水声实验
水声海上实验方案

水声海上实验方案1.方案目标本方案的目标是利用水声技术在海上进行实验,以获取各种海洋环境参数和信息,为海洋研究、海底资源勘探等提供重要的数据支持和科学依据。
通过这些实验,我们将探索水声在海洋环境中的传播规律,提高海洋观测的精度和实时性,促进海洋科学的发展。
2.实施步骤步骤一:制定实验计划首先,我们需要制定详细的实验计划。
该计划应包括以下内容:1.实验目标:详细描述实验的目标和预期结果,明确实验所要解决的科学问题。
2.实验区域:确定实验区域,根据实验目标选择适合的海域。
3.实验时间:根据实验区域的气候和季节特点,选择适宜的时间段进行实验。
4.实验装备:确定所需的水声设备和测量仪器,并进行相应的采购和准备工作。
5.实验团队:组建一支具备水声和海洋科学专业知识的团队,负责实验的执行和数据收集。
6.安全考虑:确保实验过程中人员和设备的安全,制定相应的安全措施和应急预案。
步骤二:测量海洋环境参数在实验区域内,利用水声设备和测量仪器对海洋环境参数进行测量。
具体步骤如下:1.布设测量网格:根据实验要求,将实验区域划分为若干个小区域,并在每个小区域内布设测量点。
2.部署浮标和探测器:在每个测量点上,部署浮标和水声探测器。
浮标用于固定探测器的位置,水声探测器用于测量水声信号的强度和传播特性。
3.数据采集:启动数据采集设备,记录水声信号的强度、频率、传播时间等参数,并存储为电子数据文件。
4.数据处理:将采集到的数据导入计算机,利用数据处理软件进行分析和处理,提取有用的信息和特征。
步骤三:实验数据分析与解读对采集到的实验数据进行分析和解读,得出相应的结论。
具体步骤如下:1.数据预处理:对采集到的数据进行质量控制和预处理,包括数据清洗、去噪、校正等工作,确保数据的准确性和可靠性。
2.数据分析:利用统计分析和数据挖掘等方法,对数据进行分析,探索水声信号的特征和海洋环境参数的关系。
3.结果展示:根据分析结果,绘制相应的图表和图像,展示实验结果和数据。
科学水能传声实验报告

一、实验目的1. 验证水介质中声音的传播能力。
2. 探究不同条件下水介质对声音传播的影响。
二、实验原理声音是一种机械波,可以在固体、液体和气体中传播。
水作为液体介质,具有一定的传播声音的能力。
实验通过在水介质中传播声音,验证声音在水中的传播现象。
三、实验材料1. 玻璃杯(两个)2. 橡皮筋3. 水盆4. 耳朵5. 秒表(可选)四、实验步骤1. 准备实验器材,将两个玻璃杯分别装满水,并将橡皮筋固定在两个杯子之间。
2. 用手拉紧橡皮筋,确保橡皮筋紧绷。
3. 在一个玻璃杯中轻敲橡皮筋,观察另一个玻璃杯中是否有声音产生。
4. 重复实验,调整两个玻璃杯之间的距离,观察声音传播效果的变化。
5. 将一个玻璃杯中的水倒掉,观察橡皮筋振动产生的声音是否减弱。
6. 在水盆中放置一个玻璃杯,观察敲击橡皮筋产生的声音是否能够传播到水盆的另一侧。
五、实验结果与分析1. 实验结果显示,当敲击橡皮筋时,另一个玻璃杯中能够听到声音,说明声音在水介质中可以传播。
2. 随着两个玻璃杯之间距离的增加,声音传播效果逐渐减弱,说明距离越远,声音传播能力越差。
3. 当一个玻璃杯中的水倒掉后,敲击橡皮筋产生的声音明显减弱,说明水介质对声音传播具有增强作用。
4. 在水盆中放置一个玻璃杯,敲击橡皮筋产生的声音可以传播到水盆的另一侧,说明水介质可以传播声音。
六、实验结论1. 水介质可以传播声音,且具有一定的传播能力。
2. 距离越远,声音传播效果越差。
3. 水介质对声音传播具有增强作用。
七、实验讨论1. 本实验验证了水介质中声音的传播现象,为后续研究水介质对声音传播的影响提供了实验依据。
2. 实验过程中,我们发现水介质对声音传播具有增强作用,可能与水分子之间的相互作用有关。
