统计学方法的分类和选择 ppt课件
合集下载
统计学完整全套PPT课件

介绍非线性回归模型的基本形式 、特点以及常见的非线性回归模 型,如指数模型、对数模型等。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
常用统计学方法ppt课件

三、率(构成比)的统计分析
两样本率或构成比的比较用四格表2 配对设计时用配对2 多组率或构成比比较用行×列2
四格表2检验
1.当n≥40,且T≥5时,直接计算 2值
基本公式 χ2=
(A-T)2 ∑─────
T
专用公式
( a d-b c ) 2 n χ2= ───────────
(a+b)(c+d)(a+c)(b+d)
学习内容:
一、研究资料类型 二、均数的统计分析 三、率(构成比)的统计分析
一、研究资料类型
➢ 计量资料 ➢ 计数资料 ➢ 等级资料
计量资料:用定量方法对每个观察 单位某指标测量数值大小的资料。
常用表达方法:±s 常用统计方法:t检验
u检验 方差分析
计数资料:将观察单位按属性分组, 清点各观察单位个数的资料。 常用表达方法:率、百分构成等 常用统计方法:2检验
➢ 对同一受试对象分别给予两种处理, 推断两种处理效果有无差别;
➢ 对同一受试对象处理前、后比较,推 断该处理有无作用。
t检验:
样本均数与总体均数比较(P106); 配对设计计量资料比较(P107); 两样本均数比较(P108)。
u检验:
两大样本均数比较(P109)
方差分析(ANOVA):
多个样本均数比较(P109)
等级资料:将观察单位按属性的 不同程度分组,再清点各观察单 位个数的资料。 常用统计方法:秩和检验等
二、均数的统计分析
➢ 成组设计:
两小样本均数比较用t检验;
两大样本均数比较用u检验; 三个以上样本均数比较用方差分析。 对同对和两个受试对象分别给予两种 处理,推断两种处理效果有无差别;
2.当n≥40,且有1≤T<5时,计算校正的 2值
统计学课件PPT课件

直方图
用直条表示频数,用横轴表示 数据范围,纵轴表示频数。
箱线图
表示一组数据的中位数、四分 位数和异常值。
散点图
表示两个变量之间的关系。
折线图
表示时间序列数据随时间的变 化趋势。
04
概率与概方法
描述随机事件发生的可能性程度,通 常用P表示。
通过实验或经验数据计算随机事件的 概率。
表示数量、大小、距离等可以量化的 数据,如年龄、收入。
统计数据的收集方法
直接观察法
通过实地考察、观测等方式收集数据, 如市场调研人员现场观察消费者行为。
实验法
通过实验设计和实验操作获取数据, 如产品测试实验。
调查法
通过问卷、访谈等方式收集数据,如 民意调查。
行政记录法
通过政府部门或企业提供的记录获取 数据,如企业财务报表。
01
单总体参数假设检 验的概念
根据单一样本数据对总体参数进 行假设检验。
02
单总体参数假设检 验的方法
如t检验、Z检验、卡方检验等。
03
单总体参数假设检 验的应用场景
如检验单个样本的平均数、比例 等是否与已知的总体参数存在显 著差异。
两总体参数的假设检验
两总体参数假设检验的概念
根据两个样本数据对两个总体的参数进行假设检验。
04
常见概率分布及其应用
二项分布
适用于独立重复试验中成功次数的概率分布, 如抛硬币、抽奖等。
正态分布
适用于许多自然现象的概率分布,如人的身 高、考试分数等。
泊松分布
适用于单位时间内随机事件的次数概率分布, 如放射性衰变、网站访问量等。
指数分布
适用于描述时间间隔或寿命的概率分布,如 电子产品寿命、等待时间等。
用直条表示频数,用横轴表示 数据范围,纵轴表示频数。
箱线图
表示一组数据的中位数、四分 位数和异常值。
散点图
表示两个变量之间的关系。
折线图
表示时间序列数据随时间的变 化趋势。
04
概率与概方法
