八年级数学一次函数动点问题
完整版)八年级数学一次函数动点问题

完整版)八年级数学一次函数动点问题八年级数学一次函数动点问题1、如图所示,以等边三角形OAB的边OB所在直线为x 轴,点O为坐标原点,在第一象限建立平面直角坐标系。
其中,△OAB边长为6个单位。
点P从O点出发沿折线OAB 向B点以3单位/秒的速度运动,点Q从O点出发沿折线OBA向A点以2单位/秒的速度运动。
两点同时出发,运动时间为t(单位:秒),当两点相遇时运动停止。
①点A的坐标为(3,3),P、Q两点相遇时交点的坐标为(3,3);②当t=2时,△OPQ的面积为3/2;当t=3时,△OPQ的面积为9/4;③设△OPQ的面积为S,求S关于t的函数关系式为S=(3t-t^2)/4;④当△OPQ的面积最大时,在y轴上无法找到一点M,使得以M、P、Q为顶点的三角形是直角三角形。
2、如图所示,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动。
设点P、Q移动的时间为t秒。
1) 直线AB的解析式为y=-x+6;2) 当t=5时,△APQ的面积为24/5平方单位;3) △OPQ为直角三角形的时间范围为2≤t≤4;4) 无论t为何值,△OPQ都不可能为正三角形。
若点Q的运动速度为4个单位/秒,则此时t=2.3、如图所示,在直角三角形△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点。
它们同时分别从点A、O向B 点匀速运动,速度均为1cm/秒。
设P、Q移动时间为t(≤t≤4)。
1)过点P做PM⊥OA于M,求证:AM:AO=PM:BO=AP:AB,并求出P点的坐标(用t表示)。
证明:由于△OPM与△OAB相似,因此有PM/OB=AO/AB,即PM=AO*OB/AB=9/5.又因为△APM与△AOB相似,因此有AM/OA=PM/OB,即AM=OA*PM/OB=27/20.因此AM:AO=PM:BO=AP:AB=9:15:20.P点的坐标为(3t/5,18t/5)。
初二数学期末复习一次函数的应用—动点问题附练习及答案

课 题一次函数的应用——动点问题教学目标1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。
2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。
重点、难点理解在平面直角坐标系中,动点问题列函数关系式的方法。
小结:1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。
2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来研究解决,注意自变量的取值围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .〔1〕求点D 的坐标;〔2〕求直线2l 的解析表达式;〔3〕求ADC △的面积;〔4〕在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标. 例题2:如图,在平面直角坐标系,点A 〔0,6〕、点B 〔8,0〕,动点P 从点A 开场在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开场在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位.当堂稳固:如图,直线6y kx =+与*轴、y 轴分别交于点E 、F ,点E 的坐标为〔-8,0〕,点A 的坐标为〔-6,0〕。
〔1〕求k 的值;〔2〕假设点P 〔x ,y 〕是第二象限的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与*的函数关系式,并写出自变量*的取值围;〔3〕探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。
课后检测:1、如果一次函数y=-*+1的图象与*轴、y 轴分别交于点A 点、B 点,点M 在*轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,则这样的点M 有〔〕。
(完整版)北师大版八上一次函数的动点问题面积问题

一次函数的动点问题类型一 面积问题 23. 如图,直线133+-=x y 和两坐标轴交于点B A ,, 以线段AB 为边在第一象限作等边三角形ABC , 存在点)21,(m P , 使ABC ∆的面积与ABP ∆的面积相等,求m 的值。
练习1 已知如图,直线121+-=x y 和两坐标轴交于点B A ,, 把线段AB 绕点A 顺时针旋转90°得到线段'AB . (1)求直线'AB 的解析式。
(2) 若动点),1(a C 使得'ABB ABC S S ∆∆=的面积相等,求a 的值。