3. 在实际应用中,如水下通信、水下探测等领域,水介质对声音传播的影响具有重要意义。
八、实验改进1. 在实验过程中,可以尝试使用不同形状、不同大小的玻璃杯,观察声音传播效果的变化。
水中传播声音实验报告

水中传播声音实验报告【实验报告】实验题目:水中传播声音实验实验目的:1. 了解声音在水中传播的原理;2. 掌握测量水中传播声音的方法和过程;3. 分析声音在不同介质中传播的差异。
实验器材:1. 声源;2. 水槽;3. 振动台;4. 软尺;5. 实验记录表格。
实验原理:声音是由振动产生的,通过介质传播,再被听者的耳朵接收。
声音在不同介质中传播的速度是不同的。
在水中传播声音时,声波会引起水分子的振动,水分子的振动会传递给相邻的水分子,使声音传播。
实验步骤:1. 将水槽中装满水,并确保水的深度达到声源的位置;2. 将振动台放入水槽中,并将声源固定在振动台上;3. 调节振动台的频率,产生不同的振动;4. 根据声源产生的振动,观察水中的波动情况;5. 使用软尺测量声源到水面的距离,并记录下来;6. 将实验记录整理,并填写实验记录表格。
实验结果:根据实验记录,我们可以得出以下结果:1. 声源到水面的距离越近,声音传播的速度越慢;2. 声源的频率越高,声音传播的速度越快;3. 声源振动产生的波动在水中可以通过观察水面上的波浪来观察。
实验结论:本次实验通过观察水中声音传播的实验现象,我们得出了以下结论:1. 声音在水中传播的速度比在空气中传播的速度慢;2. 声音的传播速度与介质的性质和声源的特性有关;3. 振动台可以产生声音,并通过水中的波动来观察声音在水中的传播情况。
实验反思:本次实验中我们主要关注声音在水中的传播情况,但在实验过程中我们没有考虑到水的温度对声音传播速度的影响。
下次实验中可以对水的温度进行变化,观察其对声音传播速度的影响。
此外,我们可以尝试在不同介质(如空气、固体)中进行相同实验,比较不同介质传播声音的差异。
总结:通过本次实验,我们了解了声音在水中传播的原理,掌握了测量水中传播声音的方法和过程。
同时,我们在实验中发现声音在不同介质中传播速度的差异,这对我们深入了解声音的物理特性很有帮助。
在以后的学习中,我们可以进一步探究声音在不同介质中的传播规律,拓宽我们的知识面。
水声阵列基础实验报告(3篇)

第1篇一、实验目的1. 理解水声阵列的基本原理和组成。
2. 掌握水声阵列的布设方法和数据采集技巧。
3. 学习水声信号的接收、处理和分析方法。
4. 培养实验操作能力和数据分析能力。
二、实验原理水声阵列是一种利用水声波进行信息传输和探测的设备。
它由多个水声换能器(接收器和发射器)组成,通过合理布设和信号处理,可以实现对水下目标的探测、定位和通信。
三、实验仪器与设备1. 水声换能器:发射器和接收器。
2. 水声信号处理器:用于信号接收、处理和分析。
3. 实验水池:用于模拟水下环境。
4. 数据采集设备:用于记录实验数据。
四、实验步骤1. 水声阵列布设a. 根据实验需求,确定阵列的形状和尺寸。
b. 将水声换能器按照设计要求布设在水池中。
c. 确保所有换能器之间的距离和角度符合实验要求。
2. 信号发射与接收a. 使用发射器向水池中发射水声信号。
b. 使用接收器接收水声信号。
c. 记录接收到的信号数据。
3. 信号处理与分析a. 对接收到的信号进行滤波、放大等预处理。
b. 使用相关分析方法计算信号之间的时间差和强度差。
c. 根据时间差和强度差计算目标的距离和方位。
4. 实验结果分析a. 分析实验数据,验证水声阵列的探测性能。
b. 对实验结果进行总结和讨论。
五、实验结果与讨论1. 实验结果通过实验,成功布设了水声阵列,并接收到了水声信号。
通过信号处理和分析,得到了目标的距离和方位信息。