描述随机事件发生的可能性程度,通 常用P表示。
通过实验或经验数据计算随机事件的 概率。
表示数量、大小、距离等可以量化的 数据,如年龄、收入。
统计数据的收集方法
直接观察法
通过实地考察、观测等方式收集数据, 如市场调研人员现场观察消费者行为。
实验法
通过实验设计和实验操作获取数据, 如产品测试实验。
调查法
通过问卷、访谈等方式收集数据,如 民意调查。
行政记录法
通过政府部门或企业提供的记录获取 数据,如企业财务报表。
01
单总体参数假设检 验的概念
根据单一样本数据对总体参数进 行假设检验。
02
单总体参数假设检 验的方法
如t检验、Z检验、卡方检验等。
03
单总体参数假设检 验的应用场景
如检验单个样本的平均数、比例 等是否与已知的总体参数存在显 著差异。
两总体参数的假设检验
两总体参数假设检验的概念
根据两个样本数据对两个总体的参数进行假设检验。
04
常见概率分布及其应用
二项分布
适用于独立重复试验中成功次数的概率分布, 如抛硬币、抽奖等。
正态分布
适用于许多自然现象的概率分布,如人的身 高、考试分数等。
泊松分布
适用于单位时间内随机事件的次数概率分布, 如放射性衰变、网站访问量等。
指数分布
适用于描述时间间隔或寿命的概率分布,如 电子产品寿命、等待时间等。
统计学ppt课件

配对样本非参数检验
包括Wilcoxon符号秩次检验、McNemar检验等,用于比较同一组 样本在两个不同条件下的差异。
多元线性回归模型构建
1 2
多元线性回归模型基本概念 介绍自变量、因变量、误差项等概念,以及模型 的数学表达式。
多元线性回归模型的参数估计 通过最小二乘法等方法估计模型参数,得到回归 方程。
概率可以通过古典概型、几何概型、频率等方法进行计算。古典概型适用于等可能 事件,几何概型适用于连续型随机变量,而频率则是在大量重复试验中出现的相对 频率。
02 描述性统计方法
数值型数据描述
集中趋势度量
01
平均数、中位数、众数
离散程度度量
02
极差、四分位差、方差、标准差
偏态与峰态度量
03
偏度系数、峰度系数
统计学ppt课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数检验与多元统计分析 • 实验设计与抽样技术 • 数据可视化与报告撰写技巧
01 统计学基本概念 与原理
统计学定义及作用
统计学的定义
统计学是一门研究如何收集、整理、 分析、解释和呈现数据的科学。
统计学的作用
数据分布形态判断
正态性检验
直方图、QQ图、P-P图、Shapiro-Wilk检验等方 法
对称性检验
通过观察频数分布表或图形判断
峰度与偏度检验
通过计算峰度系数和偏度系数判断
03 推论性统计方法
参数估计原理及应用
点估计与区间估计
利用样本数据对总体参数进行估计,包括点估计和区间估计两种方 法。
估计量的评价标准
3
多元线性回归模型的假设检验 对模型参数进行显著性检验,判断自变量对因变 量的影响是否显著。
包括Wilcoxon符号秩次检验、McNemar检验等,用于比较同一组 样本在两个不同条件下的差异。
多元线性回归模型构建
1 2
多元线性回归模型基本概念 介绍自变量、因变量、误差项等概念,以及模型 的数学表达式。
多元线性回归模型的参数估计 通过最小二乘法等方法估计模型参数,得到回归 方程。
概率可以通过古典概型、几何概型、频率等方法进行计算。古典概型适用于等可能 事件,几何概型适用于连续型随机变量,而频率则是在大量重复试验中出现的相对 频率。
02 描述性统计方法
数值型数据描述
集中趋势度量
01
平均数、中位数、众数
离散程度度量
02
极差、四分位差、方差、标准差
偏态与峰态度量
03
偏度系数、峰度系数
统计学ppt课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数检验与多元统计分析 • 实验设计与抽样技术 • 数据可视化与报告撰写技巧