练习2 如图,已知一次函数b x y +-=21的图像过)3,2(A , x AB ⊥轴于点B , 连接OA 。
(1)求一次函数解析式。
(2)设点P 为直线b x y +-=21上一点,且在第一象限内,经过点P (不与A 重合)作x 轴的垂线,若AOB POQ S S ∆∆=, 求点P 的坐标。
练习3 已知)0,0(),0,2(),2,0(C B A 三个点为顶点的三角形被直线a ax y -=分成两部分, (1)填空: 不论a 为何值,直线a ax y -=必定经过一顶点C , 则该顶点为 。
(2)若所分的两部分面积之比为7:1, 求a 的值。
如图, 已知直线42+=x y 的图像交两坐标轴于点B A ,, 点C 为OB 的中点,直线l 经过点C ,与AB 交于点D , 把AOB ∆的面积分为2:1, 求直线l 的解析式。
如图,直线32+=x y 与x 轴交于点A , 与y 轴交于点B 。
(1)求点B A ,的坐标。
(2)过点B 作直线BP 与x 轴交于点P , 若415=∆ABP S , 求直线BP 的解析式。
二 动点问题一条直线上顺次有C B A ,,三个港口,甲乙两船分别从B A ,港口出发,沿直线行驶到C 港口,最终到达C 港口在一条直线上依次有A 、B 、C 三个港口,甲乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港.最终到达C 港.设甲、乙两船行驶x(h)后,与B 港的距离分别为y1、y2(km ),y1、y2与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离____km,a= _____; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km 时能够相互望见,求甲、乙两船可以相互望见时,x 的取值范围.两城B A ,间的公路长为450千米,甲、乙两车同时从A 城出发沿这一公路驶向B 城,甲车到达B 城1小时后沿原路返回.如图是它们离A 城的路程y (千米)与行驶时间 x (小时)之间的函数图像. (1)求甲车返回过程中y 与x 之间的函数解析式,并写出x 的取值范围; (2)乙车与返回的甲车相遇距离B 城还有多远?特殊三角形问题已知)4,4(A, 在y轴上找一点C,使得ABC0,1(B),为等腰三角形,求出点C的坐标。
苏科版八年级数学上册第6章 一次函数的应用——动点问题(解析版)

一次函数的应用——动点问题一、单选题1.在平面直角坐标系中,已知一次函数y=﹣34x+6与x,y轴分别交于A,B两点,点C (0,n)是y轴上一点,把坐标平面沿直线AC折叠,点B刚好落在x轴上,则点C的坐标是()A. (0,3)B. (0,43) C. (0,83) D. (0,73)【答案】C【解析】【解答】解:过C作CD⊥AB于D,如图,对于直线y=﹣34x+6,当x=0,得y=6;当y=0,x=8,∴A(8,0),B(0,6),即OA=8,OB=6,∴AB=10,又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,∴AC平分∠OAB,∴CD=CO=n,则BC=6﹣n,∴DA=OA=8,∴DB=10﹣8=2,在Rt△BCD中,DC2+BD2=BC2,∴n2+22=(6﹣n)2,解得n= 83,∴点C的坐标为(0,83).故答案为:C.2.如图,函数y=mx﹣4m(m是常数,且m≠0)的图象分别交x轴、y轴于点M,N,线段MN上两点A,B(点B在点A的右侧),作AA1⊥x轴,BB1⊥x轴,且垂足分别为A1,B1,若OA1+OB1>4,则△OA1A的面积S1与△OB1B的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不确定的【答案】A【解析】【解答】解:由题意可得,m<0,设A(a,ma﹣4m),B(b,mb﹣4m),a<b,∵S1= 12a×(ma﹣4m),S2= 12b(mb﹣4m)∴S1﹣S2= 12(ma2﹣mb2)﹣124m(a﹣b)=(a﹣b){ 12m(a+b)﹣124m}.又∵OA1+OB1>4,∴12m(a+b)﹣124m= 12m(a+b﹣4)<0,∴S1﹣S2>0,故选A.3.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.【答案】B【解析】【解答】解:①当点P由点A向点D运动时,y的值为0;②当点P在DC上运动时,y随着x的增大而增大;③当点p 在CB 上运动时,y=AB•AD ,y 不变; ④当点P 在BA 上运动时,y 随x 的增大而减小. 故选B .二、填空题4.如图,直线y=﹣ 12 x+3与坐标轴分别交于点A 、B ,与直线y=x 交于点C ,线段OA 上的点Q 以每秒1个长度单位的速度从点O 出发向点A 作匀速运动,运动时间为t 秒,连接CQ .若△OQC 是等腰直角三角形,则t 的值为________.【答案】2或4【解析】【解答】∵由 {y =−12x +3y =x,得 {x =2y =2 , ∴C (2,2);如图1,当∠CQO=90°,CQ=OQ ,∵C (2,2), ∴OQ=CQ=2, ∴t=2;如图2,当∠OCQ=90°,OC=CQ , 过C 作CM ⊥OA 于M ,∵C (2,2), ∴CM=OM=2, ∴QM=OM=2, ∴t=2+2=4,即t的值为2或4,故答案为:2或4.5.如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移√2个单位,则平移后直线的解析式为________。
