八年级数学全等三角形中的动点问题专项练习题

合集下载

八年级数学全等三角形中的动点问题专题强化训练

八年级数学全等三角形中的动点问题专题强化训练

八年级数学全等三角形中的动点问题专题强化训练1、在等腰三角形ABC中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF=10.2、在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为8cm。

3、将边长为1的等边三角形OAP按图示方式,沿x轴正方向连续翻转2019次,点P依次落在点P1,P2,P3,P4,…,P2007的位置。

P1的坐标为(1,0),P3的坐标为(-1,0),P50的坐标为(0,-1),P2019的坐标为(1,0)。

4、在等腰直角三角形ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE。

连接DE、DF、EF。

1)证明△ADF≌△CEF。

首先,AD=CE,AF=BF,因此△ADF≌△BDF,△CEF≌△XXX。

又因为BF=EF,所以△BDF≌△XXX。

因此,△ADF≌△CEF。

2)证明△DFE是等腰直角三角形。

因为AD=CE,所以DE=DF。

又因为AF=BF,所以EF=2DF。

因此,△DFE是等腰直角三角形。

5、在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1个单位的速度沿AB向B和沿CA向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处。

1)在爬行过程中,CD和BE始终相等。

2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图所示,蜗牛爬行过程中∠CQE的大小条件不变,证明∠CQE=60°。

3)如果将原题中“沿着CA向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF。

6、如图1,若△ABC和△ADE为等边三角形,M、N分别为BC、CD的中点,易证:CD=BE,△AMN是等边三角形。

最新八年级数学全等三角形动点问题专题训练

最新八年级数学全等三角形动点问题专题训练

八年级数学全等三角形动点问题专题训练1、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点. (1)如果点P在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?2、如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B点以2cm/s 的速度移动,点Q点从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC 三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?3、如图,已知△ABC中,AB=AC=10厘米,BC=8cm,点D为AB的中点,点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由点C向点A点以a厘米/秒运动,设运动的时间为t秒,(1)求CP的长(用含t的式子表示);(2)若以C、P、Q为顶点的三角形和以B、D、P为顶点的三角形全等,且∠B和∠C是对应角,求a的值4、如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A-C-B路径向终点运动,终点为B点;点Q从B点出发沿B-C-A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P 和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.5、如图所示,有一直角三角形△ABC ,∠C=900,AC=10cm ,BC=5cm ,一条线段PQ=AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AM 上运动,问P 点运动到AC 上什么位置时,△ABC 才能和△APQ 全等?6、如图,在等边ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D,E 处(1)在爬行过程中,CD 和BE 始终相等吗?(2)若蜗牛沿着AB 和CA 的延长线爬行,EB 与CD 交于点Q ,其他条件不变,如图(2)所示,蜗牛爬行过程中CQE∠60CQE∠的大小条件不变,求证:︒=(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF是否始终等于EF?米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP 是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE 与△CQP全等;此时点Q的运动速度为多少.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?9、如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.。

全等三角形之动点问题(简单题)

全等三角形之动点问题(简单题)

一、等腰三角形类:因动点产生的等腰三角形问题1.如图,Rt△ABC在直线l上,且∠ABC= 90°,BC=6cm,AC= 10cm.(1)求AB的长;(2)若有一动点P从点B出发,以2cm/s的速度在直线l上运动,则当t为何值时,△ACP为等腰三角形?二、直角三角形:因动点产生的直角三角形问题2、如图,射线MB上MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P 从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求:(1)△PAB为等腰三角形的t值;(2)△PAB为直角三角形的t值;(3) 若AB=5且∠ABM=45。

,其他条件不变,直接写出△PAB为直角三角形的t值三、全等三角形:因动点产生的全等三角形问题3.如图,已知△ABC中,∠B=∠C,AB=AC=10 cm,BC=8 cm,D为AB的中点.点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,则经过1 s后,△BPD与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当点Q的运动速度为多少时,能够使△BPD与△CQP全等?四、三角形面积:因动点产生的三角形面积问题4.△ABC中,AB=6cm,BC=8cm,∠B=90°, P从A沿AB向B以1cm/s的速度移动,Q从B沿BC向C以2cm/s的速度移动。