01 统计学基本概念 与原理
统计学定义及作用
统计学的定义
统计学是一门研究如何收集、整理、 分析、解释和呈现数据的科学。
统计学的作用
数据分布形态判断
正态性检验
直方图、QQ图、P-P图、Shapiro-Wilk检验等方 法
对称性检验
通过观察频数分布表或图形判断
峰度与偏度检验
通过计算峰度系数和偏度系数判断
03 推论性统计方法
参数估计原理及应用
点估计与区间估计
利用样本数据对总体参数进行估计,包括点估计和区间估计两种方 法。
估计量的评价标准
3
多元线性回归模型的假设检验 对模型参数进行显著性检验,判断自变量对因变 量的影响是否显著。
统计学完整ppt课件完整版

假设检验的基本思想:小概率事件原 理
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
统计知识讲座PPT课件

图表设计原则与规范
01
02
03
04
简洁明了
图表设计应简洁明了,避免过 多的装饰和复杂的背景,突出
数据本身的特点。
一致性
在同一份报告中,应保持图表 风格、字体、颜色等要素的一
致性,提高整体美观度。
数据准确性
图表中的数据应准确无误,来 源可靠,避免误导读者。
注解清晰
对于图表中的重要信息,应提 供清晰的注解和说明,帮助读
标准差
方差的算术平方根,反映 数据波动程度,标准差越 小,数据越稳定。
数据分布形态的描述
偏态分布
正态分布
数据分布不对称,偏向某一方向,可 分为左偏和右偏。
一种对称分布,其形态由均值和标准 差决定,具有广泛的应用。
峰态分布
数据分布的尖峭或扁平程度,峰度越 高,数据分布越尖峭;峰度越低,数 据分布越扁平。
假设检验与显著性水平
假设检验
先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。假设 检验包括原假设和备择假设的设立、检验统计量的选择、显著性水平的确一类错误的概率。通常取0.05或0.01等小概率值作为显 著性水平,表示在原假设为真时,拒绝原假设的最大允许概率。
对收集到的数据进行预处理,包括数据筛 选、缺失值处理、异常值处理等。
数据分析
结果呈现
运用统计学方法对数据进行描述性分析和 推断性分析,如均值、方差、假设检验等 。
将分析结果以图表、报告等形式呈现,为 市场决策提供支持。
案例二:医学实验数据处理
实验设计
根据研究目的和实验条件,设计合理的实验 方案和数据收集计划。
数据可视化
Python的matplotlib、seaborn等库 提供丰富的数据可视化功能,可绘制 各种静态、动态、交互式的图表。
《统计学》完整ppt课件

秩和检验的应用场景
适用于等级资料或无法精确测量的数据,如医学 领域的疗效评价、心理学中的量表评分等。
3
秩和检验的优缺点
优点在于对数据分布的假设较为宽松,适用范围 广;缺点是当样本量较大时,检验效率可能降低 。
符号检验
符号检验的基本原理
通过比较样本数据的中位数或均值与某个参考值的大小关 系,判断总体分布是否存在显著差异。
推论性统计分析
介绍如何在Excel中进行推论性统计分析, 如假设检验、方差分析等。
Python编程实现统计分析案例展示
Python统计分析库介绍
数据处理与可视化
简要介绍Python中常用的统计分析库,如 NumPy、Pandas、SciPy等。
演示如何使用Python进行数据清洗、处理 及可视化,包括缺失值处理、异常值检测 等。
相关分析与回归分析
相关分析
研究两个或多个变量之间相关关系的统计分析方法,通过计算相关系数来衡量变量之间 的相关程度。
回归分析
研究因变量与一个或多个自变量之间关系的统计分析方法,通过建立回归模型来预测因 变量的取值。
04
CATALOGUE
非参数统计方法
卡方检验