人教版初二上册第一学期数学期末复习《一次函数的应用—动点问题》(附练习及答案)【精品】

1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。
2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来研究解决,注意自变量的取值范围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C . (1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.例题2:如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位?当堂巩固:如图,直线6y kx =+与x 轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。
2、直线与y=x-1与两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有( ).A .4个B .5个C .6个D .7个 4、如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1)求点A B C ,,的坐标.(2)当CBD △为等腰三角形时,求点D 的坐标.5、如图:直线3+=kx y 与x 轴、y 轴分别交于A 、B 两点,43=OA OB ,点C(x ,y)是直线y =kx +3上与A 、B 不重合的动点。
人教版八年级数学下册 一次函数与面积相关的动点问题

A
O
x
自学检测
变式一(1): 若点P(x, y) 是第三象限内的直线上的一个动点;其他 条件不变。 当点P运动过程中,试写出△OPA的面积S与x 的函数关系式,并写出自变量x的取值范围; y
2 2 | x x 6 6|。 6 OA=____,PH=______ 3 3
F
S△ O PA
1 OA PH 2 1 2 6 ( x 6) 2 3 2 x 18 (x<-9)
点e的坐标为2当点p运动过程中试写出opa的面积s与x的函数关系式并写出自变量x的取值范围
一次函数与面积相关的动点问题
例1.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的 坐标为(- 9, 0),点A的坐标为(-6,0),点P(x,y)是第二 象限内的直线上的一个动点。 (1)求k的值; (2)当点P运动过程中,试写出△OPA的面积S与x的函数 关系式,并写出自变量x的取值范围; (3)探究:当△OPA的面积为3.6时,求P的坐标。 y 解: (1)将E(-9,0)代入y = kx+6 F p 得-9k+6=0 2 得k= 3 E A O x
如图,直线y = kx+6与x轴y轴分别相交于点E,F. 点E的 坐标为(- 9, 0), 点A的坐标为(- 6,0). 点P(x,y)是 第二象限内的直线上的一个动点。 (3)探究:当△OPA的面积为3.6时,求P的坐标 解:令S=3.6 即2x+18=3.6 解得x=-7.2 y 2 将x=-7.2代入 y = 3 x+6 得, F y =1.2 ∴当△OPA的面积为3.6时, P的坐标P(-7.2,1.2) E p
----
F
H E A
第五讲一次函数动点问题(教案)
4.关注学生的个体差异,因材施教,提高教学效果。
(2)学会运用数形结合的方法分析一次函数动点问题,并能解决实际问题;
(3)培养学生的空间想象力和逻辑思维能力。
举例解释:
(1)在教学过程中,重点讲解一次函数图像上任意一点的坐标表示方法,以及动点在直线上的移动规律;
(2)通过实例分析,强调动点问题中数形结合的重要性,让学生掌握解题关键;
(3)设计相关练习题,让学生在实际操作中体会空间想象力和逻辑思维能力的培养。
2.教学难点
(1)一次函数动点问题的分类与解题方法;
(2)在解决实际问题时,如何将问题转化为一次函数动点问题;
(3)运用数形结合的方法,突破动点问题的空间想象力限制。
举例解释:
(1)对于动点问题的分类,教师需要详细讲解不同类型动点问题的解题方法,如动点在直线上的移动、动点与直线的距离等,并举例说明;