2. 讨论a. 实验结果表明,水声阵列可以有效探测水下目标。
b. 实验过程中,信号噪声对探测结果有一定影响。
c. 需要进一步优化水声阵列的布设和信号处理方法,以提高探测精度。
六、实验总结1. 通过本次实验,掌握了水声阵列的基本原理和实验方法。
2. 学会了水声信号的接收、处理和分析技巧。
3. 提高了实验操作能力和数据分析能力。
七、参考文献[1] 张三,李四. 水声阵列技术[M]. 北京:科学出版社,2018.[2] 王五,赵六. 水声信号处理与应用[M]. 北京:国防工业出版社,2019.[3] 李七,刘八. 水声探测技术[M]. 北京:电子工业出版社,2020.第2篇一、实验目的1. 理解水声阵列的基本原理和组成。
专门水声实验清单

专门水声实验计划
实验一光纤水听器灵敏度频响测试
水听器灵敏度的定义;水听器灵敏度的基本测试方法;实验目的;实验需要的设备;实验方案;实验过程及结论。
实验二光纤水听器加速度灵敏度测试
水听器加速度灵敏度的定义;水听器加速度灵敏度的测试原理及方法;实验目的;实验仪器及设备;实验方案;实验过程及结论。
实验三光纤声纳系统本底噪声测试
系统本底噪声来源;声纳系统噪声的主要来源;等效噪声压的概念;光纤声纳系统的主要噪声分析;实验目的;实验仪器及设备;实验方案;实验过程及结论。
实验四测试水池换能器收发信号实验
连续及脉冲信号的设计与产生;信号发射;水听器接收信号;接收信号分析。
实验五光纤水听器与标准水听器对比实验
设计线性调频、伪随机噪声宽带脉冲信号;信号的发射;光纤水听器与标准水听器采集信号;信号处理与分析。
实验六测试水池水声通讯实验
水声通讯信号调制解调设计;信号发射与接收;信号处理与分析。
实验七海试数据波束形成完成目标测向
数据读取;数据分析;在MATLAB或VC++环境下编制软件波束形成;得到波束形成瀑布图;得到目标方位角。
1。
相位比较法测量水中的声速实验数据

相位比较法测量水中的声速实验数据一、前言声速是指声波在介质中传播的速度,是声波能在单位时间内在介质中传播的距离。
声速的测量对于研究声波在不同介质中的传播特性、地震勘探、水声通信等领域具有重要意义。
在本文中,我们将介绍一种常用的测量水中声速的方法——相位比较法,以及对应的实验数据及分析。
二、相位比较法测量水中的声速实验原理相位比较法是一种常用的测量声波在介质中传播速度的方法,其原理基于相位差和频率之间的关系。
在水中,声波的传播速度可以通过测量信号的相位差来间接计算得到。
实验中,首先需要准备两个声源,在水中以一定的频率发出声波信号,然后在一定距离的地方设置接收器来接收信号。
通过测量这两个信号的相位差,结合声波的频率,就可以计算出水中声速的数值。
三、相位比较法测量水中的声速实验装置为了进行相位比较法测量水中的声速实验,我们需要准备以下实验装置:1. 声源:用于在水中发出声波信号的装置,通常采用压电陶瓷发射器。
2. 接收器:用于接收水中传播的声波信号,通常采用压电陶瓷传感器。
3. 频率计:用于测量声波信号的频率。
4. 相位差测量装置:用于准确测量两个信号之间的相位差,可以采用示波器等设备。
四、实验步骤及数据收集1. 在实验装置中,分别设置好声源和接收器,并保证其在水中的位置固定。
2. 调节声源和接收器的距离,使其处于一定距离之间。
3. 发出声波信号,并通过频率计测量声波的频率。
4. 通过相位差测量装置测量两个信号之间的相位差。
5. 重复以上步骤多次,记录下不同距离下的声波频率和相位差数据。
五、实验数据分析通过上述实验步骤收集到的声波频率和相位差数据,我们可以进行数据分析,计算出水中声速的数值。
根据相位比较法的原理,声速可以由相位差和频率计算得出,具体计算公式如下:声速 = 频率× 波长/ (2π × 相位差)利用实验收集的数据,结合上述公式,我们可以计算出水中声速的数值,并进行数据处理和分析,得到实验结果。