卡方检验的基本原理
通过比较实际观测值与理论期望值之间的差异,判断两个或多个分 类变量之间是否存在显著关联。
03
CATALOGUE
推论性统计方法
参数估计方法
点估计
用样本统计量直接作为总体参数的估计值。
区间估计
根据样本统计量和抽样分布,构造一个包含总体参数的真值的置信区间,并给出该区间被总体参数真值覆盖的概 率。
假设检验原理及步骤
假设检验的基本原理
先对总体参数提出一个假设,然后利用样本信息判断这一假设是否合理,即判断总体参数与假设值是 否有显著差异。
适用于等级资料或无法精确测量的数据,如医学 领域的疗效评价、心理学中的量表评分等。
3
秩和检验的优缺点
优点在于对数据分布的假设较为宽松,适用范围 广;缺点是当样本量较大时,检验效率可能降低 。
符号检验
符号检验的基本原理
通过比较样本数据的中位数或均值与某个参考值的大小关 系,判断总体分布是否存在显著差异。
推论性统计分析
介绍如何在Excel中进行推论性统计分析, 如假设检验、方差分析等。
Python编程实现统计分析案例展示
Python统计分析库介绍
数据处理与可视化
简要介绍Python中常用的统计分析库,如 NumPy、Pandas、SciPy等。
演示如何使用Python进行数据清洗、处理 及可视化,包括缺失值处理、异常值检测 等。
相关分析与回归分析
相关分析
研究两个或多个变量之间相关关系的统计分析方法,通过计算相关系数来衡量变量之间 的相关程度。
回归分析
研究因变量与一个或多个自变量之间关系的统计分析方法,通过建立回归模型来预测因 变量的取值。
04
CATALOGUE
非参数统计方法
卡方检验
卡方检验的基本原理
通过比较实际观测值与理论期望值之间的差异,判断两个或多个分 类变量之间是否存在显著关联。
03
CATALOGUE
推论性统计方法
参数估计方法
点估计
用样本统计量直接作为总体参数的估计值。
区间估计
根据样本统计量和抽样分布,构造一个包含总体参数的真值的置信区间,并给出该区间被总体参数真值覆盖的概 率。
假设检验原理及步骤
假设检验的基本原理
先对总体参数提出一个假设,然后利用样本信息判断这一假设是否合理,即判断总体参数与假设值是 否有显著差异。
2024全新统计学ppt课件(2024)

非平稳时间序列转换方法
01
02
03
转换后时间序列建模与 预测
对转换后序列进行平稳 性检验
选择合适模型进行建模 与预测
2024/1/29
33
组合预测模型应用
2024/1/29
组合预测模型原理
综合多个单一模型预测结果,提高预测精度和 稳定性。 组合预测模型构建步骤
34
组合预测模型应用
选择合适的单一预测模型
单侧检验与双侧检验
介绍单侧检验与双侧检验的概 念,根据实际问题选择合适的 检验类型。
常见的假设检验方法
列举并介绍常见的Z检验、t检 验、F检验和χ²检验等方法,阐 述其适用条件和计算步骤。
假设检验的注意事项
讨论假设检验中可能犯的第一 类错误和第二类错误,阐述样
本容量对假设检验的影响。
17
04
方差分析与回归分析应用举例
数据输入与格式设置
快速输入数据、设置数据格式、使用数据验 证等技巧。
数据可视化
创建图表、修改图表样式、添加数据标签等 可视化操作。
2024/1/29
数据整理与清洗
利用筛选、排序、查找替换等功能进行数据 清洗。
数据分析工具
使用Excel内置的数据分析工具进行描述性 统计、回归分析等。
38
SPSS软件操作界面简介
分布函数与概率密度函数
02
定义分布函数,介绍离散型随机变量的概率分布列及连续型随
机变量的概率密度函数。
常见的随机变量分布
03
列举并介绍常见的离散型(如二项分布、泊松分布)和连续型
(如正态分布、指数分布)随机变量分布。
15
参数估计方法
2024/1/29