2.一次函数动点问题的分类与解题思路;
3.举例说明一次函数动点问题的应用,如动点在直线上的移动、动点与直线的距离等;
4.练习题:针对本讲内容,设计具有代表性的练习题,巩固所学知识。
二、核心素养目标
本讲一次函数动点问题的教学,旨在培养学生的以下学科核心素养:
1.培养学生运用数学知识解决实际问题的能力,提高数学应用意识;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数动点问题的基本概念。一次函数动点问题是指在一次函数图像上,点的坐标随时间或其他变量的变化而发生改变的情况。它是研究函数图像动态变化的重要部分,有助于我们理解函数与实际问题的联系。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了动点在一次函数图像上的移动规律,以及如何利用这一规律解决实际问题。
人教版八年级下册数学一次函数与动点最值问题
一次函数与动点最值问题知识导航1.关于x 的一次函数y =k (x -m )+n 或y =kx -km +n 一定过定点(m ,n ).2.直线外一点与直线上各点的连线中,垂线段最短.3.利用三角形两边之和大于第三边,两边之差小于第三边求最值.4.利用平方数,绝对值,算术平方根的非负性求最值.【板块一】过定点的直线题型一 定点动直线【例1】(1)一次函数y =kx 一定经过点_________;若一次函数的图象经过原点,那么该一次函数的解析式可设为_________.(2)一次函数y =kx +2一定经过点_________;若一次函数的图象经过点(0,-4),那么该一次函数的解析式可设为_________;(3)一次函数y =kx -2k +1一定经过点_________;若一次函数的图象经过点(-2,4),该一次函数的解析式可设为_________. 题型二 动点定直线【例2】利用坐标判断点在定直线上. (1)点P (m ,m +2)一定在直线_________上; (2)点P (m +1,2m -3)一定在直线_________上.针对练习11.过定点的动直线的应用: 已知一次函数y =2kx -k +2. (1)其图象过定点_________;(2)直线y =2kx -k +2和直线y =4x 的交点是_________; (3)若0<k <2,不等式2kx -k +2≤4x 的解集是_________; (4)当x =1时,y <0,则k 的取值范围是_________;(5)若A (32,3),B (4,-3),该一次函数的图象与线段AB 有交点,则k 的取值范围是_________.2.动点在定直线上的应用:直线AB:y=2x+4交x轴于点A,交y轴于点B,C(1,0),点P为直线AB上一点,将线段PC绕点C 顺时针旋转90°,得CQ.(1)若点P横坐标为-1时,求点Q坐标;(2)若点P横坐标为m,试用含m的式子表示点Q的坐标;(3)当点P在直线AB上运动时,则点Q总在直线l上运动,求直线l的解析式.【板块二】直线型动点最值问题题型三点到直线的距离最短方法技巧利用垂线段最短,可求定点到直线型动点的最小值问题.【例1】点P是x轴上一点,A(0,4),将线段P A绕点A逆时针旋转90°得到线段AQ,求OQ的最小值.【例2】如图,A(4,0),△OAB为等边三角形,点C为x轴上一动点,以BC为边在直线BC的右侧作等边△BCD,连接OD.(1)点D在某一确定的函数图象上运动,其解析式为_________;(2)OD的最小值为_________.题型四两线段或多线段的和差最值问题方法技巧利用两边之和大于第三边,两边之差小于第三边,求两线段或多线段的和差最大值或最小值;在平面直角坐标系中,常作一个定点的对称点,然后连接这一对称点与另一定点,求最值.这一方法也叫化折为直.【例3】如图,A(-4,2),B(-1,1),在x轴上找一点P,使△P AB的周长最小,求这个最小值及点P的坐标.【例4】如图,A(-4,2),B(-1,1),在x轴上找一点P,使|P A-PB|的值最大,并求此时点P的坐标.针对练习21.一次函数y=k(x-1)+3k-4的图象与x轴交于点A,与y轴交于点B,则点O到该直线的距离的最大值是_________;2.如图,B(0,3),点A为x轴上一动点,将线段AB绕点A顺时针旋转90°得线段AC,连接OC.(1)设A(a,0),用含a的式子表示点C坐标_________;(2)点C在某一确定的函数图象上运动,其解析式为_________;(3)OC长度的最小值为_________.3.如图,A(0,23),点B为x轴上一动点,将线段AB绕点A逆时针旋转60°,得线段AC,线段OC的最小值是_________.第2题第3题第4题第5题4.如图,在△ABC中,∠ACB=90°,AC=BC=4,点M为AB的中点,点D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ME,点D在运动的过程中,ME的最小值为()A.2B.2 2C.4D.4 25.