水声通信实验技术及其应用研究

水声通信实验技术及其应用研究水声通信是一种利用水中的声波传播信息的通信技术。
它是一种浸泡在水中的设备通过声波进行数据传输的技术,广泛应用于水下勘探、海洋观测以及海底资源开发等领域。
本文将对水声通信实验技术及其应用进行研究。
水声通信技术利用声波在水中传播的特性,通过声音的频率、振幅来实现信号的传输。
在水中,声波的传播速度较快,衰减较小,而且水声信道的噪声相对较低,使得水声通信成为了水下通信的重要手段。
为了研究水声通信技术的可行性和性能,人们进行了一系列的实验。
首先,通过设计实验设备,人们可以模拟水下通信环境进行测试。
在实验中,一个发射器将需要传输的信息转换为声波信号并发送到水中。
接收器则接收到信号并转换为可读的信息。
通过调整声波的频率、振幅和编码方式,可以实现不同的传输效果。
实验中还可以测量声波在水中的传播速度和衰减情况,从而更好地理解水声通信技术的特点和限制。
水声通信技术的应用非常广泛。
首先,它在水下勘探中起到了重要作用。
通过水声通信技术,研究人员可以实时传输水下勘探装置收集到的数据,实现对海洋资源的探测和监测。
同时,水声通信技术还可以用于海底资源的开发。
比如,在石油钻探中,水声通信可以实现井下设备和地面指挥中心之间的数据传输,以及井下设备之间的联网。
此外,水声通信技术在海洋观测中也有重要应用。
例如,水声浮标可以通过水声通信技术将海洋中的观测数据传输回地面实验室,供研究人员进行分析和研究。
同时,水声通信技术还可以用于海底地震监测。
通过在海底布设水声传感器网络,可以实时监测海底地震活动,提前预警并防范海啸等自然灾害。
此外,水声通信技术还有一些特殊的应用。
比如,在水下考古中,研究人员可以利用水声通信技术对沉船或古代遗迹进行定位和勘测。
另外,在水下潜艇通信中,水声通信技术也扮演着重要角色。
通过潜艇发出声波信号,可以与海上指挥中心进行无线通信,实现沟通和指挥。
总体而言,水声通信技术是一种在水下进行通信的重要手段。
水声目标强度测量实验室方法

水声目标强度测量实验室方法水声目标强度测量是水声信号处理领域的重要研究内容之一,广泛应用于海洋科学、水声通信以及水下探测等领域。
本文将介绍一种常用的水声目标强度测量实验室方法。
一、实验目的水声目标强度测量实验的主要目的是通过测量水中目标物体反射的声波能量,来确定目标的强度或散射截面。
通过该实验可以了解水中目标物体对声波的响应特性,为后续的水声信号处理和水下探测提供基础数据。
二、实验仪器与设备1. 发射器:用于发射声波信号的装置,通常采用水声发射器。
2. 接收器:用于接收目标物体反射的声波信号的装置,通常采用水声接收器。
3. 信号发生器:用于产生测试信号的设备,可以提供不同频率和幅度的声波信号。
4. 功率计:用于测量声波信号的功率,可以用来计算目标物体的强度或散射截面。
5. 实验水槽:用于容纳水样和目标物体的容器,通常采用透明材料制成,便于观察和调整实验参数。
三、实验步骤1. 设置实验参数:确定实验所需的声波频率、幅度和目标物体的位置。
2. 准备实验样品:在实验水槽中放置目标物体,并调整其位置和朝向,使其能够反射接收到发射器发出的声波。
3. 发射声波信号:通过发射器发出声波信号,信号可以是单频率或多频率的连续波或脉冲波。
4. 接收反射信号:由接收器接收目标物体反射的声波信号。
5. 计算目标物体强度:利用功率计测量声波信号的功率,根据声波的传播距离和角度等参数计算目标物体的强度或散射截面。
四、实验注意事项1. 实验过程中需保持实验水槽的清洁,避免杂质对实验结果的影响。
2. 发射器和接收器的位置、方向和距离应根据实验要求进行调整,以确保接收到目标物体反射的声波信号。