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同理,结果为定性资料时,很多人不管结果变量的具体情况,也不 管原因变量有多少个,甚至不管统计分析的目的是什么,一律盲目 套用χ2 检验。在采用其他统计分析方法时,也存在盲目套用的问题。 正因如此,使得我国乃至全世界生物医学杂志论文的质量令人担忧 (错误率平均约为80%),大大降低了科研工作的科学性和严谨性。
20.00
12.35
正常
3
43
男 干部 乙药
17.33
10.93
正常
┇
┇
┇
…
┇
┇
┇
┇
100
54
女 其它 乙药
16.80
11.73
正常
疗效 显效 有效 有效
┇ 有效
• 通常所说的资料三种类型,即计数资料、计量资料、等级资料,是针对协 变量和反应变量而言,尤其是指反应变量的类型。计数资料是定性观察结 果,如表4-1中的性别、职业、心电图检查结果,统计指标是各个属性或 类别的计数、率、结构百分比等;计量资料是定量观察结果,通常有度量 单位,如表4-1中的年龄、收缩压、舒张压,统计指标常用例数、平均数、 标准差等;等级资料介于定性观察和定量观察之间,观察结果有等级或程 度上的差别,但不能用数量表示,如表4-1中的疗效评价。
统计学方法的分类和选择
2
□
统计学方法的分类和选择
3
统计学方法的分类和选择
4
配对设计
统计学方法的分类和选择
5
统计学方法的分类和选择
6
统计学方法的分类和选择
7
统计学方法的分类和选择
8
统计学方法的分类和选择
9
统计学方法的分类和选择
10
统计学方法的分类和选择
11
统计学方法的分类和选择
12
54
4-1
统计学方法的分类和选择
55
统计学方法的分类和选择
56
4-2
统计学方法的分类和选择
57
5
统计学方法的分类和选择
58
统计学方法的分类和选择
59
6
统计学方法的分类和选择
60
统计学方法的分类和选择
61
谢 谢!
统计学方法的分类和选择
62
20
统计学方法的分类和选择
21
统计学方法的分类和选择
22
统计学方法的分类和选择
23
统计学方法的分类和选择
24
统计学方法的分类和选择
25
统计学方法的择
27
统计学方法的分类和选择
28
统计学方法的分类和选择
29
统计学方法的分类和选择
30
统计学方法的分类和选择
数值变量
正态性检验
正态
数据转换
非正态
参数检验
非参数检验
统计学方法的分类和选择
13
分类变量
单因素分析 多因素分析
统计学方法的分类和选择
14
数据的转换
统计学方法的分类和选择
15
统计学方法的分类和选择
16
统计学方法的分类和选择
17
统计学方法的分类和选择
18
统计学方法的分类和选择
19
统计学方法的分类和选择
41
• 一项研究在完成了设立对照、随机分组和 样本大小估计等实验设计工作后,接下来 就是收集资料。在医学论文中一些统计描 述和统计分析方法的误用中,不能够正确 区分统计资料类型是一个重要原因。
统计学方法的分类和选择
42
统计资料类型
• 计量资料最为多见。统计上将计量资料又划分为 正态分布资料、偏态分布资料等类型。对于偏态 分布资料,统计指标不宜用平均数、标准差,而 应用中位数、几何均数、四分位间距离等。
31
统计学方法的分类和选择
32
统计学方法的分类和选择
33
统计学方法的分类和选择
34
统计学方法的分类和选择
35
统计学方法的分类和选择
36
统计学方法的分类和选择
37
统计学方法的分类和选择
38
统计学方法的分类和选择
39
• 实例及解析
统计学方法的分类和选择
40
如何正确区分资料类型
统计学方法的分类和选择
• 统计资料类型的判断失误是医学论文中统计误用 的根源之一。常见的问题有:不能正确区分资料 类型;计数资料比、率不分;计量资料不管是否 正态分布,一律计算均数、标准差;等级资料当 做分类资料,配对资料和成组资料混淆等。
统计学方法的分类和选择