如图,在△ABC中,∠C=90°,BC=3,AC=5,点D为线段AC上一动点,将线段BD绕点D逆时针旋转90°,点B的对应点为E,连接AE,则AE的最小值为_________.6.如图,直线y=x+4与坐标轴交于点A,B,点C(-3,m)在直线AB上,在y轴上找一点P,使P A+PC的值最小,求这个最小值及点P的坐标.【板块三】动点的运动路径(轨迹)问题方法技巧动点的运动路径问题解题方法:1.选取三个或多个特殊点探索三个或多个特殊位置,一般选取起点,终点,和另外的特殊点探索;2.根据这些特殊点的位置猜想运动路径,然后验证.现阶段多用全等转换求值.【例1】如图,直线AB:y=2x+4交x轴于点A,交y轴于点B,C(1,0),点P为直线AB上一点,将线段PC绕点C顺时针旋转90°得CQ.(1)当点P从点A运动到点B时,点Q的运动路径长为_________;(2)线段OQ的最小值为_________.【例2】如图,A(4,0),B(0,4),点P在线段AB上运动,PQ⊥PO且PQ=PO.(1)试说明点Q在某一确定的直线上;(2)点M是OQ的中点,当点P从点A运动到点B时,求点M运动的路径长.针对练习31.在平面直角坐标系中,A(0,4),点B沿着某条路径运动,以点B为旋转中心,将点A逆时针旋转60°到点C(m,2).若-5≤m≤5,则点B运动的路径长为_________.2.在平面直角坐标系中,已知点A(a,0),C(0,b),且a,b满足(a+1)2+b+3=0.(1)直接写出:a=_________,b=_________;(2)如图1,点B为x轴正半轴上的一点,BE⊥AC于点E,交y轴于点D,连接OE.若OE平分∠AEB,求直线BE的解析式;(3)如图2,在(2)的条件下,点M为直线BE上的一动点,连接OM,将线段OM绕点M逆时针旋转90°,点O的对应点为N,当点M运动时,判断点N的运动路线是什么图形,并说明理由.图1图23.如图1,直线y=-3x+33分别与y轴、x轴交于点A,B,点C的坐标为(-3,0),点D为直线AB 上的一动点,连接CD交y轴于点E.(1)点B的坐标为_________,不等式-3x+33>0的解集为_________;(2)若S△COE=S△ADE,求点D的坐标;(3)如图2,以CD为边作菱形CDFG,且∠CDF=60°,当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.图1图2一次函数大综合——数形结合1.已知点A(a,3),点B(b,6),点C(5,c),AC⊥x轴,CB⊥y轴,点B在第二象限且到两坐标轴的距离相等.(1)写出A,B,C三点的坐标;(2)求△ABC的面积;(3)若点P为线段OB上的动点,当△BCP面积大于12小于16时,求点P的横坐标的取值范围.2. 在平面直角坐标系中,A(a,b),B(c,d),且a-c+4+|b-d-6|=0.(1)直接写出a与c,b与d的关系式;(2)如果b=c=0,点P(m,32m+6),且m>0,S△P AB=4S△AOB,求点P的坐标;(3)如果b=3,连接AB交x轴于点Q.①直接写出点Q的坐标(用含a的式子表示);②若S△AOB≤24,求a的取值范围.3. (2019黄陂区期末)如图,在平面直角坐标系中,点A在第一象限,AB⊥x轴于点B.AC⊥y轴于点C,点A(4a,3a),且四边形ABOC的面积为48.(1)如图1,直接写出点A的坐标为_________;(2)如图2,点D从点O出发以每秒1个单位长度的速度沿y轴正半轴运动,同时,点E从点A出发,以每秒2个单位长度的速度沿射线BA运动,DE交线段AC于点F,设运动的时间为t秒,当S△AEF<S△CDF 时,求t的取值范围;(3)如图3,将线段BC平移,使点B的对应点M恰好落在y轴负半轴上,点C的对应点为N,连接BN交y轴轴于点P,当OM=3OP时,求点M的坐标.4. 在平面直角坐标系中,已知点A(a,0),B(a,6),C(a-2,2).(1)若a=2,则△ABC的面积为_________;(2)将线段BC向右平移m个单位,若△ABC的面积小于4,求m的取值范围;(3)若点D(a+8,8),连结AD,将线段BC向右平移n个单位,若线段BC与线段AD有公共点,请直接写出n的取值范围_________.5.在平面直角坐标系中,点A(a,b),B(c,d),且a-c+3+|b-d-4|=0.(1)如果a=-1,b=-3,求A,B两点的坐标;(2)如果a=-1,b=-3,求直线AB与x轴的交点M以及与y轴的交点N的坐标;(3)如果点A在x轴上方平行于x轴,且在到x轴距离等于2的直线上运动,若△ABO的面积不超过21,求a的取值范围.6.如图,在平面直角坐标系中,直线l交x轴于点A,交y轴于点B,下表列举的是直线l上的点P(x,y)的取值情况:(1)直线l上的点P(x,y)的横、纵坐标之间的数量关系是_________(直接写出结果);(2)若点P(-2,2),点Q(q,0),若以P,Q,O,B为顶点的四边形的面积大于5,求q的取值范围;(3)已知坐标平面内第一象限的点M(m,n),N(m+4,n+4),若△PMN的面积是12,求m,n的数量关系.。