(1)如果P、Q分别从A、B同时出发,几秒后△PBQ的面积等于8cm2?;(2)如果P、Q分别从A、B同时出发,点P到B点后,又继续沿BC向C移动,点Q到达C后,又继续沿CA向A移动,在这一整个移动过程中,是否存在点P、Q,使△PBQ的面积等于9cm2?若存在,试确定P、Q的位置;若不存在,请说明理由。

五、相遇问题:因动点产生的相遇问题5.如图,在△ABC中,AB= BC= AC= 12cm,现有两点M、N分别从点A、点B同时出发,沿△ABC的三边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M.N运动几秒后,M、N两点重合?(2)点M.N运动几秒后,可得到等边△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN?如果能,请求出此时M、N运动的时间.六、最值问题:因动点产生的最值问题6.如图K 13一6,点P,Q分别是△ABC的边AC,AB上的定点,请你在BC上找一点R,使得△PQR的周长最短.。

2024年人教版八年级上册数学第十二章全等三角形专题四 全等三角形中的动点问题

2024年人教版八年级上册数学第十二章全等三角形专题四 全等三角形中的动点问题
人教版 八年级上
第十二章 全等三角形
专题四 全等三角形中的动点问题
专题四
全等三角形中的动点问题
类型1 以 U 型框为背景的动点问题
1. [2024雅安月考]如图,做一个“U”字形框架
PABQ ,其中 AB =42 cm, AP , BQ 足够长, PA ⊥
AB , QB ⊥ AB ,点 M 从点 B 出发,向点 A 运动,
10厘米, BC =8厘米, CD =12厘米,∠ B =∠ C ,点 E
为 AB 的中点.如果点 P 在线段 BC 上以3厘米/秒的速度由
B 点向 C 点运动,同时,点 Q 在线段 CD 上由 C 点向 D 点
运动.(1)ຫໍສະໝຸດ 点 Q 的运动速度与点 P 的运动速度相等,经过1秒
后,△ BPE 与△ CQP 是否全等?请说明理由.
∴ BE =5厘米,∴ BE = PC ,
=,
在△ BPE 和△ CQP 中,ቐ∠=∠,
=,
∴△ BPE ≌△ CQP (SAS).
1
2
3
4
专题四
全等三角形中的动点问题
(2)当点 Q 的运动速度为多少时,能够使△ BPE 与△ CQP
全等?
【解】∵△ BPE 与△ CQP 全等,
∵∠ A =∠ B =90°,
∴使△ ACM 与△ BMN 全等,可分两种情况:
情况一:当 BM = AC , BN = AM 时,
∵ BN = AM , AB =42 cm,
∴4 t +3 t =42,解得 t =6,
∴ AC = BM =3×6=18(cm);
1
2
3
4
专题四
全等三角形中的动点问题