43
表4-1是统计数据库所要求的数据记录格式。各种试验和调查的原始记 录,无论数据是否录入计算机,都应该按表4-1的格式整理。整理后的 数据包括4种类型的变量:①标识变量,如动物编号、姓名等;②干预 变量,即试验性研究的处理因素,或观察性研究的危险因素;③协变量, 即需要进行控制和均衡性检查的因素;④反应变量,反映干预后的生物 效应,大多数研究同时记录多个反应变量。表4-1中,患者编号是标识 变量;治疗分组是干预变量;年龄、性别、职业是协变量;收缩压、舒 张压、心电图、疗效是反应变量。
统计学方法的分类和选择
45
如何对数据资料进行一般性统计分析
统计学方法的分类和选择
46
统计学方法的分类和选择
47
成组
统计学方法的分类和选择
48
统计学方法的分类和选择
49
统计学方法的分类和选择
50
统计学方法的分类和选择
51
统计学方法的分类和选择
52
统计学方法的分类和选择
53
统计学方法的分类和选择
表 4-1 100 名高血压患者治疗 2 周后的临床记录
患者编号 年龄(岁) 性别 职业 治疗分组 收缩压(kPa) 舒张压(kPa) 心电图
1
37 男 工人 甲药
18.67
11.47
正常
2
45 女 农民 对照
20.00
12.35
正常
3
43 男 干部 乙药
17.33
10.93
正常
┇
┇ ┇…
┇
┇
┇
┇
100
统计学方法的分类和选择
1
在阅读生物医学杂志论文时,不难发现如下的现象:只要结果是定 量资料,人们普遍运用“t 检验”、“单因素方差分析”或“秩和 检验”来处理。
事实上,在人们用前述方法处理的定量资料中,有相当多的定量资 料同时受到多个因素(通常包括实验因素和重要的非实验因素)的 影响,即定量资料来自某种特定的多因素实验设计类型。这种用单 因素设计定量资料的统计分析方法处理原本属于多因素实验设计的 定量资料,其结论的可信度大为降低,有时,甚至会不可避免地得 出错误的结论。
54 女 其它 乙药
16.80
11.73
正常
统计学方法的分类和选择
疗效 显效 有效 有效
┇ 有效
44
表 4-1 100 名高血压患者治疗 2 周后的临床记录
患者编号 年龄(岁) 性别 职业 治疗分组 收缩压(kPa) 舒张压(kPa) 心电图
1
37
男 工人 甲药
18.67
11.47
正常
2
45
女 农民 对照
20.00
12.35
正常
3
43
男 干部 乙药
17.33
10.93
正常
┇
┇
┇
…
┇
┇
┇
┇
100
54
女 其它 乙药
16.80
11.73
正常
疗效 显效 有效 有效
┇ 有效
• 通常所说的资料三种类型,即计数资料、计量资料、等级资料,是针对协 变量和反应变量而言,尤其是指反应变量的类型。计数资料是定性观察结 果,如表4-1中的性别、职业、心电图检查结果,统计指标是各个属性或 类别的计数、率、结构百分比等;计量资料是定量观察结果,通常有度量 单位,如表4-1中的年龄、收缩压、舒张压,统计指标常用例数、平均数、 标准差等;等级资料介于定性观察和定量观察之间,观察结果有等级或程 度上的差别,但不能用数量表示,如表4-1中的疗效评价。
统计学方法的分类和选择
2
□
统计学方法的分类和选择
3
统计学方法的分类和选择
4
配对设计
统计学方法的分类和选择
5
统计学方法的分类和选择
6
统计学方法的分类和选择
7
统计学方法的分类和选择
8
统计学方法的分类和选择
9
统计学方法的分类和选择
10
统计学方法的分类和选择
11
统计学方法的分类和选择
12
54
4-1
统计学方法的分类和选择
55
统计学方法的分类和选择
56
4-2
统计学方法的分类和选择
57
5
统计学方法的分类和选择
58
统计学方法的分类和选择
59
6
统计学方法的分类和选择
60
统计学方法的分类和选择
61
谢 谢!