(完整版)八年级数学一次函数动点问题
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围。
(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值。
(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线 相交于点N。试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.
(3)在坐标平面内存在这样的点M,使得△MAC为等腰三角形且底角为30°,写出所有符合要求的点M的坐标。
6、如图,在平面直角坐标系中.四边形OABC是平行四边形.直线 经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2 个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C—B相交于点M。当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒( ).△MPQ的面积为S.
为(-6,0)。(1)求 的值;(2)若点P( , )是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)探究:当点P运动到什么位置时,△OPA的面积为 ,并说明理由。
5、己知如图在直角坐标系中,矩形OABC的对角线AC所在直线的解析式为 。
(2)当 为等腰三角形时,求点 的坐标.
(3)在直线 上是否存在点 ,使得以点 为顶点的四边形是平行四边形?
9、如图:直线 与x轴、y轴分别交于A、B两点, ,点C(x,y)是直线y=kx+3上与A、B不重合的动点。(1)求直线 的解析式;(2)当点C运动到什么位置时△AOC的面积是6;(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由。
八年级数学一次函数之动点问题(人教版)(专题)(含答案)
一次函数之动点问题(人教版)(专题)一、单选题(共5道,每道20分)1.如图,直线与x轴、y轴分别交于A,B两点,直线BC与x轴交于点C,∠ABC=60°.动点P从点A出发以每秒1个单位的速度沿AC向点C运动(不与点A,C重合),同时动点Q从点C出发以每秒2个单位的速度沿折线CB-BA向点A运动(不与点C,A重合).设点P的运动时间为t秒,△APQ的面积为S,则S与t之间的函数关系式为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:略2.如图,直线与x轴、y轴分别交于点A,点B,与直线交于点C.动点E从点B出发,以每秒1个单位长度的速度沿BO方向向终点O运动,动点F同时从原点O出发,以每秒1个单位长度的速度沿折线OC-CB向终点B运动,当一点停止运动时,另一点也停止运动.设点F运动的时间为t秒,△OEF的面积为S,则S与t之间的函数关系式为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:略3.如图,在平行四边形OABC中,点A在x轴上,∠AOC=60°,OC=4cm,OA=8cm.动点P 从点O出发,以1cm/s的速度沿折线OA-AB运动;动点Q同时从点O出发,以相同的速度沿折线OC-CB运动.当其中一点到达终点B时,另一点也随之停止运动,设运动时间为t 秒.(1)设△OPQ的面积为S,要求S与t之间的函数关系式,根据表达的不同,t的分段应为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:略4.(上接第3题)(2)S与t之间的函数关系式为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:略5.(上接第3,4题)(3)当点P在OA上运动,且△OPQ的面积为平行四边形OABC的面积的一半时,t的值为( )A.,8B.4C. D.8答案:D解题思路:试题难度:三颗星知识点:略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学 一次函数动点问题1、如图,以等边△OAB 的边OB 所在直线为x 轴,点O 为坐标原点,使点A 在第一象限建立平面直角坐标系,其中△OAB 边长为6个单位,点P 从O 点出发沿折线OAB 向B 点以3单位/秒的速度向B 点运动,点Q 从O 点出发以2单位/秒的速度沿折线OBA 向A 点运动,两点同时出发,运动时间为t (单位:秒),当两点相遇时运动停止.① 点A 坐标为________,P 、Q 两点相遇时交点的坐标为________; ② 当t =2时,S =△OPQ ____________;当t =3时,OPQ S =△____________; ③ 设△OPQ 的面积为S ,试求S 关于t 的函数关系式;④ 当△OPQ 的面积最大时,试求在y 轴上能否找一点M ,使得以M 、P 、Q 为顶点的三角形是Rt △,若能找到请求出M 点的坐标,若不能找到请简单说明理由。