八年级数学全等三角形之动点问题

八年级数学全等三角形之动点问题

八年级数学全等三角形之动点问题(全等三角形)拔高练习解答题(本大题共8小题,共120分)1. (本小题15分)如图,在等边厶ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过t分钟后,它们分别爬行到D E处,请问(1 )在爬行过程中,CD和BE始终相等吗?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q其他条件不变,如图(2)所示,蜗牛爬行过程中/ CQE的大小保持不变.请利用图(2)情形,求证:/ CQE =60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图(3),则爬行过程中,D F始终等于EF是否正确.A核心考点:运动变化型问题2. (本小题15分)如图,已知△ ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒得速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△ BPD与厶CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使厶BPD^A CQP(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿核心考点:正数和负数3. (本小题15分)如图,△ ABC的边BC在直线I上,ACLBC,且AC=BC △ EFP的边FP也在直线I上,边EF与边AC重合,且EF=FP.(1)请你通过观察,测量,猜想并写出AB与AP所满足的数量关系和位置关系;⑵将厶EFP沿直线I向左平移到图2的位置时,EP交AC于点Q连接AP, BQ猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;⑶将厶EFP沿直线I向左平移到图3的位置时,EP的延长线交AC的延长线于点Q连接AP, BQ•你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由•A(E)31核心考点:全等三角形的判定与性质4. (本小题15分)如图,在厶ABC中,/ CAB=70 .在同一平面内,将厶ABC绕点A旋转到△ AB C的位置,使得CC // AB,则/B' AB = _________________核心考点:全等三角形的判定与性质5. (本小题15分)已知如图(1),△ ABC中,/ BAC= 90°, AB= AC, AE是过A的一条直线,且B、C在A E的异侧,BDL AE于D, CEL AE于E,求证:(1)BD = DE+ CE (2)若直线AE绕A点旋转到⑵位置时(B D V CE),其余条件不变,问BD与DE CE的关系如何?请予证明.(3)若直线AE绕A点旋转到图(3)位置时,(BD>CE),其余条件不变,问BD与DE CE的关系如何?请直接写出结果,不须证明.(4)归纳⑴、(2)、(3),请用简捷语言表述BD DE CE的关系.6. (本小题15分)在图中,直线MN与线段AB相交于点0,/ 1 = / 2 = 45(1)如图,若AO = OB,请写出AO与BD的数量关系和位置关系;(2)将图中的MN绕点O顺时针旋转得到下图,其中AO = OB.求证:AC = BD, AC 丄BD;核心考点:全等三角形的判定与性质7.(本小题15分)如图,A B C 、D 在同一直线上,AB= CD DE// AF,且 DE = AF ,求证:△ AFC^A DE 精选范本,供参考!【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评 和关注,我们将会做得更好】 B .如果将BD 沿着AD 边的方向平行移动,如图,B 点与C 点重合时,如图, B 点在C 点右侧时,其余条请予证明;如果不成立,请说明理由. 核心考点:全等三角形的判定。

全等三角形动点问题专属习题

全等三角形动点问题专属习题

02 巩固练习 ,拓展思维
全等三角形·木子老师·巩固练习,拓展思维
如图, ABC 是边长 8cm 的等边三角形动点 P 从点 A 出发,沿 AB 向点 B 运动,动点 Q 从点 C 出发,沿射线 BC 方向运动,连接 PQ 交 AC 于 D,如果动点 P,Q 都以 1cm/s 的速度同时出发,设运动时间 为 t(s),那么当 t 为何值时, DCQ 是等腰三角形?
谢谢欣赏
请探究:在点 P,Q 的运动过程中 PCD 和 QCD 的面积是否相 等?
04 变式练习 2
全等三角形·木子老师·变式练习 2
已知,等边三角形 ABC,(1)动点 P 从点 A 出发,沿线段 AB 向点 B 运动,动点 Q 从点 B 出发,沿线段 BC 向点 C 运动,连接 CP,AQ 交 于 M,如果动点 P,Q 都以相同的速度同时出发,则∠AMP= 度。 若动点 P,Q 继续运动,分别沿射线 AB,BC 方向运动,∠AMP=60 的结 论还成立吗?
全等三角形·木子老师·实战训练
3,在等边△ABC 的顶点 A、C 处各有一只蜗牛,它们同时出发,分别以每分钟 1 米的速度由 A 向 B 和由 C 向 A 爬行,其中一只蜗牛爬到终点时,另一只也停止 运动,经过 t 分钟后,它们分别爬行到 D、E 处, 请问: (1)如图 1,在爬行过程中,CD 和 BE 始终相等吗,请证明? (2)如果将原题中的“由 A 向 B 和由 C 向 A 爬行”,改为“ 沿着 AB 和 CA 的延长线爬 行”,EB 与 CD 交于点 Q,其他条件不变,蜗牛爬行过程中∠CQE 的大小.保持不 变,请利用图 2 说明:∠CQE=60°; (3)如果将原题中“由 C 向 A 爬行”改为“沿着 BC 的延长线爬行,连接 DE 交 AC 于 F”, 其他条件不变,如图 3,则爬行过程中,证明: DF=EFBiblioteka 全等三角形·木子老师·典例精析