统计学方法的分类和选择
62
20
统计学方法的分类和选择
21
统计学方法的分类和选择
22
统计学方法的分类和选择
23
统计学方法的分类和选择
24
统计学方法的分类和选择
25
统计学方法的择
27
统计学方法的分类和选择
28
统计学方法的分类和选择
29
统计学方法的分类和选择
30
统计学方法的分类和选择
数值变量
正态性检验
正态
数据转换
非正态
参数检验
非参数检验
统计学方法的分类和选择
13
分类变量
单因素分析 多因素分析
统计学方法的分类和选择
14
数据的转换
统计学方法的分类和选择
15
统计学方法的分类和选择
16
统计学方法的分类和选择
17
统计学方法的分类和选择
18
统计学方法的分类和选择
19
统计学方法的分类和选择
41
• 一项研究在完成了设立对照、随机分组和 样本大小估计等实验设计工作后,接下来 就是收集资料。在医学论文中一些统计描 述和统计分析方法的误用中,不能够正确 区分统计资料类型是一个重要原因。
统计学方法的分类和选择
42
统计资料类型
• 计量资料最为多见。统计上将计量资料又划分为 正态分布资料、偏态分布资料等类型。对于偏态 分布资料,统计指标不宜用平均数、标准差,而 应用中位数、几何均数、四分位间距离等。
31
统计学方法的分类和选择
32
统计学方法的分类和选择
33
统计学方法的分类和选择
34
统计学方法的分类和选择
35
统计学方法的分类和选择
36
统计学方法的分类和选择
37
统计学方法的分类和选择
38
统计学方法的分类和选择
39
• 实例及解析
统计学方法的分类和选择
40
如何正确区分资料类型
统计学方法的分类和选择
• 统计资料类型的判断失误是医学论文中统计误用 的根源之一。常见的问题有:不能正确区分资料 类型;计数资料比、率不分;计量资料不管是否 正态分布,一律计算均数、标准差;等级资料当 做分类资料,配对资料和成组资料混淆等。
统计学方法的分类和选择
43
表4-1是统计数据库所要求的数据记录格式。各种试验和调查的原始记 录,无论数据是否录入计算机,都应该按表4-1的格式整理。整理后的 数据包括4种类型的变量:①标识变量,如动物编号、姓名等;②干预 变量,即试验性研究的处理因素,或观察性研究的危险因素;③协变量, 即需要进行控制和均衡性检查的因素;④反应变量,反映干预后的生物 效应,大多数研究同时记录多个反应变量。表4-1中,患者编号是标识 变量;治疗分组是干预变量;年龄、性别、职业是协变量;收缩压、舒 张压、心电图、疗效是反应变量。
统计学方法的分类和选择
45
如何对数据资料进行一般性统计分析
统计学方法的分类和选择
46
统计学方法的分类和选择
47
成组
统计学方法的分类和选择
48
统计学方法的分类和选择
49
统计学方法的分类和选择
50
统计学方法的分类和选择
51
统计学方法的分类和选择
52
统计学方法的分类和选择
53
统计学方法的分类和选择
表 4-1 100 名高血压患者治疗 2 周后的临床记录
患者编号 年龄(岁) 性别 职业 治疗分组 收缩压(kPa) 舒张压(kPa) 心电图
1
37 男 工人 甲药
18.67
11.47
正常
2
45 女 农民 对照
20.00
12.35
正常
3
43 男 干部 乙药
17.33
10.93
正常
┇
┇ ┇…
┇
┇
┇
┇
100
统计学方法的分类和选择
1
在阅读生物医学杂志论文时,不难发现如下的现象:只要结果是定 量资料,人们普遍运用“t 检验”、“单因素方差分析”或“秩和 检验”来处理。
事实上,在人们用前述方法处理的定量资料中,有相当多的定量资 料同时受到多个因素(通常包括实验因素和重要的非实验因素)的 影响,即定量资料来自某种特定的多因素实验设计类型。这种用单 因素设计定量资料的统计分析方法处理原本属于多因素实验设计的 定量资料,其结论的可信度大为降低,有时,甚至会不可避免地得 出错误的结论。
54 女 其它 乙药
16.80
11.73
正常
统计学方法的分类和选择
疗效 显效 有效 有效
┇ 有效
44
表 4-1 100 名高血压患者治疗 2 周后的临床记录
患者编号 年龄(岁) 性别 职业 治疗分组 收缩压(kPa) 舒张压(kPa) 心电图
1
37
男 工人 甲药
18.67
11.47
正常
2
45
女 农民 对照