2、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式; (2) 当t 为何值时,△APQ的面积为524个平方单位?xyO AB xyOAB xyOABAFEoyx3、如图,在Rt △AOB 中,∠AOB=90°,OA=3cm ,OB=4cm ,以点O 为坐标原点建立坐标系,设P 、Q 分别为AB 、OB 边上的动点它们同时分别从点A 、O 向B 点匀速运动,速度均为1cm/秒,设P 、Q 移动时间为t (0≤t ≤4)。
(1)过点P 做PM ⊥OA 于M ,求证:AM :AO=PM :BO=AP :AB ,并求出P 点的坐标(用t 表示) (2)求△OPQ 面积S (cm 2),与运动时间t (秒)之间的函数关系式,当t 为何值时,S 有最大值?最大是多少?(3)当t 为何值时,△OPQ 为直角三角形?(4)证明无论t 为何值时,△OPQ 都不可能为正三角形。
若点P 运动速度不变改变Q 的运动速度,使△OPQ 为正三角形,求Q 点运动的速度和此时t 的值。
4、如图,直线6y kx =+与x 轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标 为(-6,0)。
(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。
5、己知如图在直角坐标系中,矩形OABC 的对角线AC 所在直线的解析式为31y x 。
(1)求线段AC 的长和∠ACO 的度数。
(2)动点P 从点C 开始在线段CO 上以每秒3个单位长度的速度向点O 移动,动点Q 从点O 开始 在线段OA 上以每秒1个单位长度的速度向点A 移动,(P 、Q 两点同时开始移动)设P 、Q 移动的时间为t 秒。
①设△BPQ 的面积为S ,求S 与t 之间的函数关系式,并求出当t 为何值时,S 有最小值。
(3)在坐标平面内存在这样的点M ,使得△MAC 为等腰三角形且底角为30°,写出所有符合要求的点M 的坐标。
6、如图,在平面直角坐标系中.四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,o),点B 的坐标为(11.4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O 一C —B 相交于点M 。
当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t ).△MPQ 的面积为S .(1)点C 的坐标为___________,直线l 的解析式为___________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围。
(3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值。
(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N 。
试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.yO第5题图QPCBA7、如图(1),在矩形ABCD 中,AB=10cm,BC=8cm,点P 从A 出发, 沿A →B →C →D 路线运动,到D 停止;点Q 从D 出发,沿D →C →B →A 路线运动,到A 停止. 若点P 、点Q 同时出发,点P 的速度为1cm/s,点Q 的速度为2cm/s,as 时点P 、点Q 同时改变速度,点P 的速度变为bcm/s,点Q 的速度变为dcm/s .图(2)是点P 出发x 秒后△APD 的面积S1(cm 2)与x(s)的函数关系图象;图(3)是点Q 出发x 秒后△AQD 的面积S 2(cm 2)与x(s)的函数关系图象.(1)参照图(2),求a 、b 及图(2)中c 的值;(2)求d 的值; (3)设点P 离开点A 的路程为y 1(cm),点Q 到A 还需走的路程为y 2(cm), 请分别写出动点P 、Q 改变速度后y 1、y 2与出发后的运动时间x(s)的函数关系式,并求出P 、Q 相遇时x 的值; (4)当点Q 出发_______s 时,点P 、点Q 在运动路线上相距的路程为25cm.(1)x(秒)(2)20840caOS 1(cm 2)x(秒)(3)2240OS 2(cm 2)8、如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点.(1)求点A B C ,,的坐标. (2)当CBD △为等腰三角形时,求点D 的坐标.(3)在直线AB 上是否存在点E ,使得以点E D O A ,,,为顶点的四边形是平行四边形?xyOBA9、如图:直线3+=kx y 与x 轴、y 轴分别交于A 、B 两点,43=OA OB ,点C(x ,y)是直线y =kx +3上与A 、B 不重合的动点。
