=⎪ ⎪⎝⎭≤,即222232a c a c ⎧⎨⎩≤≥,解得c a ≤,即离心率e的取值范围是32⎣⎦,,故选B . 12.[2017南白中学]设()f x ,()g x 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0f x g x f x g x ''+>,且(3)0f -=,则不等式()()0f x g x <的解集是( )A .(3,0)(3,)-+∞B .(3,0)(0,3)-C .(,3)(3,)-∞-+∞D .(,3)(0,3)-∞-【答案】D【解析】由题意得,令()()()h x f x g x =,则当0x <时,()()()()()0h x f x g x f x g x '''=+>,所以当0x <时,函数()h x 为单调递增函数,又由()f x ,()g x 分别是定义在R 上的奇函数和偶函数,所以()h x 是定义在R 上的奇函数,所以当0x >时,函数()h x 为单调递增函数,且(3)(3)0f f -=-=,当0x <时,不等式()()0f x g x <的解集是(,3)x ∈-∞-,当0x >时,不等式()()0f x g x <的解集是(0,3)x ∈,所以不等式()()0f x g x <的解集是(,3)(0,3)-∞-,故选D .第Ⅱ卷本卷包括必考题和选考题两部分。
2017年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2017 年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5 分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=|| C.∥D.||>||5.(5 分)若a>1,则双曲线﹣y2=1 的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5 分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5 分)设x,y 满足约束条件,则z=2x+y 的最小值是()A.﹣15 B.﹣9 C.1 D.98.(5 分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5 分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5 分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.511.(5 分)从分别写有1,2,3,4,5 的5 张卡片中随机抽取1 张,放回后再随机抽取1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5 分)过抛物线C:y2=4x 的焦点F,且斜率为的直线交C 于点M(M 在x 轴上方),l为C 的准线,点N 在l 上,且MN⊥l,则M 到直线NF 的距离为()A.B.2C.2D.3二、填空题,本题共4 小题,每小题5 分,共20 分13.(5 分)函数f(x)=2cosx+sinx 的最大值为.14.(5 分)已知函数f(x)是定义在R 上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5 分)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为.16.(5 分)△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70 分.解答应写出文字说明,证明过程或演算步骤,第17 至21 题为必考题,每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.(一)必考题:共60 分.17.(12 分)已知等差数列{a n}的前n 项和为S n,等比数列{b n}的前n 项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12 分)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD 面积为2,求四棱锥P﹣ABCD 的体积.19.(12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.050 0.010 0.001K 3.841 6.635 10.828K2=.20.(12 分)设O 为坐标原点,动点M 在椭圆C:+y2=1 上,过M 作x 轴的垂线,垂足为N,点P 满足= .(1)求点P 的轨迹方程;(2)设点Q 在直线x=﹣3 上,且•=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F.21.(12 分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0 时,f(x)≤ax+1,求a 的取值范围.选考题:共10 分。
2017年高考文科数学试题(全国Ⅰ卷)全国卷高考真题精校Word版含答案

2017年高考文科数学试题(全国Ⅰ卷)全国卷高考真题精校Word 版含答案绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .A B3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.下列各式的运算结果为纯虚数的是A.i(1+i)2B.i2(1-i) C.(1+i)2D.i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π45.已知F是双曲线C:x2-23y=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF 的面积为A.13B.12C.23D.32图像关于点(1,0)对称 10.如图是为了求出满足321000nn ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2 C .A ≤1000和n =n +1 D .A ≤1000和n =n +2 11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017年高考全国Ⅱ文科数学试题及答案(word解析版)

2017年普通高等学校招生全国统一考试(全国II )数学(文科)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年全国Ⅱ,文1,5分】设集合{1,2,3},{2,3,4}A B ==,则A B = ( )(A ){}123,4,, (B ){}123,, (C ){}234,, (D ){}134,, 【答案】A【解析】由题意{1,2,3,4}A B = ,故选A .(2)【2017年全国Ⅱ,文2,5分】()()12i i ++=( )(A )1i - (B )13i + (C )3i + (D )33i + 【答案】B【解析】由题意()()1213i i i ++=+,故选B .