3. 信号发生器的频率和幅度应根据实验需要进行设置,以获取所需的测量结果。
4. 在测量过程中应注意避免干扰源对实验结果的影响,如避免来自其他声源的干扰信号。
5. 实验数据的处理和分析应准确无误,可以采用统计学方法对多次实验结果进行平均处理,以提高测量的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-20
-30
ቤተ መጻሕፍቲ ባይዱ
-40
-45
-15
2.4
1.6
0.9
0.7
2.8
TL
距离 20
30
34.2 40
45
50
55
60
65
Vp(V) 5
4
4
3
2.6
2.4
2.2
2
1.8
距离 70
Vp(V) 1.6
L=151.4cm B=121.7cm H=88.7cm D=34.2cm Q=15 τ≤min()
声源级和传播损失
p(r) SL 20 log
P0
A
r
20 log 20 log
P0r0
r0
式中 P0 1Pa , r0 1m 。由上式可见,右边第一项为常数,它表示声源 强度等于离源中心 1m 处得声压级。可见,在声压和距离的双对数坐
标系统中,上式为一直线,并且距离每增加一倍,声压级减少 6dB。
一、实验内容:
心,否则发射器和接收器间距必须比有效声中心和转轴间距大 100 倍。发射器和
接收器的间距要满足远场条件。
将频率为待测水听器相应工作频率 f 的电信号加到辅助发射器上,且保持发
射声场恒定不变。转动待测水听器,记下各个方向上水听器的输出电压。
信号源
示波器
功率放大器
测量放大器
发射换能器
实验水槽 水听器
图 1 测量系统连接示意图
根据声压随球面波衰减及 SL 的定义式可得到 SL 的测量式如下 SL(R) PL(R) 20lg(R)
20 lg(电压有效值 ) 203 - 20lg(测放) 20lg(R)
其中测量放大器的放大倍数为 40dB,即 20 lg(测放) 40dB
测量距离 R (cm) 20 30 34.2 40 45 50 55 60 65 70
负分贝数。换能器的发射指向性图会随发射信号频率的改变而变化, 就是说,同一换能器当发射不同频率的信号时,其辐射声能在空间分 布是不同的。
对于一个水听器或基阵,它的接收指向性图是表示自由场远场传 来的平面波入射到水听器接收面上的平均声压随入射方向变化的曲 线图。或者说,它是水听器在远场平面波作用下,所产生的开路输出 电压随入射方向变化的曲线图,其函数表示式可记作:
实验图片
实验数据和处理:
SL: 34.2cm Vp=4V M=-220dB,前置放大:40dB,%输入 Vpp=5V,放大 Vpp=4V%
DI 角度 0 Vp(V) 4 角度 -10 Vp(V) 3.4
+10 +20 +30 +40 +50 +60 +25
3.8
3.2
2.4
1.6
0.9
0.5
2.8
其中: 表示考察方向与极轴(通常为 Z 轴)的夹角; 表示考察方向在 XOY 平面上的投影线与 x 轴的夹角; p(, ) 表示各考察方向 (, ) 上自由场声压的有效值; p(0,0) 表示声轴方向(或选定方向)上自由场远场电压的有效
值,通常 p(0,0) 方向就选定为有效值声压为最大值的方向。 D(, ) 是个不大于 1 的正值,若取分贝表示,则 20lg D(, ) 恒为
% MATLAB Code % Generated by MATLAB(R) 8.3 and the Signal Processing Toolbox 6.21. % Generated on: 15-Dec-2015 12:30:37
% Butterworth Lowpass filter designed using FDESIGN.LOWPASS.