人教版初中八年级数学上册专题三角形全等之动点问题习题及答案

人教版初中八年级数学上册专题三角形全等之动点问题习题及答案

三角形全等之动点问题(习题)➢ 例题示范例1:已知:如图,正方形ABCD 的边长为4,动点P 从点A 出发以每秒2个单位的速度沿AB -BC -CD 方向运动,到达点D 时停止运动.连接AP ,DP .设点P 运动的时间为t 秒,求当t 为何值时,△ADP 的面积为6.【思路分析】1.研究背景图形,标注四边形ABCD 是边长为4的正方形,四条边都相等,四个角均为90°. 2.分析运动过程,分段①分析运动过程:动点P 的起点、终点、状态转折点,以及对应的时间范围.0≤t ≤6DC(2/s) P :②根据状态转折点分为三段:02t ≤≤,24t <≤,46t <≤,需要对每一段分别进行分析. 3.表达线段长,建等式①当02t ≤≤时,即点P 在线段AB 上,PDCBA此时AP =2t ,AD =4,12ADP S AD AP =⋅⋅△,即16422t =⋅⋅,32t =,符合题意.②当24t <≤时,即点P 在线段BC 上,P DC BAA BCDABCDP DCB A此时1144822ADP S AD AB =⋅⋅=⨯⨯=△,不符合题意,舍去.③当46t <≤时,即点P 在线段CD 上,PAB CD此时DP =12-2t ,AD =4,12ADP S AD DP =⋅⋅△,即164(122)2t =⋅⋅-,92t =,符合题意. 综上,当t 的值为32或92时,△ADP 的面积为6.➢ 巩固练习1. 已知:如图,在等边三角形ABC 中,AB =6,D 为BC 边上一点,AP且BD=4.动点P从点C出发以每秒1个单位的速度沿CA向点A运动,连接AD,BP.设点P运动时间为t秒,求当t为何值时,△BPA≌△ADC.2.如图,正方形ABCD的边长为8,动点P从点A出发以每秒1个单位的速度沿AB向点B运动(点P不与点A,B重合),动点Q从点B出发以每秒2个单位的速度沿BC向点C运动,点P,Q同时出发,当点Q停止运动,点P也随之停止.连接AQ,交BD于点E,连接PE.设点P运动时间为x秒,求当x为何值时,△PBE≌△QBE.3.已知:如图,在等边三角形ABC中,AB=10 cm,点D为边AB上一点,AD=6 cm.点P在线段BC上以每秒2 cm的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.设CQBEPA DA点P运动时间为t秒,若某一时刻△BPD与△CQP全等,求此时t的值及点Q 的运动速度.4.已知:如图,在△ABC中,AB=AC=12,BC=9,点D为AB的中点.(1)如果点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,则经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,则当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过多长时间,点P与点Q 第一次在△ABC的哪条边上相遇?5.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动.设点F的运动时间为t秒.(1)请用含t的式子表达△ABF的面积S.(2)是否存在某个t值,使得△ABF和△DCE全等?若存在,求出所有符合条件的t值;若不存在,请说明理由.➢思考小结1.动点问题的处理方法:①______________________;②______________________,________;③______________________,________.2.分析运动过程包括4个方面(四要素):①起点、________、__________;②_________________________;③根据_____________分段;④所求目标.3.当研究目标多变或问题情形复杂时,我们往往将问题拆解成几个较为简单的问题来进行考虑,动点问题也是如此.具体分析动点问题时,往往会先研究背景图形,再分析运动过程、分段,为最后表达线段长,建等式做好准备.因为动点运动方向的改变不仅会改变线段长的表达,还可能改变和动点相关的图形的形状,所以要先分段,然后逐段分析,表达线段长,建等式.【参考答案】1.当t为4秒时,△BPA≌△ADC2.当x为83秒时,△PBE≌△QBE3. ①当t 为52秒时,△BPD ≌△CPQ ,此时Q 的速度为85cm/s . ②当t 为3秒时,△BPD ≌△CQP ,此时Q 的速度为2cm/s . 4. (1)①全等②Q 的速度为4cm/s 时,能够使△BPD 与△CQP 全等 (2)经过24秒,点P 与点Q 第一次在BC 边上相遇. 5.(1)034351258432t s t t s t s t <=<=<<=-+≤≤,,,(2)t 为1秒或7秒时,△ABF 与△DCE 全等。