(3)【2017年全国Ⅱ,文3,5分】函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为( )(A )4π (B )2π (C )π (D )2π【答案】C【解析】由题意22T ππ==,故选C . (4)【2017年全国Ⅱ,文4,5分】设非零向量a ,b 满足a b a b +=-则( )(A )a b ⊥ (B )a b = (C )//a b (D )a b > 【答案】A【解析】由||||a b a b +=- 平方得2222()2()()2()a ab b a ab b ++=-+ ,即0ab = ,则a b ⊥,故选A . (5)【2017年全国Ⅱ,文5,5分】若1a >,则双曲线2221x y a-=的离心率的取值范围是( )(A))∞ (B)) (C)(1 (D )()12,【答案】C【解析】由题意的22222221111,1,112,1c a e a e a a a a+===+>∴<+<∴<< C .(6)【2017年全国Ⅱ,文6,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) (A )90π (B )63π (C )42π (D )36π 【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B .(7)【2017年全国Ⅱ,文7,5分】设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )(A )15- (B )9- (C )1 (D )9 【答案】A【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值12315z =--=-,故选A .(8)【2017年全国Ⅱ,文8,5分】函数()2()ln 28f x x x =-- 的单调递增区间是( )(A )(),2-∞- (B )(),1-∞- (C )()1,+∞ (D )()4,+∞【答案】D【解析】函数有意义,则2280x x -->,解得2x <-或4x >,结合二次函数的单调性,对数函数的单调性和复合函数同增异减的原则可得函数的单调区间为()4,+∞,故选D . (9)【2017年全国Ⅱ,文9,5分】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )(A )乙可以知道两人的成绩 (B )丁可能知道两人的成绩 (C )乙、丁可以知道对方的成绩 (D )乙、丁可以知道自己的成绩 【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D .(10)【2017年全国Ⅱ,文10,5分】执行右面的程序框图,如果输入的1a =-,则输出的S =( )(A )2 (B )3 (C )4 (D )5 【答案】B 【解析】阅读流程图,初始化数值1,1,0a k S =-==,循环结果执行如下:第一次:1,1,2S a k =-==;第二次:1,1,3S a k ==-=;第三次:2,1,4S a k =-==;第四次:2,1,5S a k ==-=; 第五次:3,1,6S a k =-==;第六次:3,1,7S a k ==-=;循环结束,输出3S =,故选B .(11)【2017年全国Ⅱ,文11,5分】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )(A )110 (B )15(C )310 (D )25【答案】D【解析】如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数总计有25种情况,满足条件的有10种,所以所求概率为102255=,故选D .(12)【2017年全国Ⅱ,文12,5分】过抛物线2:4C y x =的焦点F ,且斜C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ) (A(B) (C) (D)【答案】C【解析】由题意):1MF y x -,与抛物线24y x =联立得231030x x -+=,解得113x =,23x =,所以(3,M , 因为M N l ⊥,所以(1,N -,因为()1,0F,所以):1NF y x =-,所以M 到NF 的距离为=C .二、填空题:本大题共4小题,每小题5分,共20分. (13)【2017年全国Ⅱ,文13,5分】函数()=2cos sin f x x x +的最大值为______.【解析】()f x .(14)【2017年全国Ⅱ,文14,5分】已知函数()f x 是定义在R 上的奇函数,当x ()∈∞-,0时,()322f x x x =+,则()2f =__ ____.【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=. (15)【2017年全国Ⅱ,文15,5分】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O的表面积为_______. 【答案】14π【解析】球的直径是长方体的对角线,所以2414R S R ππ==∴==. (16)【2017年全国Ⅱ,文16,5分】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =_______.【答案】3π 【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 三、解答题:共70分。
江西高考2017数学试题

江西高考2017数学试题2017年6月7日,江西省举行了一场关乎万千考生前途的高考,其中数学试题一直备受广大考生关注。
本文将就江西高考2017数学试题展开讨论,分析试题特点并提供解答思路。
第一部分:选择题1. 设函数$f(x)=\sqrt{3}(2\sin{3x}-\sqrt{3}\cos{3x})$,则$f(\frac{\pi}{6})$的值为?答:首先,利用三角函数的和差化积公式,可以将$f(x)$展开为$f(x) = 2\sqrt{3}\sin(3x+\frac{\pi}{3})$。
然后,我们将$x$代入$\frac{\pi}{6}$,得到$f(\frac{\pi}{6})=2\sqrt{3}\sin(\frac{\pi}{2})=2\sqrt{3}$。
2. 已知等差数列的前$n$项和为$S_n=2n^2+3n$,则其公差为?答:利用等差数列求和公式$S_n = \frac{n}{2}(a_1+a_n)$,其中$n$为项数,$a_1$为首项,$a_n$为末项。
根据题意可得$2n^2+3n =\frac{n}{2}(a_1+a_n)$。
化简后可得$10n=2(a_1+a_n)$。
由此我们可以推出$a_n=a_1+9d$,其中$d$为公差。
联立两式,解方程组可得$d=5$,故公差$d=5$。
第二部分:解答题1. 计算函数$f(x)=(\log_2{x})^2 + \log_2{\frac{x}{2}}$的极限:$\lim_{x\to1}{f(x)}$。
答:根据极限的性质,我们可以利用函数的连续性和对数的性质来计算。
当$x$趋近于1时,$\log_2{x}$的值趋近于0,而$\log_2{\frac{x}{2}}$的值也趋近于0。
因此,$(\log_2{x})^2 +\log_2{\frac{x}{2}}$的极限为$0^2 + 0 = 0$。
2. 已知等差数列$\{a_n\}$的前$n$项和为$S_n =\frac{n}{2}(a_1+a_n)$,若$a_1=1$,$S_5=15$,则$a_5$的值为多少?答:首先,代入已知条件$S_5=15$,我们可以得到$15=\frac{5}{2}(1+a_5)$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017江西高考文科数学真题及答案本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则( )。