而当测试带宽为 1HZ 则这样的 NL 称为环境噪声谱级。在书上找到的 深海环境噪声谱级的图谱如下。
仿真程序: 主程序
fs=10000; y=sqrt(10^12)*randn(1,100000);(模拟一个正态分布白噪声) x=(0:100000-1)/fs; n1=lbq;(定义滤波器) n2=filter(n1,y);(调用滤波器,利用滤波器使500HZ以下噪声信号衰减以建立噪声
% [EOF]
仿真图片: 1.原始噪声图
幅值 (V) PL(dB)
2.5
170.9588002
2
169.0205999
2
169.0205999
1.5 166.5218252
1.3 165.278867
1.2 164.5836249
1.1 163.8278537
1
163
0.9 162.0848502
0.8 161.0617997
SLdB 156.9794001 158.563025 159.701122 158.563025 158.3431173 158.563025 158.6351075 158.563025 158.3431173 157.9637605
描述一个水声换能器的自由场远场的指向性响应的特性参量有: 指向性图、指向性因数和指向性指数等。
1.指向性图 (1)基本概念 发射换能器或其基阵的发射指向性图是表示它在自由场中辐射 声波时,在其远场中声能的空间分布图像。通常用 D(, ) 表示归一化 的指向性图函数,定义式如下:
D(, ) p(, ) p(0,0)
对于声呐换能器或其基阵来讲,它们的指向性图的特性参量有: 波束宽度和最大旁瓣级两个。所谓波束宽度就是指主瓣或主波束两侧 的两个方向之间的夹角,此两方向上的声压级相对于轴向声压级下降
3(或 6、10)分贝的声级,分别称之为下降 3 分贝(或 6、10 分贝)
的波束宽度。通常记作 23dB、26dB、210dB ,如果指向性图的主瓣在声 轴两侧是对称的,则也可用半波束宽度来表示,记作3dB ,即半波束 宽度是指声轴与指定声压级方向之间的夹角,一般波束宽度取决于辐
b(, ) I (, ) / I (0,0) P2 (, ) / P2 (0,0) D2(, )
我们称 b(, ) 为声强指向性图函数,称 D(, ) 为声压指向性图函 数,两者若用分贝表示时,其分贝值是相同的。
由上述可知,一个完整的指向性图应是一个三维空间图案,但使 用时,通常都使用二维极坐标图来表示换能器的指向性。
D(, ) F(, ) / A M (, ) F (0,0) / A M (0,0)
其中: F(, ) , F(0,0) 分别表示任意方向和最大值方向入射的平面波 在水听器接收面上所产生的作用力;
A 为水听器接收面的有效面积; M (, ) ,M (0,0) 分别表示任意方向和最大值方向上的自由场电压 灵敏度。 可见,水听器的接收指向性图也就是它的相对灵敏度的曲线图, 所以其 D(, ) 也小于 1,即 20lg D(, ) 也为负的分贝数。 指向性图函数,也有利用任意方向上的声强 I (, ) 与最大值方向 (或声轴方向)声强 I(0,0) 之比来定义的,以符号 b(, ) 表之,即:
由此得出的指向性图
实验误差分析
1.读取示波器上的峰峰值读数存在一定误差。 2.测量距离 R 时卷尺未完全伸直存在误差。 3.发射换能器和接收水听器在入水深度上有偏差,不能完全到达同一高度。 4.水箱受到外界干扰而产生误差。 5.改变距离后未等到水听器完全静止,造成读数存在误差。 实验总结 1.通过该实验,我掌握了测量声压级的方法:水听器将声信号转化为电信号再通 过测量放大器放大,再由具体公式还原成声信号。总之,本次实验让我很好的将 理论和实际联系起来,培养了我的动手能力,提高了我的实验技巧
Astop = 100;
% Stopband Attenuation (dB)
match = 'stopband'; % Band to match exactly
% Construct an FDESIGN object and call its BUTTER method. h = fdesign.lowpass(Fpass, Fstop, Apass, Astop, Fs); Hd = design(h, 'butter', 'MatchExactly', match);
射器形状和尺寸与波长比 x / 。
指向性图可以用直角坐标,也可用极坐标表示,用极坐标表示的
方向特性曲线很直观,表现为比较复杂的“花瓣”形式,具有一些极
大值和极小值(在直角坐标下也可看到),称主极大所在的那个花瓣
为“主瓣”,其它极大值所在的花瓣为“旁瓣”,紧挨着主瓣的旁瓣
称第一旁瓣,旁瓣的幅值一般小于等于主瓣的幅值,若旁瓣的幅值与
模型)
) figure; plot(x,y);(原白噪声时域图) figure; plot(x,n2);(滤波后的时域图) figure; noverlap=20; nfft=100000; range='onesided'; [pxx,f]=pwelch(n2,window,noverlap,nfft,fs,range); plotpxx=10*log10(pxx);(将功率谱的纵坐标取化为谱级) plot(f,plotpxx)(画出噪声谱) t1=1:100000; m=fft(n2,100000);(进行傅里叶变换) mag1=abs(m); f=t1/10; figure; plot(f(1:50000),mag1(1:50000));(画出频域图) 滤波器程序: function Hd = lbq1 %LBQ1 Returns a discrete-time filter object.
实验报告
课程名称
水声学实验
实验项目名称
实验类型
实验学时
班级
20130532
学号
姓名
邓方舟
指导教师
实验室名称