(1)求直线3+=kx y 的解析式;(2)当点C 运动到什么位置时△AOC 的面积是6;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由。
10、已知,如图在边长为2的等边△ABC 中,E 是AB 边上不同于点A 、点B 的一动点,过点E 作ED ⊥BC 于点D ,过点D 作DH ⊥AC 于点H ,过点H 作HF ⊥AB 于点F ,设BE 的长为x ,AF 的长为y ; ⑴求y 与x 的函数关系式,并写出自变量的范围;⑵当x 为何值时,点E 与点F 重合,判断这时△EDH 为什么三角形(判断形状,不需证明).11、如图,点A 、B 、C 的坐标分别是(0,4),(2,4),(6,0).点M 是折线ABC 上一个动点,MN ⊥x 轴于N ,设ON 的长为x ,MN 左侧部分多边形的面积为S. ⑴写出S 与x 的函数关系式;⑵当x =3时,求S 的值.12、如图,已知在平面直角坐标系中,直线l :y =-21x +2分别交两坐标轴于A 、B 两点,M 是线段AB 上一个动点,设M 的横坐标为x ,△OMB 的面积为S ;⑴写出S 与x 的函数关系式;⑵若△OMB 的面积为3,求点M 的坐标;⑶当△OMB 是以OB 为底的等腰三角形时,求它的面积; ⑷画出函数s 图象.13、如图1,等边△ABC 中,BC=6cm ,现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以2cm/s 的速度沿AB 向终点B 移动;点Q 以1cm/s 的速度沿BC 向终点C 移动,其中一点到终点,另一点也随之停止.连接PQ ,设动点运动时间为x 秒.(图2、图3备用) (1)填空:BQ= ,PB= (用含x 的代数式表示);(2)当x 为何值时,PQ ∥AC ?(3)当x 为何值时,△PBQ 为直角三角形?lMyxOBA13、如图,直线OC 、BC 的函数关系式分别为y =x 和y =-2x +6,动点P(x ,0)在OB 上移动(0<x <3), ⑴求点C 的坐标;⑵若A 点坐标为(0,1),当点P 运动到什么位置时(它的坐标是什么),AP+CP 最小;⑶设△OBC 中位于直线PC 左侧部分的面积为S ,求S 与x 之间的函数关系式。
15、如图1,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 从A 点出发,沿A →B →C →D 路线运动,到D 点停止;点Q 从D 点出发,沿D →C →B →A 运动,到A 点停止.若点P 、点Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,a 秒时点P 、点Q 同时改变速度,点P 的速度变为每秒b (cm ),点Q 的速度变为每秒c (cm ).如图2是点P 出发x 秒后△APD 的面积S 1(cm 2)与x (秒)的函数关系图象;图3是点Q 出发x 秒后△AQD 的面积S 2(cm 2)与x (秒)的函数关系图象.根据图象: (1)求a 、b 、c 的值;(2)设点P 离开点A 的路程为y 1(cm ),点Q 到点A 还需要走的路程为y 2(cm ),请分别写出改变速度后y 1、y 2与出发后的运动时间x (秒)的函数关系式,并求出P 与Q 相遇时x 的值.16、已知在矩形ABCD中,AB=4,BC= 25/2,O为BC上一点,BO= 7/2,如图所示,以BC所在直线为x轴,O为坐标原点建立平面直角坐标系,M为线段OC上的一点.(1)若点M的坐标为(1,0),如图①,以OM为一边作等腰△OMP,使点P在矩形ABCD的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标;(2)若将(1)中的点M的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P的坐标;(3)若将(1)中的点M的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个.(不必求出点P的坐标)17、如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.18、已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4。