A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A 【难度】简单【点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )。
A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B 【难度】简单【点评】本题在高考数学(理)提高班讲座 第十六章《计数技巧》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
3.下列各式的运算结果为纯虚数的是( )。
A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)【答案】C 【难度】一般【点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是()。
A.14B.π8C.12D.π4【答案】B【难度】一般【点评】本题在高考数学(理)提高班讲座第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
5.已知F是双曲线C:x2-23y=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为()。
A.13B.12C.23D.32【答案】D【难度】中等【点评】本题在高考数学(理)提高班讲座第十二章《圆锥曲线的方程与性质》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是()。
【答案】A【点评】本题在高考数学(理)提高班讲座 第十一章《立体几何》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )。
A .0B .1C .2D .3【答案】D【难度】中等【点评】本题在高考数学(理)提高班讲座 第四章《函数的值域、最值求法及应用》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
8..函数sin21cos xy x=-的部分图像大致为( )。
【答案】C 【难度】中等【点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
9.已知函数()ln ln(2)f x x x =+-,则( )。
A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C【点评】本题在高考数学(理)提高班讲座 第二章《函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入( )。
A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D 【难度】较难【点评】本题在高考数学(理)提高班讲座 第十三章《算法与统计》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =( )。
A .π12B .π6C .π4D .π3【答案】B 【难度】中等【点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
12.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )。
A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞【答案】A 【难度】较难【点评】本题在高考数学(理)提高班讲座 第十二章《圆锥曲线的方程与性质》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =______________. 【答案】7 【难度】简单【点评】本题在高考数学(理)提高班讲座 第十五章《常用逻辑语》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
14.曲线21y x x=+在点(1,2)处的切线方程为_________________________. 【答案】x-y+1=0 【难度】简单【点评】本题在高考数学(理)提高班讲座 第三章《函数的性质及其应用》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
【难度】中等【点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
16.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。
【答案】36π 【难度】中等【点评】本题在高考数学(理)提高班讲座 第十一章《立体几何》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
【答案】=1(2)23n +-+232312(2)2(2)2(2)(2)4333n n n n n n S S ++++++-+-+-+-++=--==12n n n n S S ++-=-即S S∴12,,n n n S S ++S 成等差数列 【难度】中等【点评】本题在高考数学(理)提高班讲座 第十五章《常用逻辑语》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积. 【答案】由AB ⊥平面PAD 知:AB ⊥AD 又∵AB ∥DC ,AB=DC ∴四边形ABCD 为矩形2AD BC a ∴==∴△PBC 为等边三角形 由(1)知AB ⊥平面PAD∴平面ABCD⊥平面PAD 取AB的中点M连接PM由PA=PD,得PM⊥AD,22 PM a=由平面ABCD⊥平面PAD且交线为AD知:PM⊥平面ABCD∴PM为四棱柱P-ABCD的高1128.23323P ABCD ABCDaV S PM a a-∴==⨯⨯⨯=矩形【难度】中等【点评】本题在高考数学(理)提高班讲座第十一章《立体几何》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8零件尺寸9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04抽取次序9 10 11 12 13 14 15 16零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716iix x===∑,16162221111()(16)0.2121616i ii is x x x x===-=-≈∑∑,1621(8.5)18.439ii=-≈∑,161()(8.5) 2.78iix x i=--=-∑,其中i x为抽取的第i个零件的尺寸,1,2,,16i=⋅⋅⋅.(1)求(,)ix i(1,2,,16)i=⋅⋅⋅的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r<,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查?(ⅱ)在(3,3) xs x s-+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i ix y(1,2,,)i n=⋅⋅⋅的相关系数12211()()()()ni iin ni ii ix x y yrx x y y===--=--∑∑∑,0.0080.09≈.【答案】根据表格中数据可知第13次抽取的尺寸不在范围内,因此需要检查。