专题全等三角形中的动点运动问题(30题)(原卷版)

专题全等三角形中的动点运动问题(30题)(原卷版)

(苏科版)八年级上册数学《第1章全等三角形》专题全等三角形中的动点运动问题(30题)1.(2023春•横山区期末)如图,AB=8cm,∠A=∠B,AC=BD=6cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上以xcm/s的速度由点B向点D运动.它们运动的时间为t (s).当△ACP与△BPQ全等时,x的值为.2.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.1、全等三角形中的动点运动问题,通过点的运动,用代数式表示线段的大小,从而寻找线段间的等量关系,建立方程,进而快速解题.2、解题策略:①明晰点的运动方向和速度;②根据已知和求证的目标,寻找线段或角之间的数量关系,进而解决问题;③有时要用到分类讨论的思想.典型题训练3.(2022秋•攸县期末)如图,在四边形ABCD中,∠DAB=∠ABC,AB=5cm,AD=BC=3cm,点E在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为cm/s.4.(2023春•吴江区期末)如图,已知长方形ABCD中,AB=8cm,AD=12cm,点E在AB边上,BE=3cm,点F在线段BC上以3cm/s的速度由B点向C点运动,到达点C后马上折返,向点B运动,点G在线段CD上以vcm/s的速度由C点向D点运动.点F,G同时出发,当一个点到达终点停止运动时,另一个点也随之停止运动,设运动的时间为t秒.若以E,B,F为顶点的三角形和以F,C,G为顶点的三角形全等,则t=秒.5.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=()A.3B.4C.2或4D.2或36.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是()A.2B.2.8C.3D.67.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为()A.2B.4C.6D.2或68.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为(不考虑两三角形重合的情况).9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QP A全等.11.(2022秋•昭阳区期中)如图,已知在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能使△BPD与△CQP全等?12.如图,△ABC中,∠ACB=90°,AC=12,BC=16.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.14.如图,在等腰△ABC中,AB=AC=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C 运动,设点P的运动时间为ts.(1)PC=cm.(用t的代数式表示)(2)当点P从点B开始运动,同时,点Q从点C出发,以vcm/s的速度沿CA向点A运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)16.(2022秋•南召县期末)如图,在四边形ABCD中,∠B=∠C,AB=20cm,BC=15cm,E为AB的中点,若点P在线段BC上以5cm/s的速度由点B向点C运动,同时,点Q在线段CD上由点C向点D运动.(1)若点Q运动的速度是5cm/s,经过1秒后,△BPE与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当△BPE与△CQP全等时,求出点Q的运动速度.17.(2022春•二七区校级期中)如图,点E在线段CD上,EA,EB分别平分∠DAB和∠CBA,点F在线段AB上运动,AD=4cm,BC=3cm,且AD∥BC.(1)当点F运动到离点A多少厘米时,△ADE和△AFE全等?为什么?(2)在(1)的情况下,此时BF=BC吗?为什么?求出AB的长.18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△AEP与△BPQ全等.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.22.如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=14,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒5个单位的速度,沿C→B→C做匀速移动,点G 从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒,G点的移动距离为y.(1)请用含t的代数式表示以下线段:ED=,当0<t≤2时,BF=,当2<t≤4时,BF=;(2)请猜想AD与BC的位置关系,并说明理由;(3)在移动过程中,请你探究当t取何值时,△DEG与△BFG全等?并求出此时G点的移动距离y.23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.24.(2022春•华容县期中)如图,已知正方形ABCD的边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/s的速度由B点向C点运动,同时,点Q在线段CD上由C点向D 点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等.请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?相遇点在何处?25.(2022秋•红花岗区期中)如图1,直线AM⊥AN,AB平分∠MAN,过点B作BC⊥BA交AN于点C;动点E、D同时从A点出发,其中动点E以2cm/s的速度沿射线AN方向运动,动点D以1cm/s的速度运动;已知AC=6cm,设动点D,E的运动时间为t.(1)当点D在射线AM上运动时满足S△ADB:S△BEC=2:1,试求点D,E的运动时间t的值;(2)当动点D在直线AM上运动,E在射线AN运动过程中,是否存在某个时间t,使得△ADB与△BEC 全等?若存在,请求出时间t的值;若不存在,请说出理由.26.如图,AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在射线AB上以1cm/s的速度由点A出发沿射线AB方向运动,同时,点Q在射线DB上由点D出发沿射线DB方向运动.它们运动的时间为t (s).(1)若点Q的运动速度是点P的运动速度的2倍,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)设点Q的运动速度为xcm/s(x≠2),是否存在实数x,使△ACP与△BPQ全等?若存在,请画出示意图,将全等的三角形用符号表示出来,并直接写出相应的x,t的值;若不存在,请说明理由.27.(2022秋•沭阳县校级月考)如图①,线段BC=6,过点B、C分别作垂线,在其同侧取AB=4,另一条垂线上任取一点D.动点P从点B出发,以每秒2个单位的速度沿BC向终点C运动;同时动点Q从点C出发,以每秒a个单位的速度沿射线CD运动,当点P停止时,点Q也随之停止运动.设点P的运动的时间为t(s).(1)当t=1,CP=,用含a的代数式表示CQ的长为;(2)当a=2,t=1时,①求证:△ABP≌△PCQ;②求证:AP⊥PQ;(3)如图②,将“过点B、C分别作垂线”改为“在线段BC的同侧作∠ABC=∠DCB”,其它条件不变.若△ABP与△PCQ全等,直接写出对应的a的值.28.在直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,①如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E.求证:△ACD≌△CBE;②如图2,过点A作AD⊥直线l于点D,点B与点F关于直线l对称,连接BF交直线l于E,连接CF.求证:DE=AD+EF.(2)当AC=8cm,BC=6cm时,如图3,点B与点F关于直线l对称,连接BF、CF.点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M、N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒.当△MDC与△CEN全等时,求t的值.29.(2022秋•浠水县期中)已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.30.(2022秋•原平市校级期中)如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=23CD,且AE=BE.(1)求线段AO的长;(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值,若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形中的动点问题
教学重点难点利用熟悉的知识点解决陌生的问题
思路:1.利用图形想到三角形全等
2.分析题目,了解有几个动点,动点的路程,速度
3.结合图形和题目,得出已知或能间接求出的数据
4.分情况讨论,把每种可能情况列出来,不要漏
5.动点一般都是压轴题,步骤不重要,重要的是思路
6.动点类问题一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题
难了,可以反过去看看前面问题的结论.
【典型例题】
例1. 如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD 的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°,点D在射线BC上运动时(与点B不重合),如图,线段CF,BD之间的位置关系为_____________,数量关系为______________.请利用图2或图3予以证明(选择一个即可).
例2. 如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,连接DE、DF、EF.
(1)求证:△ADF≌△CEF.(2)试证明△DFE是等腰直角三角形.(3)在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由.(4)求△CDE面积的最大值.
变式如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,
点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在
此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的
最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其
中正确的结论是()
A.①②③B.①③C.①③④D.②③④
例3. 正方形ABCD和正方形AEFG有一公共点A,点G.E分别在线段AD、AB上(如图(1)所示),连接DF、BF.
(1)求证:DF=BF(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG、BE(如图(2)所示),在旋转过程中,请猜想线段DG、BE始终有什么数量关系和位置关系并证明你的猜想.
例4.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
变式如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B点以2cm/s的速度移动,点Q 点从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.
(1)你能用t表示BP和BQ的长度吗?请你表示出来.
(2)请问几秒钟后,△PBQ为等边三角形?
(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟
后点P与点Q第一次在△ABC的哪条边上相遇?
【拓展提高】
1..两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
(2)证明:DC⊥BE
2.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
3. 已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.
当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证
1
2
DEF CEF ABC S S S
△△△

当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.。

相关文档
最新文档